Low abundant spacer 5S rRNA transcripts are frequently polyadenylated in Nicotiana

. 2007 Nov ; 278 (5) : 565-73. [epub] 20070802

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17671796

In plants, 5S rRNA genes (5S rDNA) encoding 120-nt structural RNA molecules of ribosomes are organized in tandem arrays comprising thousands of units. Failure to correctly terminate transcription would generate longer inaccurately processed transcripts interfering with ribosome biogenesis. Hence multiple termination signals occur immediately after the 5S rRNA coding sequence. To obtain information about the efficiency of termination of 5S rDNA transcription in plants we analyzed 5S rRNA pools in three Nicotiana species, N. sylvestris, N. tomentosiformis and N. tabacum. In addition to highly abundant 120-nt 5S rRNA transcripts, we also detected RNA species composed of a genic region and variable lengths of intergenic sequences. These genic-intergenic RNA molecules occur at a frequency severalfold lower than the mature 120-nt transcripts, and are posttranscriptionally modified by polyadenylation at their 3' end in contrast to 120-nt transcripts. An absence of 5S small RNAs (smRNA) argue against a dominant role for the smRNA biosynthesis pathway in the degradation of aberrant 5S rRNA in Nicotiana. This work is the first description of polyadenylated 5S rRNA species in higher eukaryotes originating from a read-through transcription into the intergenic spacer. We propose that polyadenylation may function in a "quality control" pathway ensuring that only correctly processed molecules enter the ribosome biogenesis.

Zobrazit více v PubMed

Gene. 1991 Sep 15;105(2):249-54 PubMed

Plant Mol Biol. 1990 Sep;15(3):465-74 PubMed

Mol Gen Genet. 1989 Aug;218(2):302-7 PubMed

Nucleic Acids Res. 2002 Feb 1;30(3):695-700 PubMed

Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13398-403 PubMed

Genome Res. 2000 May;10(5):679-90 PubMed

J Biol Chem. 1995 Nov 24;270(47):28003-5 PubMed

Chromosome Res. 2000;8(1):85-7 PubMed

Genome Res. 2002 Jan;12(1):132-44 PubMed

Heredity (Edinb). 2002 Jan;88(1):19-25 PubMed

Nucleic Acids Res. 2006 May 02;34(8):2280-93 PubMed

Plant J. 2002 Feb;29(3):313-23 PubMed

Trends Genet. 2001 Dec;17(12):675-7 PubMed

Nature. 1982 Sep 9;299(5879):111-7 PubMed

Curr Opin Cell Biol. 2004 Jun;16(3):272-8 PubMed

RNA. 2006 Mar;12(3):508-21 PubMed

Biochim Biophys Acta. 1977 Apr 4;475(3):424-36 PubMed

Nucleic Acids Res. 2003 May 1;31(9):2424-33 PubMed

Genetics. 1995 May;140(1):325-43 PubMed

Cell. 2007 May 18;129(4):707-21 PubMed

J Mol Evol. 1996 Jun;42(6):685-705 PubMed

PLoS Biol. 2004 May;2(5):E104 PubMed

Gene. 1988;62(1):165-9 PubMed

Biochem J. 2003 May 1;371(Pt 3):641-51 PubMed

Plant Cell. 2003 Dec;15(12):2929-39 PubMed

Acta Biochim Pol. 1994;41(1):17-24 PubMed

Biochim Biophys Acta. 2004 Mar 15;1677(1-3):129-41 PubMed

FEMS Microbiol Rev. 1999 Jun;23(3):277-95 PubMed

Cell. 1992 Nov 13;71(4):679-90 PubMed

Science. 1999 Oct 29;286(5441):950-2 PubMed

Mol Genet Genomics. 2002 Dec;268(4):510-7 PubMed

Plant J. 2000 Jun;22(5):439-47 PubMed

Cell. 1997 Nov 14;91(4):457-66 PubMed

Cell. 2005 Mar 11;120(5):613-22 PubMed

Genome. 2006 Jul;49(7):840-50 PubMed

Nucleic Acids Res. 2006 May 31;34(10):2966-75 PubMed

Mol Gen Genet. 1998 Aug;259(2):133-41 PubMed

EMBO Rep. 2006 Dec;7(12):1273-8 PubMed

Annu Rev Biochem. 1986;55:339-72 PubMed

Mol Cell Biol. 2000 Jan;20(2):441-52 PubMed

New Phytol. 2007;174(3):658-68 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...