Pervasive read-through transcription of T-DNAs is frequent in tobacco BY-2 cells and can effectively induce silencing

. 2018 Oct 22 ; 18 (1) : 252. [epub] 20181022

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30348096

Grantová podpora
LO1417 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 30348096
PubMed Central PMC6196474
DOI 10.1186/s12870-018-1482-3
PII: 10.1186/s12870-018-1482-3
Knihovny.cz E-zdroje

BACKGROUND: Plant transformation via Agrobacterium tumefaciens is characterized by integration of commonly low number of T-DNAs at random positions in the genome. When integrated into an active gene region, promoterless reporter genes placed near the T-DNA border sequence are frequently transcribed and even translated to reporter proteins, which is the principle of promoter- and gene-trap lines. RESULTS: Here we show that even internal promotorless regions of T-DNAs are often transcribed. Such spontaneous transcription was observed in the majority of independently transformed tobacco BY-2 lines (over 65%) and it could effectively induce silencing if an inverted repeat was present within the T-DNA. We documented that the transcription often occurred in both directions. It was not directly connected with any regulatory elements present within the T-DNAs and at least some of the transcripts were initiated outside of the T-DNA. The likeliness of this read-through transcription seemed to increase in lines with higher T-DNA copy number. Splicing and presence of a polyA tail in the transcripts indicated involvement of Pol II, but surprisingly, the transcription was able to run across two transcription terminators present within the T-DNA. Such pervasive transcription was observed with three different T-DNAs in BY-2 cells and with lower frequency was also detected in Arabidopsis thaliana. CONCLUSIONS: Our results demonstrate unexpected pervasive read-through transcription of T-DNAs. We hypothesize that it was connected with a specific chromatin state of newly integrated DNA, possibly affected by the adjacent genomic region. Although this phenomenon can be easily overlooked, it can have significant consequences when working with highly sensitive systems like RNAi induction using an inverted repeat construct, so it should be generally considered when interpreting results obtained with the transgenic technology.

Zobrazit více v PubMed

Gelvin SB. Integration of agrobacterium T-DNA into the plant genome. Annu Rev Genet. 2017;51:195–217. doi: 10.1146/annurev-genet-120215-035320. PubMed DOI

Kim S-I, Veena, Gelvin SB. Genome-wide analysis of agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J Cell Mol Biol. 2007;51:779–791. doi: 10.1111/j.1365-313X.2007.03183.x. PubMed DOI

Shilo S, Tripathi P, Melamed-Bessudo C, Tzfadia O, Muth TR, Levy AA. T-DNA-genome junctions form early after infection and are influenced by the chromatin state of the host genome. PLoS Genet. 2017;13:e1006875. doi: 10.1371/journal.pgen.1006875. PubMed DOI PMC

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301:653–657. doi: 10.1126/science.1086391. PubMed DOI

Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, et al. High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci. 1989;86:8467–8471. doi: 10.1073/pnas.86.21.8467. PubMed DOI PMC

Hewelt A, Prinsen E, Schell J, Van Onckelen H, Schmülling T. Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. Plant J. 1994;6:879–891. doi: 10.1046/j.1365-313X.1994.6060879.x. PubMed DOI

Hsing Y-I, Chern C-G, Fan M-J, Lu P-C, Chen K-T, Lo S-F, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol. 2007;63:351–364. doi: 10.1007/s11103-006-9093-z. PubMed DOI

Oltmanns H, Frame B, Lee L-Y, Johnson S, Li B, Wang K, et al. Generation of backbone-free, low transgene copy plants by launching T-DNA from the agrobacterium chromosome. Plant Physiol. 2010;152:1158–1166. doi: 10.1104/pp.109.148585. PubMed DOI PMC

Cluster PD, O’Dell M, Metzlaff M, Flavell RB. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol Biol. 1996;32:1197–1203. doi: 10.1007/BF00041406. PubMed DOI

