Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
project LO1208 TEWEP
Ministry of Education, Youth and Sports of the Czech Republic in the "National Feasibility Program I"
18-15548S
The Czech Science Foundation
CZ.1.05/2.1.00/19.0388
EU structural funding Operational Programme Research and Development for innovation
SGS/09/PrF/2019
University of Ostrava
PubMed
31861340
PubMed Central
PMC6981761
DOI
10.3390/ijms21010006
PII: ijms21010006
Knihovny.cz E-zdroje
- Klíčová slova
- Holozoa, evolution, p53, p63, p73,
- MeSH
- databáze genetické MeSH
- Eukaryota klasifikace genetika MeSH
- exony MeSH
- fylogeneze MeSH
- interakční proteinové domény a motivy MeSH
- introny MeSH
- konformace proteinů MeSH
- molekulární evoluce * MeSH
- molekulární modely MeSH
- multigenová rodina * MeSH
- nádorový supresorový protein p53 chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
The p53 family of transcription factors plays key roles in development, genome stability, senescence and tumor development, and p53 is the most important tumor suppressor protein in humans. Although intensively investigated for many years, its initial evolutionary history is not yet fully elucidated. Using bioinformatic and structure prediction methods on current databases containing newly-sequenced genomes and transcriptomes, we present a detailed characterization of p53 family homologs in remote members of the Holozoa group, in the unicellular clades Filasterea, Ichthyosporea and Corallochytrea. Moreover, we show that these newly characterized homologous sequences contain domains that can form structures with high similarity to the human p53 family DNA-binding domain, and some also show similarities to the oligomerization and SAM domains. The presence of these remote homologs demonstrates an ancient origin of the p53 protein family.
Department of Biology and Ecology University of Ostrava 710 00 Ostrava Czech Republic
Institute of Biophysics of the Czech Academy of Sciences 612 65 Brno Czech Republic
Zobrazit více v PubMed
Hollstein M., Sidransky D., Vogelstein B., Harris C. P53 Mutations in Human Cancers. Science. 1991;253:49–53. doi: 10.1126/science.1905840. PubMed DOI
Goh A.M., Coffill C.R., Lane D.P. The role of mutant p53 in human cancer. J. Pathol. 2011;223:116–126. doi: 10.1002/path.2784. PubMed DOI
Stiewe T., Haran T.E. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist. Update. 2018;38:27–43. doi: 10.1016/j.drup.2018.05.001. PubMed DOI
Joerger A.C., Fersht A.R. The p53 pathway: Origins, inactivation in cancer, and emerging therapeutic approaches. Annu. Rev. Biochem. 2016;85:375–404. doi: 10.1146/annurev-biochem-060815-014710. PubMed DOI
Strano S., Rossi M., Fontemaggi G., Munarriz E., Soddu S., Sacchi A., Blandino G. From p63 to p53 across p73. FEBS Lett. 2001;490:163–170. doi: 10.1016/S0014-5793(01)02119-6. PubMed DOI
Belyi V.A., Levine A.J. One billion years of p53/p63/p73 evolution. Proc. Natl. Acad. Sci. USA. 2009;106:17609–17610. doi: 10.1073/pnas.0910634106. PubMed DOI PMC
Beckerman R., Prives C. Transcriptional Regulation by P53. Cold Spring Harb. Perspect. Biol. 2010;2:1–18. doi: 10.1101/cshperspect.a000935. PubMed DOI PMC
Brazda V., Coufal J. Recognition of Local DNA Structures by p53 Protein. Int. J. Mol. Sci. 2017;18:375. doi: 10.3390/ijms18020375. PubMed DOI PMC
Vyas P., Beno I., Xi Z., Stein Y., Golovenko D., Kessler N., Rotter V., Shakked Z., Haran T.E. Diverse p53/DNA binding modes expand the repertoire of p53 response elements. Proc. Natl. Acad. Sci. USA. 2017;114:10624–10629. doi: 10.1073/pnas.1618005114. PubMed DOI PMC
