Epigenetic switches of tobacco transgenes associate with transient redistribution of histone marks in callus culture
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23770973
PubMed Central
PMC3857346
DOI
10.4161/epi.24613
PII: 24613
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, callus, dedifferentiation, histone modification, tobacco, transgene silencing,
- MeSH
- chromatin genetika metabolismus MeSH
- epigeneze genetická * MeSH
- geneticky modifikované rostliny genetika metabolismus MeSH
- histony genetika metabolismus MeSH
- kostní svalek metabolismus MeSH
- metylace DNA MeSH
- regulace genové exprese u rostlin MeSH
- tabák genetika metabolismus MeSH
- transgeny MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- histony MeSH
In plants, silencing is usually accompanied by DNA methylation and heterochromatic histone marks. We studied these epigenetic modifications in different epialleles of 35S promoter (P35S)-driven tobacco transgenes. In locus 1, the T-DNA was organized as an inverted repeat, and the residing neomycin phosphotransferase II reporter gene (P35S-nptII) was silenced at the posttranscriptional (PTGS) level. Transcriptionally silenced (TGS) epialleles were generated by trans-acting RNA signals in hybrids or in a callus culture. PTGS to TGS conversion in callus culture was accompanied by loss of the euchromatic H3K4me3 mark in the transcribed region of locus 1, but this change was not transmitted to the regenerated plants from these calli. In contrast, cytosine methylation that spread from the transcribed region into the promoter was maintained in regenerants. Also, the TGS epialleles generated by trans-acting siRNAs did not change their active histone modifications. Thus, both TGS and PTGS epialleles exhibit euchromatic (H3K4me3 and H3K9ac) histone modifications despite heavy DNA methylation in the promoter and transcribed region, respectively. However, in the TGS locus (271), abundant heterochromatic H3K9me2 marks and DNA methylation were present on P35S. Heterochromatic histone modifications are not automatically installed on transcriptionally silenced loci in tobacco, suggesting that repressive histone marks and cytosine methylation may be uncoupled. However, transient loss of euchromatic modifications may guide de novo DNA methylation leading to formation of stable repressed epialleles with recovered eukaryotic marks. Compilation of available data on epigenetic modification of inactivated P35S in different systems is provided.
Zobrazit více v PubMed
Huettel B, Kanno T, Daxinger L, Bucher E, van der Winden J, Matzke AJM, et al. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta. 2007;1769:358–74. doi: 10.1016/j.bbaexp.2007.03.001. PubMed DOI
Chawla R, Nicholson SJ, Folta KM, Srivastava V. Transgene-induced silencing of Arabidopsis phytochrome A gene via exonic methylation. Plant J. 2007;52:1105–18. doi: 10.1111/j.1365-313X.2007.03301.x. PubMed DOI
Dalmay T, Hamilton A, Mueller E, Baulcombe DC. Potato virus X amplicons in arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell. 2000;12:369–79. PubMed PMC
Morel JB, Mourrain P, Béclin C, Vaucheret H. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr Biol. 2000;10:1591–4. doi: 10.1016/S0960-9822(00)00862-9. PubMed DOI
Liu C, Lu F, Cui X, Cao X. Histone methylation in higher plants. Annu Rev Plant Biol. 2010;61:395–420. doi: 10.1146/annurev.arplant.043008.091939. PubMed DOI
Meyer P. DNA methylation systems and targets in plants. FEBS Lett. 2011;585:2008–15. doi: 10.1016/j.febslet.2010.08.017. PubMed DOI
Fuchs J, Demidov D, Houben A, Schubert I. Chromosomal histone modification patterns--from conservation to diversity. Trends Plant Sci. 2006;11:199–208. doi: 10.1016/j.tplants.2006.02.008. PubMed DOI
Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJM. RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol. 2009;21:367–76. doi: 10.1016/j.ceb.2009.01.025. PubMed DOI