Kregten M van, Pater S de, Romeijn R, Schendel R van, Hooykaas PJJ, Tijsterman M. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nat Plants 2016;2:16164. PubMed

Stam M, De Bruin R, Kenter S, Van Der Hoorn RAL, Van Blokland R, Mol JNM, et al. Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. Plant J. 1997;12:63–82. doi: 10.1046/j.1365-313X.1997.12010063.x. DOI

Fojtová M, Bleys A, Bedřichová J, Houdt HV, Křížová K, Depicker A, et al. The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res. 2006;34:2280–2293. doi: 10.1093/nar/gkl180. PubMed DOI PMC

Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol. 2014;65:473–503. doi: 10.1146/annurev-arplant-050213-035728. PubMed DOI

Yan H, Chretien R, Ye J, Rommens CM. New construct approaches for efficient gene silencing in plants. Plant Physiol. 2006;141:1508–1518. doi: 10.1104/pp.106.082271. PubMed DOI PMC

Nagata T, Nemoto Y, Hasezawa S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol. 1992;132:1–30. doi: 10.1016/S0074-7696(08)62452-3. DOI

Srba M, Černíková A, Opatrný Z, Fischer L. Practical guidelines for the characterization of tobacco BY-2 cell lines. Biol Plant. 2016;60:13–24. doi: 10.1007/s10535-015-0573-3. DOI

Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151:194–205. doi: 10.1016/j.cell.2012.09.001. PubMed DOI PMC

Ibarra CA, Feng X, Schoft VK, Hsieh T-F, Uzawa R, Rodrigues JA, et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science. 2012;337:1360–1364. doi: 10.1126/science.1224839. PubMed DOI PMC

Lunerová-Bedřichová J, Bleys A, Fojtová M, Khaitová L, Depicker A, Kovařík A. Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J. 2008;54:1049–1062. doi: 10.1111/j.1365-313X.2008.03475.x. PubMed DOI

Zhao M, San León D, Delgadillo MO, García JA, Simón-Mateo C. Virus-induced gene silencing in transgenic plants: transgene silencing and reactivation associate with two patterns of transgene body methylation. Plant J. 2014;79:440–452. doi: 10.1111/tpj.12579. PubMed DOI

Butaye KMJ, Cammue BPA, Delauré SL, Bolle MFCD. Approaches to minimize variation of transgene expression in plants. Mol Breed. 2005;16:79–91. doi: 10.1007/s11032-005-4929-9. DOI

Dalakouras A, Tzanopoulou M, Tsagris M, Wassenegger M, Kalantidis K. Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway. Transgenic Res. 2010;20:293–304. doi: 10.1007/s11248-010-9416-3. PubMed DOI

Dohi K, Nishikiori M, Tamai A, Ishikawa M, Meshi T, Mori M. Inducible virus-mediated expression of a foreign protein in suspension-cultured plant cells. Arch Virol. 2006;151:1075–1084. doi: 10.1007/s00705-005-0705-8. PubMed DOI

Nocarova E, Fischer L. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression. BMC Plant Biol. 2009;9:44. doi: 10.1186/1471-2229-9-44. PubMed DOI PMC

Moore I, Samalova M, Kurup S. Transactivated and chemically inducible gene expression in plants. Plant J. 2006;45:651–683. doi: 10.1111/j.1365-313X.2006.02660.x. PubMed DOI

Zuo J, Niu Q, Chua N. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 2000;24:265–273. doi: 10.1046/j.1365-313x.2000.00868.x. PubMed DOI

Davis SJ, Vierstra RD. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol. 1998;36:521–528. doi: 10.1023/A:1005991617182. PubMed DOI

Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. pGreen: a versatile and flexible binary Ti vector for agrobacterium-mediated plant transformation. Plant Mol Biol. 2000;42:819–832. doi: 10.1023/A:1006496308160. PubMed DOI