Brázda V., Fojta M. The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int. J. Mol. Sci. 2019;20:5605. doi: 10.3390/ijms20225605. PubMed DOI PMC
El-Deiry W.S., Kern S.E., Pietenpol J.A., Kinzler K.W., Vogelstein B. Definition of a consensus binding site for p53. Nat. Genet. 1992;1:45–49. doi: 10.1038/ng0492-45. PubMed DOI
Tebaldi T., Zaccara S., Alessandrini F., Bisio A., Ciribilli Y., Inga A. Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC Genom. 2015;16:464. doi: 10.1186/s12864-015-1643-9. PubMed DOI PMC
Brázda V., Čechová J., Battistin M., Coufal J., Jagelská E.B., Raimondi I., Inga A. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein. Biochem. Biophys. Res. Commun. 2017;483:516–521. doi: 10.1016/j.bbrc.2016.12.113. PubMed DOI
Coufal J., Jagelská E.B., Liao J.C., Brázda V. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem. Biophys. Res. Commun. 2013;441:83–88. doi: 10.1016/j.bbrc.2013.10.015. PubMed DOI
Dötsch V., Bernassola F., Coutandin D., Candi E., Melino G. p63 and p73, the Ancestors of p53. Cold Spring Harb. Perspect. Biol. 2010;2 doi: 10.1101/cshperspect.a004887. PubMed DOI PMC
Arrowsmith C.H. Structure and function in the p53 family. Cell Death Differ. 1999;6:1169–1173. doi: 10.1038/sj.cdd.4400619. PubMed DOI
Joerger A.C., Rajagopalan S., Natan E., Veprintsev D.B., Robinson C.V., Fersht A.R. Structural evolution of p53, p63, and p73: Implication for heterotetramer formation. Proc. Natl. Acad. Sci. USA. 2009;106:17705–17710. doi: 10.1073/pnas.0905867106. PubMed DOI PMC
Pavletich N.P., Chambers K.A., Pabo C.O. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 1993;7:2556–2564. doi: 10.1101/gad.7.12b.2556. PubMed DOI
Xue B., Brown C.J., Dunker A.K., Uversky V.N. Intrinsically disordered regions of p53 family are highly diversified in evolution. BBA Proteins Proteom. 2013;1834:725–738. doi: 10.1016/j.bbapap.2013.01.012. PubMed DOI PMC
Joerger A.C., Wilcken R., Andreeva A. Tracing the Evolution of the p53 Tetramerization Domain. Structure. 2014;22:1301–1310. doi: 10.1016/j.str.2014.07.010. PubMed DOI PMC
Yang A., Kaghad M., Caput D., McKeon F. On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet. 2002;18:90–95. doi: 10.1016/S0168-9525(02)02595-7. PubMed DOI
Dos Santos H.G., Nunez-Castilla J., Siltberg-Liberles J. Functional diversification after gene duplication: Paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS ONE. 2016;11:e0151961. doi: 10.1371/journal.pone.0151961. PubMed DOI PMC
Laptenko O., Shiff I., Freed-Pastor W., Zupnick A., Mattia M., Freulich E., Shamir I., Kadouri N., Kahan T., Manfredi J. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol. Cell. 2015;57:1034–1046. doi: 10.1016/j.molcel.2015.02.015. PubMed DOI PMC
Gu W., Roeder R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606. doi: 10.1016/S0092-8674(00)80521-8. PubMed DOI
Pospísilová S., Brázda V., Kucharíková K., Luciani M.G., Hupp T.R., Skládal P., Palecek E., Vojtesek B. Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2. Biochem. J. 2004;378:939–947. doi: 10.1042/bj20030662. PubMed DOI PMC
Ou Y.-H., Chung P.-H., Sun T.-P., Shieh S.-Y. p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Mol. Biol. Cell. 2005;16:1684–1695. doi: 10.1091/mbc.e04-08-0689. PubMed DOI PMC
Muller P., Chan J.M., Simoncik O., Fojta M., Lane D.P., Hupp T., Vojtesek B. Evidence for allosteric effects on p53 oligomerization induced by phosphorylation. Protein Sci. 2018;27:523–530. doi: 10.1002/pro.3344. PubMed DOI PMC
Brázda V., Paleĉek J., Pospísilová S., Vojtêsek B., Paleĉek E. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem. Biophys. Res. Commun. 2000;267:934–939. doi: 10.1006/bbrc.1999.2056. PubMed DOI