Baubec T, Dinh HQ, Pecinka A, Rakic B, Rozhon W, Wohlrab B, et al. Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic States in Arabidopsis. Plant Cell. 2010;22:34–47. doi: 10.1105/tpc.109.072819. PubMed DOI PMC
Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 2002;21:6842–52. doi: 10.1093/emboj/cdf687. PubMed DOI PMC
Bernatavichute YV, Zhang XY, Cokus S, Pellegrini M, Jacobsen SE. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One. 2008;3:e3156. doi: 10.1371/journal.pone.0003156. PubMed DOI PMC
Yu Y, Dong AW, Shen WH. Molecular characterization of the tobacco SET domain protein NtSET1 unravels its role in histone methylation, chromatin binding, and segregation. Plant J. 2004;40:699–711. doi: 10.1111/j.1365-313X.2004.02240.x. PubMed DOI
Shen WH, Meyer D. Ectopic expression of the NtSET1 histone methyltransferase inhibits cell expansion, and affects cell division and differentiation in tobacco plants. Plant Cell Physiol. 2004;45:1715–9. doi: 10.1093/pcp/pch184. PubMed DOI
Ingram R, Charrier B, Scollan C, Meyer P. Transgenic tobacco plants expressing the Drosophila Polycomb (Pc) chromodomain show developmental alterations: possible role of Pc chromodomain proteins in chromatin-mediated gene regulation in plants. Plant Cell. 1999;11:1047–60. PubMed PMC
Udriste AA, Stan V, Radu GL, Tabler M, Cucu N. Identification of a dicer homologue gene (DCL2) in Nicotiana tabacum. Plant Biol (Stuttg) 2012;14:980–6. doi: 10.1111/j.1438-8677.2012.00586.x. PubMed DOI
Fulnecek J, Matyásek R, Kovarík A. Faithful inheritance of cytosine methylation patterns in repeated sequences of the allotetraploid tobacco correlates with the expression of DNA methyltransferase gene families from both parental genomes. Mol Genet Genomics. 2009;281:407–20. doi: 10.1007/s00438-008-0420-8. PubMed DOI
Benfey PN, Chua NH. The cauliflower mosaic virus-35S promoter: combinatorial regulation of transcription in plants. Science. 1990;250:959–66. doi: 10.1126/science.250.4983.959. PubMed DOI
Ingelbrecht I, Van Houdt H, Van Montagu M, Depicker A. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci U S A. 1994;91:10502–6. doi: 10.1073/pnas.91.22.10502. PubMed DOI PMC
Van Houdt H, Ingelbrecht I, Van Montagu M, Depicker A. Post-transcriptional silencing of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3? flanking regions. Plant J. 1997;12:379–92. doi: 10.1046/j.1365-313X.1997.12020379.x. DOI
Dalakouras A, Dadami E, Zwiebel M, Krczal G, Wassenegger M. Transgenerational maintenance of transgene body CG but not CHG and CHH methylation. Epigenetics. 2012;7:1071–8. doi: 10.4161/epi.21644. PubMed DOI PMC
Miki D, Shimamoto K. De novo DNA methylation induced by siRNA targeted to endogenous transcribed sequences is gene-specific and OsMet1-independent in rice. Plant J. 2008;56:539–49. doi: 10.1111/j.1365-313X.2008.03624.x. PubMed DOI
Okano Y, Miki D, Shimamoto K. Small interfering RNA (siRNA) targeting of endogenous promoters induces DNA methylation, but not necessarily gene silencing, in rice. Plant J. 2008;53:65–77. doi: 10.1111/j.1365-313X.2007.03313.x. PubMed DOI
Yamasaki S, Oda M, Daimon H, Mitsukuri K, Johkan M, Nakatsuka T, et al. Epigenetic modifications of the 35S promoter in cultured gentian cells. Plant Sci. 2011;180:612–9. doi: 10.1016/j.plantsci.2011.01.008. PubMed DOI
Park YD, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJ, et al. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 1996;9:183–94. doi: 10.1046/j.1365-313X.1996.09020183.x. PubMed DOI
Diéguez MJ, Vaucheret H, Paszkowski J, Mittelsten Scheid O. Cytosine methylation at CG and CNG sites is not a prerequisite for the initiation of transcriptional gene silencing in plants, but it is required for its maintenance. Mol Gen Genet. 1998;259:207–15. doi: 10.1007/s004380050806. PubMed DOI
Vaucheret H. Promoter-dependent trans-inactivation in transgenic tobacco plants - kinetic aspects of gene silencing and gene reactivation. Cr Acad Sci. 1994;317:310–23.