Smith NA, Singh SP, Wang M-B, Stoutjesdijk PA, Green AG, Waterhouse PM. Gene expression: Total silencing by intron-spliced hairpin RNAs. Nature. 2000;407:319–320. doi: 10.1038/35030305. PubMed DOI

Murashige T, Skoog FA. Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, et al. Efficient octopine Ti plasmid-derived vectors for agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 1985;13:4777–4788. doi: 10.1093/nar/13.13.4777. PubMed DOI PMC

Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012;33:366–369. doi: 10.1002/elps.201100335. PubMed DOI PMC

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339:62–66. doi: 10.1016/S0304-3940(02)01423-4. PubMed DOI

Dvořáková L, Srba M, Opatrny Z, Fischer L. Hybrid proline-rich proteins: novel players in plant cell elongation? Ann Bot. 2012;109:453–462. doi: 10.1093/aob/mcr278. PubMed DOI PMC

Schmidt GW, Delaney SK. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics. 2010;283:233–241. doi: 10.1007/s00438-010-0511-1. PubMed DOI

Nocarova E, Opatrny Z, Fischer L. Successive silencing of tandem reporter genes in potato (Solanum tuberosum) over 5 years of vegetative propagation. Ann Bot. 2010;106:565–572. doi: 10.1093/aob/mcq153. PubMed DOI PMC

Ji G, Li L, Li QQ, Wu X, Fu J, Chen G, et al. PASPA: a web server for mRNA poly(A) site predictions in plants and algae. Bioinforma Oxf Engl. 2015;31:1671–1673. doi: 10.1093/bioinformatics/btv004. PubMed DOI

Degenhardt RF, Bonham-Smith PC. Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for Normal development. Plant Physiol. 2008;147:128–142. doi: 10.1104/pp.107.111799. PubMed DOI PMC

Kang C-Y, Lian H-L, Wang F-F, Huang J-R, Yang H-Q. Cryptochromes, Phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell. 2009;21:2624–2641. doi: 10.1105/tpc.109.069765. PubMed DOI PMC

Sasaki T, Lee T, Liao W-W, Naumann U, Liao J-L, Eun C, et al. Distinct and concurrent pathways of pol II and pol IV-dependent siRNA biogenesis at a repetitive trans-silencer locus in Arabidopsis thaliana. Plant J. 2014;79:127–138. doi: 10.1111/tpj.12545. PubMed DOI

Christie M, Croft LJ, Carroll BJ. Intron splicing suppresses RNA silencing in Arabidopsis. Plant J. 2011;68:159–167. doi: 10.1111/j.1365-313X.2011.04676.x. PubMed DOI

Vaistij FE, Jones L, Baulcombe DC. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell. 2002;14:857–867. doi: 10.1105/tpc.010480. PubMed DOI PMC

Vermeersch L, De Winne N, Depicker A. Introns reduce transitivity proportionally to their length, suggesting that silencing spreads along the pre-mRNA. Plant J. 2010;64:392–401. doi: 10.1111/j.1365-313X.2010.04335.x. PubMed DOI

Johnson LM, Du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 2014;507:124–128. doi: 10.1038/nature12931. PubMed DOI PMC

Law JA, Du J, Hale CJ, Feng S, Krajewski K, Palanca AMS, et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature. 2013;498:385–389. doi: 10.1038/nature12178. PubMed DOI PMC

Wierzbicki AT, Cocklin R, Mayampurath A, Lister R, Rowley MJ, Gregory BD, et al. Spatial and functional relationships among pol V-associated loci, pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev. 2012;26:1825–1836. doi: 10.1101/gad.197772.112. PubMed DOI PMC

Blevins T, Podicheti R, Mishra V, Marasco M, Wang J, Rusch D, et al. Identification of pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. elife. 2015;4:e09591. doi: 10.7554/eLife.09591. PubMed DOI PMC