Weinberg R.L., Freund S.M.V., Veprintsev D.B., Bycroft M., Fersht A.R. Regulation of DNA binding of p53 by its C-terminal domain. J. Mol. Biol. 2004;342:801–811. doi: 10.1016/j.jmb.2004.07.042. PubMed DOI
Lu W.-J., Amatruda J.F., Abrams J.M. p53 ancestry: Gazing through an evolutionary lens. Nat. Rev. Cancer. 2009;9:758–762. doi: 10.1038/nrc2732. PubMed DOI
Belyi V.A., Ak P., Markert E., Wang H., Hu W., Puzio-Kuter A., Levine A.J. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol. 2010;2:a001198. doi: 10.1101/cshperspect.a001198. PubMed DOI PMC
Nedelcu A.M., Tan C. Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev. Genes Evol. 2007;217:801–806. doi: 10.1007/s00427-007-0185-9. PubMed DOI
King N., Westbrook M.J., Young S.L., Kuo A., Abedin M., Chapman J., Fairclough S., Hellsten U., Isogai Y., Letunic I., et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451:783–788. doi: 10.1038/nature06617. PubMed DOI PMC
Sebé-Pedrós A., de Mendoza A., Lang B.F., Degnan B.M., Ruiz-Trillo I. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol. Biol. Evol. 2011;28:1241–1254. doi: 10.1093/molbev/msq309. PubMed DOI PMC
de Mendoza A., Sebé-Pedrós A., Šestak M.S., Matejčić M., Torruella G., Domazet-Lošo T., Ruiz-Trillo I. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc. Natl. Acad. Sci. USA. 2013;110:E4858–E4866. doi: 10.1073/pnas.1311818110. PubMed DOI PMC
Sebé-Pedrós A., Peña M.I., Capella-Gutiérrez S., Antó M., Gabaldón T., Ruiz-Trillo I., Sabidó E. High-throughput proteomics reveals the unicellular roots of animal phosphosignaling and cell differentiation. Dev. Cell. 2016;39:186–197. doi: 10.1016/j.devcel.2016.09.019. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Grau-Bove X., Torruella G., Donachie S., Suga H., Leonard G., Richards T.A., Ruiz-Trillo I. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife. 2017;6:e26036. doi: 10.7554/eLife.26036. PubMed DOI PMC
de Mendoza A., Suga H., Permanyer J., Irimia M., Ruiz-Trillo I. Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals. eLife. 2015;4:e08904. doi: 10.7554/eLife.08904. PubMed DOI PMC
Potter S.C., Luciani A., Eddy S.R., Park Y., Lopez R., Finn R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–W204. doi: 10.1093/nar/gky448. PubMed DOI PMC
Chang F.-L., Lai M.-D. Various forms of mutant p53 confer sensitivity to cisplatin and doxorubicin in bladder cancer cells. J. Urol. 2001;166:304–310. doi: 10.1016/S0022-5347(05)66150-2. PubMed DOI
Olivier M., Hollstein M., Hainaut P. TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harb. Perspect. Biol. 2010;2:a001008. doi: 10.1101/cshperspect.a001008. PubMed DOI PMC
Eldar A., Rozenberg H., Diskin-Posner Y., Rohs R., Shakked Z. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein–DNA interactions. Nucleic Acids Res. 2013;41:8748–8759. doi: 10.1093/nar/gkt630. PubMed DOI PMC
Gomes A.S., Trovão F., Andrade Pinheiro B., Freire F., Gomes S., Oliveira C., Domingues L., Romão M.J., Saraiva L., Carvalho A.L. The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. Int. J. Mol. Sci. 2018;19:1184. doi: 10.3390/ijms19041184. PubMed DOI PMC
Dittmer D., Pati S., Zambetti G., Chu S., Teresky A.K., Moore M., Finlay C., Levine A.J. Gain of function mutations in p53. Nat. Genet. 1993;4:42–46. doi: 10.1038/ng0593-42. PubMed DOI
Xu D., Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins Struct. Funct. Bioinform. 2012;80:1715–1735. doi: 10.1002/prot.24065. PubMed DOI PMC
