Low abundant spacer 5S rRNA transcripts are frequently polyadenylated in Nicotiana
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Arabidopsis genetika MeSH
- genetická transkripce * MeSH
- intergenová DNA * MeSH
- malá interferující RNA metabolismus MeSH
- messenger RNA metabolismus MeSH
- modely genetické MeSH
- molekulární sekvence - údaje MeSH
- polyadenylace * MeSH
- regulace genové exprese u rostlin * MeSH
- RNA ribozomální 5S genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- tabák genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- intergenová DNA * MeSH
- malá interferující RNA MeSH
- messenger RNA MeSH
- RNA ribozomální 5S MeSH
In plants, 5S rRNA genes (5S rDNA) encoding 120-nt structural RNA molecules of ribosomes are organized in tandem arrays comprising thousands of units. Failure to correctly terminate transcription would generate longer inaccurately processed transcripts interfering with ribosome biogenesis. Hence multiple termination signals occur immediately after the 5S rRNA coding sequence. To obtain information about the efficiency of termination of 5S rDNA transcription in plants we analyzed 5S rRNA pools in three Nicotiana species, N. sylvestris, N. tomentosiformis and N. tabacum. In addition to highly abundant 120-nt 5S rRNA transcripts, we also detected RNA species composed of a genic region and variable lengths of intergenic sequences. These genic-intergenic RNA molecules occur at a frequency severalfold lower than the mature 120-nt transcripts, and are posttranscriptionally modified by polyadenylation at their 3' end in contrast to 120-nt transcripts. An absence of 5S small RNAs (smRNA) argue against a dominant role for the smRNA biosynthesis pathway in the degradation of aberrant 5S rRNA in Nicotiana. This work is the first description of polyadenylated 5S rRNA species in higher eukaryotes originating from a read-through transcription into the intergenic spacer. We propose that polyadenylation may function in a "quality control" pathway ensuring that only correctly processed molecules enter the ribosome biogenesis.
Zobrazit více v PubMed
Gene. 1991 Sep 15;105(2):249-54 PubMed
Plant Mol Biol. 1990 Sep;15(3):465-74 PubMed
Mol Gen Genet. 1989 Aug;218(2):302-7 PubMed
Nucleic Acids Res. 2002 Feb 1;30(3):695-700 PubMed
Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13398-403 PubMed
Genome Res. 2000 May;10(5):679-90 PubMed
J Biol Chem. 1995 Nov 24;270(47):28003-5 PubMed
Chromosome Res. 2000;8(1):85-7 PubMed
Genome Res. 2002 Jan;12(1):132-44 PubMed
Heredity (Edinb). 2002 Jan;88(1):19-25 PubMed
Nucleic Acids Res. 2006 May 02;34(8):2280-93 PubMed
Plant J. 2002 Feb;29(3):313-23 PubMed
Trends Genet. 2001 Dec;17(12):675-7 PubMed
Nature. 1982 Sep 9;299(5879):111-7 PubMed
Curr Opin Cell Biol. 2004 Jun;16(3):272-8 PubMed
RNA. 2006 Mar;12(3):508-21 PubMed
Biochim Biophys Acta. 1977 Apr 4;475(3):424-36 PubMed
Nucleic Acids Res. 2003 May 1;31(9):2424-33 PubMed
Genetics. 1995 May;140(1):325-43 PubMed
Cell. 2007 May 18;129(4):707-21 PubMed
J Mol Evol. 1996 Jun;42(6):685-705 PubMed
PLoS Biol. 2004 May;2(5):E104 PubMed
Gene. 1988;62(1):165-9 PubMed
Biochem J. 2003 May 1;371(Pt 3):641-51 PubMed
Plant Cell. 2003 Dec;15(12):2929-39 PubMed
Acta Biochim Pol. 1994;41(1):17-24 PubMed
Biochim Biophys Acta. 2004 Mar 15;1677(1-3):129-41 PubMed
FEMS Microbiol Rev. 1999 Jun;23(3):277-95 PubMed
Cell. 1992 Nov 13;71(4):679-90 PubMed
Science. 1999 Oct 29;286(5441):950-2 PubMed
Mol Genet Genomics. 2002 Dec;268(4):510-7 PubMed
Plant J. 2000 Jun;22(5):439-47 PubMed
Cell. 1997 Nov 14;91(4):457-66 PubMed
Cell. 2005 Mar 11;120(5):613-22 PubMed
Genome. 2006 Jul;49(7):840-50 PubMed
Nucleic Acids Res. 2006 May 31;34(10):2966-75 PubMed
Mol Gen Genet. 1998 Aug;259(2):133-41 PubMed
EMBO Rep. 2006 Dec;7(12):1273-8 PubMed
Annu Rev Biochem. 1986;55:339-72 PubMed
Mol Cell Biol. 2000 Jan;20(2):441-52 PubMed
New Phytol. 2007;174(3):658-68 PubMed