Predicting distributions of Wolbachia strains through host ecological contact-Who's manipulating whom?

. 2022 Apr ; 12 (4) : e8826. [epub] 20220413

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35432921

Reproductive isolation in response to divergent selection is often mediated via third-party interactions. Under these conditions, speciation is inextricably linked to ecological context. We present a novel framework for understanding arthropod speciation as mediated by Wolbachia, a microbial endosymbiont capable of causing host cytoplasmic incompatibility (CI). We predict that sympatric host sister-species harbor paraphyletic Wolbachia strains that provide CI, while well-defined congeners in ecological contact and recently diverged noninteracting congeners are uninfected due to Wolbachia redundancy. We argue that Wolbachia provides an adaptive advantage when coupled with reduced hybrid fitness, facilitating assortative mating between co-occurring divergent phenotypes-the contact contingency hypothesis. To test this, we applied a predictive algorithm to empirical pollinating fig wasp data, achieving up to 91.60% accuracy. We further postulate that observed temporal decay of Wolbachia incidence results from adaptive host purging-adaptive decay hypothesis-but implementation failed to predict systematic patterns. We then account for post-zygotic offspring mortality during CI mating, modeling fitness clines across developmental resources-the fecundity trade-off hypothesis. This model regularly favored CI despite fecundity losses. We demonstrate that a rules-based algorithm accurately predicts Wolbachia infection status. This has implications among other systems where closely related sympatric species encounter adaptive disadvantage through hybridization.

Zobrazit více v PubMed

Aberer, A. J. , Kobert, K. , & Stamatakis, A. (2014). ExaBayes: massively parallel bayesian tree inference for the whole‐genome era. Molecular Biology and Evolution, 31, 2553–2556. 10.1093/molbev/msu236 PubMed DOI PMC

Bailly‐Bechet, M. , Martins‐Simões, P. , Szöllősi, G. J. , Mialdea, G. , Sagot, M.‐F. , & Charlat, S. (2017). How long does wolbachia remain on board? Molecular Biology and Evolution, 34, 1183–1193. 10.1093/molbev/msx073 PubMed DOI

Baldo, L. , Dunning Hotopp, J. C. , Bordenstein, S. R. , Biber, S. A. , Choudhury, R. R. , Hayashi, C. , Maiden, M. C. J. , Tettelin, H. , & Werren, J. H. (2006). Multilocus sequence typing system for the endosymbiont Wolbachia pipientis . Applied and Environmental Microbiology, 72, 7098–7110. PubMed PMC

Beckmann, J. F. , Bonneau, M. , Chen, H. , Hochstrasser, M. , Poinsot, D. , Merçot, H. , Weill, M. , Sicard, M. , & Charlat, S. (2019). The toxin‐antidote model of cytoplasmic incompatibility: Genetics and evolutionary implications. Trends in Genetics, 35, 175–185. 10.1016/j.tig.2018.12.004 PubMed DOI PMC

Beckmann, J. F. , Ronau, J. A. , & Hochstrasser, M. (2017). A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nature Microbiology, 2, 17007. 10.1038/nmicrobiol.2017.7 PubMed DOI PMC

Bordenstein, S. R. , O’Hara, F. P. , & Werren, J. H. (2001). Wolbachia‐induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature, 409, 707–710. 10.1038/35055543 PubMed DOI

Branca, A. , Vavre, F. , Silvain, J.‐F. , & Dupas, S. (2009). Maintenance of adaptive differentiation by Wolbachia induced bidirectional cytoplasmic incompatibility: The importance of sib‐mating and genetic systems. BMC Evolutionary Biology, 9, 185. 10.1186/1471-2148-9-185 PubMed DOI PMC

Breeuwer, J. A. , & Werren, J. H. (1990). Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature, 346, 558–560. 10.1038/346558a0 PubMed DOI

Bronstein, J. L. (1987). Maintenance of species‐specificity in a neotropical fig: Pollinator wasp mutualism. Oikos, 48, 39. 10.2307/3565686 DOI

Bruzzese, D. J. , Schuler, H. , Wolfe, T. M. , Glover, M. M. , Mastroni, J. V. , Doellman, M. M. , Tait, C. , Yee, W. L. , Rull, J. , Aluja, M. , Hood, G. R. , Goughnour, R. B. , Stauffer, C. , Nosil, P. , & Feder, J. L. (2021). Testing the potential contribution of Wolbachia to speciation when cytoplasmic incompatibility becomes associated with host‐related reproductive isolation. Molecular Ecology. 10.1111/mec.16157. Online ahead of print. PubMed DOI PMC

Caspari, E. , & Watson, G. S. (1959). On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 13, 568–570. 10.1111/j.1558-5646.1959.tb03045.x DOI

Champion de Crespigny, F. E. , & Wedell, N. (2006). Wolbachia infection reduces sperm competitive ability in an insect. Proceedings of the Royal Society B: Biological Sciences, 273, 1455–1458. PubMed PMC

Charlat, S. , Hornett, E. A. , Fullard, J. H. , Davies, N. , Roderick, G. K. , Wedell, N. , & Hurst, G. D. D. (2007). Extraordinary flux in sex ratio. Science, 317, 214. 10.1126/science.1143369 PubMed DOI

Chase, J. M. , & Leibold, M. A. (2003). Ecological niches: Linking classical and contemporary approaches. Chicago University.