Xu D., Zhang Y. Toward optimal fragment generations for ab initio protein structure assembly. Proteins Struct. Funct. Bioinform. 2013;81:229–239. doi: 10.1002/prot.24179. PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Lion M., Raimondi I., Donati S., Jousson O., Ciribilli Y., Inga A. Evolution of p53 Transactivation Specificity through the Lens of a Yeast-Based Functional Assay. PLoS ONE. 2015;10:e0116177. doi: 10.1371/journal.pone.0116177. PubMed DOI PMC
Jordan A., Reichard P. Ribonucleotide Reductases. Annu. Rev. Biochem. 1998;67:71–98. doi: 10.1146/annurev.biochem.67.1.71. PubMed DOI
Åberg E., Saccoccia F., Grabherr M., Ore W.Y.J., Jemth P., Hultqvist G. Evolution of the p53-MDM2 pathway. BMC Evol. Biol. 2017;17:177. doi: 10.1186/s12862-017-1023-y. PubMed DOI PMC
Mendoza L., Orozco E., Rodriguez M.A., Garcia-Rivera G., Sanchez T., Garcia E., Gariglio P. Ehp53, an Entamoeba histolytica protein, ancestor of the mammalian tumour suppressor p53. Microbiology. 2003;149:885–893. doi: 10.1099/mic.0.25892-0. PubMed DOI
Biscotti M.A., Barucca M., Carducci F., Forconi M., Canapa A. The p53 gene family in vertebrates: Evolutionary considerations. J. Exp. Zool. Part B. 2019;332:171–178. doi: 10.1002/jez.b.22856. PubMed DOI
Aravind L., Anantharaman V., Iyer L.M. Evolutionary connections between bacterial and eukaryotic signaling systems: A genomic perspective. Curr. Opin. Microbiol. 2003;6:490–497. doi: 10.1016/j.mib.2003.09.003. PubMed DOI
Okonechnikov K., Golosova O., Fursov M., Team U. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Kozlowski L.P. IPC—Isoelectric Point Calculator. Biol. Direct. 2016;11:55. doi: 10.1186/s13062-016-0159-9. PubMed DOI PMC
Marchler-Bauer A., Derbyshire M.K., Gonzales N.R., Lu S., Chitsaz F., Geer L.Y., Geer R.C., He J., Gwadz M., Hurwitz D.I., et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–D226. doi: 10.1093/nar/gku1221. PubMed DOI PMC
Kosugi S., Hasebe M., Tomita M., Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. USA. 2009;106:10171–10176. doi: 10.1073/pnas.0900604106. PubMed DOI PMC
Hedges S.B., Marin J., Suleski M., Paymer M., Kumar S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 2015;32:835–845. doi: 10.1093/molbev/msv037. PubMed DOI PMC
Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI
Letunic I., Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46:D493–D496. doi: 10.1093/nar/gkx922. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
de Anta J.M., Jassem E., Rosell R., Martínez-Roca M., Jassem J., Martínez-López E., Monzó M., Sánchez-Hernández J.J., Moreno I., Sánchez-Céspedes M. TP53 mutational pattern in Spanish and Polish non-small cell lung cancer patients: Null mutations are associated with poor prognosis. Oncogene. 1997;15:2951. doi: 10.1038/sj.onc.1201475. PubMed DOI
Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Enthart A., Klein C., Dehner A., Coles M., Gemmecker G., Kessler H., Hagn F. Solution structure and binding specificity of the p63 DNA binding domain. Sci. Rep. 2016;6:26707. doi: 10.1038/srep26707. PubMed DOI PMC
Meng E.C., Pettersen E.F., Couch G.S., Huang C.C., Ferrin T.E. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinform. 2006;7:339 PubMed PMC
Hu B., Jin J., Guo A.-Y., Zhang H., Luo J., Gao G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–1297. doi: 10.1093/bioinformatics/btu817. PubMed DOI PMC
Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V., Lescot M. Phylogeny. fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:W465–W469. doi: 10.1093/nar/gkn180. PubMed DOI PMC
Notredame C., Higgins D.G., Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
The Elephant Evolved p53 Isoforms that Escape MDM2-Mediated Repression and Cancer
The Changes in the p53 Protein across the Animal Kingdom Point to Its Involvement in Longevity