Kumpatla SP, Hall TC. Longevity of 5-azacytidine-mediated gene expression and re-establishment of silencing in transgenic rice. Plant Mol Biol. 1998;38:1113–22. doi: 10.1023/A:1006071018039. PubMed DOI
Kanazawa A, O?Dell M, Hellens RP. Epigenetic inactivation of chalcone synthase-A transgene transcription in petunia leads to a reversion of the post-transcriptional gene silencing phenotype. Plant Cell Physiol. 2007;48:638–47. doi: 10.1093/pcp/pcm028. PubMed DOI
Le Masson I, Jauvion V, Bouteiller N, Rivard M, Elmayan T, Vaucheret H. Mutations in the Arabidopsis H3K4me2/3 demethylase JMJ14 suppress posttranscriptional gene silencing by decreasing transgene transcription. Plant Cell. 2012;24:3603–12. doi: 10.1105/tpc.112.103119. PubMed DOI PMC
Smulders MJM, de Klerk GJ. Epigenetics in plant tissue culture. Plant Growth Regul. 2011;63:137–46. doi: 10.1007/s10725-010-9531-4. DOI
Berdasco M, Alcázar R, García-Ortiz MV, Ballestar E, Fernández AF, Roldán-Arjona T, et al. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One. 2008;3:e3306. doi: 10.1371/journal.pone.0003306. PubMed DOI PMC
Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK, Sosinski B, et al. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol. 2008;6:2880–95. doi: 10.1371/journal.pbio.0060302. PubMed DOI PMC
Koukalova B, Fojtova M, Lim KY, Fulnecek J, Leitch AR, Kovarik A. Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol. 2005;139:275–86. doi: 10.1104/pp.105.061788. PubMed DOI PMC
Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G. Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn. 2003;228:113–20. doi: 10.1002/dvdy.10348. PubMed DOI
Marjanac G, Karimi M, Naudts M, Beeckman T, Depicker A, De Buck S. Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. New Phytol. 2009;184:851–64. doi: 10.1111/j.1469-8137.2009.03011.x. PubMed DOI
Mittelsten Scheid O, Paszkowski J, Potrykus I. Reversible inactivation of a transgene in Arabidopsis thaliana. Mol Gen Genet. 1991;228:104–12. PubMed
Jaligot E, Beulé T, Rival A. Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-associated polymorphism. Theor Appl Genet. 2002;104:1263–9. doi: 10.1007/s00122-002-0906-4. PubMed DOI
Rhee Y, Sekhon RS, Chopra S, Kaeppler S. Tissue culture-induced novel epialleles of a Myb transcription factor encoded by pericarp color1 in maize. Genetics. 2010;186:843–55. doi: 10.1534/genetics.110.117929. PubMed DOI PMC
Miguel C, Marum L. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot. 2011;62:3713–25. doi: 10.1093/jxb/err155. PubMed DOI
Wang QM, Wang YZ, Sun LL, Gao FZ, Sun W, He J, et al. Direct and indirect organogenesis of Clivia miniata and assessment of DNA methylation changes in various regenerated plantlets. Plant Cell Rep. 2012;31:1283–96. doi: 10.1007/s00299-012-1248-6. PubMed DOI
Zeng FS, Qian JJ, Luo W, Zhan YG, Xin Y, Yang CP. Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla) Biotechnol Lett. 2010;32:151–6. doi: 10.1007/s10529-009-0120-4. PubMed DOI
Maury S, Trap-Gentil MV, Hébrard C, Weyens G, Delaunay A, Barnes S, et al. Genic DNA methylation changes during in vitro organogenesis: organ specificity and conservation between parental lines of epialleles. Physiol Plant. 2012;146:321–35. doi: 10.1111/j.1399-3054.2012.01634.x. PubMed DOI