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366. 10.1146/annurev.ecolsys.31.1.343 DOI

Cody, M. L. , MacArthur, R. H. , & Diamond, J. M. (1975). Ecology and evolution of communities. books.google.com

Cook, J. M. , & Segar, S. T. (2010). Speciation in fig wasps. Ecological Entomology, 35, 54–66. 10.1111/j.1365-2311.2009.01148.x DOI

Correa, C. C. , & Ballard, J. W. O. (2016). Wolbachia associations with insects: Winning or losing against a master manipulator. Frontiers in Ecology and Evolution, 3, 153.

Coyne, J. A. , & Orr, H. A. (2004). Speciation. Sinauer Associates is an imprint of Oxford University Press.

Cruaud, P. , Rasplus, J.‐Y. , Rodriguez, L. J. , & Cruaud, A. (2017). High‐throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Scientific Reports, 7, 41948. 10.1038/srep41948 PubMed DOI PMC

Darwell, C. T. , al‐Beidh, S. , & Cook, J. M. (2014). Molecular species delimitation of a symbiotic fig‐pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity. BMC Evolutionary Biology, 14, 189. 10.1186/s12862-014-0189-9 PubMed DOI PMC

Dedeine, F. , Vavre, F. , Fleury, F. , Loppin, B. , Hochberg, M. E. , & Boulétreau, M. (2001). Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the National Academy of Sciences of the United States of America, 98, 6247–6252. PubMed PMC

Dunn, D. W. , Jander, K. C. , Lamas, A. G. , & Pereira, R. A. S. (2015). Mortal combat and competition for oviposition sites in female pollinating fig wasps. Behavioral Ecology, 26, 262–268. 10.1093/beheco/aru191 DOI

Dunn, D. W. , Jansen‐González, S. , Cook, J. M. , Yu, D. W. , & Pereira, R. A. S. (2011). Measuring the discrepancy between fecundity and lifetime reproductive success in a pollinating fig wasp. Entomologia Experimentalis et Applicata, 140, 218–225. 10.1111/j.1570-7458.2011.01151.x DOI

Dunn, D. W. , Segar, S. T. , Ridley, J. O. , Chan, R. , Crozier, R. H. , Yu, D. W. , & Cook, J. M. (2008). A role for parasites in stabilising the fig‐pollinator mutualism. PLoS Biology, 6, e59. 10.1371/journal.pbio.0060059 PubMed DOI PMC

Engelstädter, J. , & Hurst, G. D. D. (2006a). The dynamics of parasite incidence across host species. Evolutionary Ecology, 20(6), 603–616. 10.1007/s10682-006-9120-1 DOI

Engelstädter, J. , & Hurst, G. D. D. (2006b). Can maternally transmitted endosymbionts facilitate the evolution of haplodiploidy? Journal of Evolutionary Biology, 19, 194–202. 10.1111/j.1420-9101.2005.00974.x PubMed DOI

Engelstädter, J. , & Telschow, A. (2009). Cytoplasmic incompatibility and host population structure. Heredity, 103, 196–207. 10.1038/hdy.2009.53 PubMed DOI

Gavotte, L. , Mercer, D. R. , Stoeckle, J. J. , & Dobson, S. L. (2010). Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level. Journal of Invertebrate Pathology, 105, 341–346. 10.1016/j.jip.2010.08.005 PubMed DOI PMC

Gerth, M. , Röthe, J. , & Bleidorn, C. (2013). Tracing horizontal Wolbachia movements among bees (Anthophila): A combined approach using multilocus sequence typing data and host phylogeny. Molecular Ecology, 22, 6149–6162. PubMed

Greeff, J. M. , van Noort, S. , Rasplus, J.‐Y. , & Kjellberg, F. (2003). Dispersal and fighting in male pollinating fig wasps. Comptes Rendus Biologies, 326, 121–130. 10.1016/S1631-0691(03)00010-6 PubMed DOI

Haine, E. R. , & Cook, J. M. (2005). Convergent incidences of Wolbachia infection in fig wasp communities from two continents. Proceedings of the Royal Society B: Biological Sciences, 272, 421–429. PubMed PMC