Wierzbicki AT, Haag JR, Pikaard CS. Noncoding transcription by RNA polymerase pol IVb/pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell. 2008;135:635–648. doi: 10.1016/j.cell.2008.09.035. PubMed DOI PMC

Breyne P, Gheysen G, Jacobs A, Montagu MV, Depicker A. Effect of T-DNA configuration on transgene expression. Mol Gen Genet. 1992;235:389–396. doi: 10.1007/BF00279385. PubMed DOI

Cogoni C, Irelan JT, Schumacher M, Schmidhauser TJ, Selker EU, Macino G. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J. 1996;15:3153–3163. doi: 10.1002/j.1460-2075.1996.tb00678.x. PubMed DOI PMC

Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim Biophys Acta BBA - Gene Regul Mech. 2013;1829:174–185. doi: 10.1016/j.bbagrm.2012.10.003. PubMed DOI PMC

Touat-Todeschini L, Shichino Y, Dangin M, Thierry-Mieg N, Gilquin B, Hiriart E, et al. Selective termination of lncRNA transcription promotes heterochromatin silencing and cell differentiation. EMBO J. 2017;36:2626–2641. doi: 10.15252/embj.201796571. PubMed DOI PMC

Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science. 2010;327:94–97. doi: 10.1126/science.1180278. PubMed DOI

Morse NJ, Gopal MR, Wagner JM, Alper HS. Yeast terminator function can be modulated and designed on the basis of predictions of nucleosome occupancy. ACS Synth Biol. 2017;6:2086–2095. doi: 10.1021/acssynbio.7b00138. PubMed DOI

Saze H, Kitayama J, Takashima K, Miura S, Harukawa Y, Ito T, et al. Mechanism for full-length RNA processing of Arabidopsis genes containing intragenic heterochromatin. Nat Commun. 2013;4. https://doi.org/10.1038/ncomms3301. PubMed

Osabe K, Harukawa Y, Miura S, Saze H. Epigenetic regulation of Intronic transgenes in Arabidopsis. Sci Rep. 2017;7. https://doi.org/10.1038/srep45166. PubMed PMC

Kubo M, Imai A, Nishiyama T, Ishikawa M, Sato Y, Kurata T, et al. System for stable β-estradiol-inducible gene expression in the Moss Physcomitrella patens. PLoS One. 2013;8:e77356. doi: 10.1371/journal.pone.0077356. PubMed DOI PMC

Luff B, Pawlowski L, Bender J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol Cell. 1999;3:505–511. doi: 10.1016/S1097-2765(00)80478-5. PubMed DOI

Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JNM, et al. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol. 2001;11:436–440. doi: 10.1016/S0960-9822(01)00116-6. PubMed DOI

Van Blokland R, Van der Geest N, Mol JNM, Kooter JM. Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 1994;6:861–877. doi: 10.1046/j.1365-313X.1994.6060861.x. DOI

Voinnet O, Vain P, Angell S, Baulcombe DC. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic Promoterless DNA. Cell. 1998;95:177–187. doi: 10.1016/S0092-8674(00)81749-3. PubMed DOI

Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJM. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000;19:5194–5201. doi: 10.1093/emboj/19.19.5194. PubMed DOI PMC

Waterhouse PM, Graham MW, Wang M-B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci. 1998;95:13959–13964. doi: 10.1073/pnas.95.23.13959. PubMed DOI PMC

Kawai-Toyooka H, Kuramoto C, Orui K, Motoyama K, Kikuchi K, Kanegae T, et al. DNA interference: a simple and efficient gene-silencing system for high-throughput functional analysis in the Fern Adiantum. Plant Cell Physiol. 2004;45:1648–1657. doi: 10.1093/pcp/pch186. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Detailed insight into the dynamics of the initial phases of de novo RNA-directed DNA methylation in plant cells

. 2019 Sep 11 ; 12 (1) : 54. [epub] 20190911

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...