Fojtova M, Van Houdt H, Depicker A, Kovarik A. Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol. 2003;133:1240–50. doi: 10.1104/pp.103.023796. PubMed DOI PMC
Van Houdt H, Kovarík A, Van Montagu M, Depicker A. Cross-talk between posttranscriptionally silenced neomycin phosphotransferase II transgenes. FEBS Lett. 2000;467:41–6. doi: 10.1016/S0014-5793(00)01076-0. PubMed DOI
Mourrain P, van Blokland R, Kooter JM, Vaucheret H. A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta. 2007;225:365–79. doi: 10.1007/s00425-006-0366-1. PubMed DOI
Khaitová LC, Fojtová M, K?í?ová K, Lunerová J, Fulne?ek J, Depicker A, et al. Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing. Epigenetics. 2011;6:650–60. doi: 10.4161/epi.6.5.15764. PubMed DOI PMC
Krizova K, Fojtova M, Depicker A, Kovarik A. Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles. Plant Physiol. 2009;149:1493–504. doi: 10.1104/pp.108.133165. PubMed DOI PMC
Fojtová M, Bleys A, Bedrichová J, Van Houdt H, Krízová K, Depicker A, et al. The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res. 2006;34:2280–93. doi: 10.1093/nar/gkl180. PubMed DOI PMC
Foerster AM, Dinh HQ, Sedman L, Wohlrab B, Mittelsten Scheid O. Genetic rearrangements can modify chromatin features at epialleles. PLoS Genet. 2011;7:e1002331. doi: 10.1371/journal.pgen.1002331. PubMed DOI PMC
Douet J, Tourmente S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity (Edinb) 2007;99:5–13. doi: 10.1038/sj.hdy.6800964. PubMed DOI
Fulnecek J, Matyásek R, Kovarík A, Bezdek M. Mapping of 5-methylcytosine residues in Nicotiana tabacum 5S rRNA genes by genomic sequencing. Mol Gen Genet. 1998;259:133–41. doi: 10.1007/s004380050798. PubMed DOI
Ebbs ML, Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell. 2006;18:1166–76. doi: 10.1105/tpc.106.041400. PubMed DOI PMC
Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, et al. The origin of tobacco?s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae) Am J Bot. 2002;89:921–8. doi: 10.3732/ajb.89.6.921. PubMed DOI
Lunerová-Bedrichová J, Bleys A, Fojtová M, Khaitová L, Depicker A, Kovarík A. Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J. 2008;54:1049–62. doi: 10.1111/j.1365-313X.2008.03475.x. PubMed DOI
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell. 2006;126:1189–201. doi: 10.1016/j.cell.2006.08.003. PubMed DOI
Inagaki S, Kakutani T. Control of genic DNA methylation in Arabidopsis. J Plant Res. 2010;123:299–302. doi: 10.1007/s10265-010-0338-1. PubMed DOI
You WH, Tyczewska A, Spencer M, Daxinger L, Schmid MW, Grossniklaus U, et al. Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana. BMC Plant Biol. 2012;12:51. doi: 10.1186/1471-2229-12-51. PubMed DOI PMC
Kovarík A, Van Houdt H, Holý A, Depicker A. Drug-induced hypomethylation of a posttranscriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS Lett. 2000;467:47–51. doi: 10.1016/S0014-5793(00)01077-2. PubMed DOI
Van Houdt H, Bleys A, Depicker A. RNA target sequences promote spreading of RNA silencing. Plant Physiol. 2003;131:245–53. doi: 10.1104/pp.009407. PubMed DOI PMC
Vermeersch L, De Winne N, Nolf J, Bleys A, Kova?ík A, Depicker A. Transitive RNA silencing signals induce cytosine methylation of a transgenic but not an endogenous target. Plant J. 2013;??? doi: 10.1111/tpj.12172. PubMed DOI
Miura A, Nakamura M, Inagaki S, Kobayashi A, Saze H, Kakutani T. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J. 2009;28:1078–86. doi: 10.1038/emboj.2009.59. PubMed DOI PMC
Vaillant I, Paszkowski J. Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol. 2007;10:528–33. doi: 10.1016/j.pbi.2007.06.008. PubMed DOI
Marenkova TV, Deineko EV. Transcriptional gene silencing in plants. Russ J Genet. 2010;46:511–20. doi: 10.1134/S1022795410050017. PubMed DOI
Ogrocká A, Sýkorová E, Fajkus J, Fojtová M. Developmental silencing of the AtTERT gene is associated with increased H3K27me3 loading and maintenance of its euchromatic environment. J Exp Bot. 2012;63:4233–41. doi: 10.1093/jxb/ers107. PubMed DOI PMC
Lechtenberg B, Schubert D, Forsbach A, Gils M, Schmidt R. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J. 2003;34:507–17. doi: 10.1046/j.1365-313X.2003.01746.x. PubMed DOI
Eike MC, Mercy IS, Aalen RB. Transgene silencing may be mediated by aberrant sense promoter sequence transcripts generated from cryptic promoters. Cell Mol Life Sci. 2005;62:3080–91. doi: 10.1007/s00018-005-5301-2. PubMed DOI PMC
Fischer U, Kuhlmann M, Pecinka A, Schmidt R, Mette MF. Local DNA features affect RNA-directed transcriptional gene silencing and DNA methylation. Plant J. 2008;53:1–10. doi: 10.1111/j.1365-313X.2007.03311.x. PubMed DOI
Dalakouras A, Moser M, Boonrod K, Krczal G, Wassenegger M. Diverse spontaneous silencing of a transgene among two Nicotiana species. Planta. 2011;234:699–707. doi: 10.1007/s00425-011-1433-9. PubMed DOI
Mishiba K, Yamasaki S, Nakatsuka T, Abe Y, Daimon H, Oda M, et al. Strict de novo methylation of the 35S enhancer sequence in gentian. PLoS One. 2010;5:e9670. doi: 10.1371/journal.pone.0009670. PubMed DOI PMC
Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet. 2011;7:e1002040. doi: 10.1371/journal.pgen.1002040. PubMed DOI PMC
Searle IR, Pontes O, Melnyk CW, Smith LM, Baulcombe DC. JMJ14, a JmjC domain protein, is required for RNA silencing and cell-to-cell movement of an RNA silencing signal in Arabidopsis. Genes Dev. 2010;24:986–91. doi: 10.1101/gad.579910. PubMed DOI PMC
Lu F, Li G, Cui X, Liu C, Wang XJ, Cao X. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Integr Plant Biol. 2008;50:886–96. doi: 10.1111/j.1744-7909.2008.00692.x. PubMed DOI
Van Houdt H, Van Montagu M, Depicker A. Both sense and antisense RNAs are targets for the sense transgene-induced posttranscriptional silencing mechanism. Mol Gen Genet. 2000;263:995–1002. doi: 10.1007/PL00008700. PubMed DOI
Kovarík A, Van Houdt H, Holý A, Depicker A. Drug-induced hypomethylation of a posttranscriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS Lett. 2000;467:47–51. doi: 10.1016/S0014-5793(00)01077-2. PubMed DOI
Hetzl J, Foerster AM, Raidl G, Mittelsten Scheid O. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J. 2007;51:526–36. doi: 10.1111/j.1365-313X.2007.03152.x. PubMed DOI
Matzke AJM, Neuhuber F, Park YD, Ambros PF, Matzke MA. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet. 1994;244:219–29. doi: 10.1007/BF00285449. PubMed DOI
Jones L, Ratcliff F, Baulcombe DC. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol. 2001;11:747–57. doi: 10.1016/S0960-9822(01)00226-3. PubMed DOI
Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JN, et al. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol. 2001;11:436–40. doi: 10.1016/S0960-9822(01)00116-6. PubMed DOI