Hall, T. A. (1999). BioEdit: A user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

Hamm, C. A. , Begun, D. J. , Vo, A. , Smith, C. C. R. , Saelao, P. , Shaver, A. O. , Jaenike, J. , & Turelli, M. (2014). Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella . Molecular Ecology, 23, 4871–4885. PubMed PMC

Hansen, A. K. , & Moran, N. A. (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology, 23, 1473–1496. 10.1111/mec.12421 PubMed DOI

Harmon, L. J. , Andreazzi, C. S. , Débarre, F. , Drury, J. , Goldberg, E. E. , Martins, A. B. , Melián, C. J. , Narwani, A. , Nuismer, S. L. , Pennell, M. W. , Rudman, S. M. , Seehausen, O. , Silvestro, D. , Weber, M. , & Matthews, B. (2019). Detecting the macroevolutionary signal of species interactions. Journal of Evolutionary Biology, 32, 769–782. 10.1111/jeb.13477 PubMed DOI

Hoffmann, A. A. , Turelli, M. , & Harshman, L. G. (1990). Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans . Genetics, 126, 933–948. 10.1093/genetics/126.4.933 PubMed DOI PMC

Hubbel, S. P. (2001). The unified neutral theory of biodiversity and biogeography (390 p). Princeton University Press.

Jäckel, R. , Mora, D. , & Dobler, S. (2013). Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Molecular Ecology, 22, 4241–4255. PubMed

Jaenike, J. , Dyer, K. A. , Cornish, C. , & Minhas, M. S. (2006). Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biology, 4, e325. 10.1371/journal.pbio.0040325 PubMed DOI PMC

Jiggins, F. M. , & Hurst, G. D. D. (2011). Microbiology. Rapid insect evolution by symbiont transfer. Science, 332, 185–186. 10.1126/science.1205386 PubMed DOI

Jolley, K. A. , Bray, J. E. , & Maiden, M. C. J. (2018). Open‐access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Research, 24, 124. 10.12688/wellcomeopenres.14826.1 PubMed DOI PMC

Jousselin, E. , Hossaert‐Mckey, M. , Vernet, D. , & Kjellberg, F. (2001). Egg deposition patterns of fig pollinating wasps: implications for studies on the stability of the mutualism. Ecological Entomology, 26, 602–608. 10.1046/j.1365-2311.2001.00368.x DOI

Koehncke, A. , Telschow, A. , Werren, J. H. , & Hammerstein, P. (2009). Life and death of an influential passenger: Wolbachia and the evolution of CI‐modifiers by their hosts. PLoS One, 4, e4425. 10.1371/journal.pone.0004425 PubMed DOI PMC

LePage, D. P. , Metcalf, J. A. , Bordenstein, S. R. , On, J. , Perlmutter, J. I. , Shropshire, J. D. , Layton, E. M. , Funkhouser‐Jones, L. J. , Beckmann, J. F. , & Bordenstein, S. R. (2017). Prophage WO genes recapitulate and enhance Wolbachia‐induced cytoplasmic incompatibility. Nature, 543, 243–247. 10.1038/nature21391 PubMed DOI PMC

Lindsey, A. R. I. , Rice, D. W. , Bordenstein, S. R. , Brooks, A. W. , Bordenstein, S. R. , & Newton, I. L. G. (2018). Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome Biology and Evolution, 10, 434–451. 10.1093/gbe/evy012 PubMed DOI PMC

Martinez, J. , Klasson, L. , Welch, J. J. , & Jiggins, F. M. (2021). Life and death of selfish genes: Comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Molecular Biology and Evolution, 38, 2–15. 10.1093/molbev/msaa209 PubMed DOI PMC

McFrederick, Q. S. , & Rehan, S. M. (2016). Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Molecular Ecology, 25, 2302–2311. 10.1111/mec.13608 PubMed DOI

Miraldo, A. , & Duplouy, A. (2019). High wolbachia strain diversity in a clade of dung beetles endemic to madagascar. Frontiers in Ecology and Evolution, 7, 157. 10.3389/fevo.2019.00157 DOI

Moe, A. M. , & Weiblen, G. D. (2012). Pollinator‐mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution, 66, 3710–3721. PubMed

Molbo, D. , Machado, C. A. , Sevenster, J. G. , Keller, L. , & Herre, E. A. (2003). Cryptic species of fig‐pollinating wasps: implications for the evolution of the fig‐wasp mutualism, sex allocation, and precision of adaptation. Proceedings of the National Academy of Sciences of the United States of America, 100, 5867–5872. 10.1073/pnas.0930903100 PubMed DOI PMC

Murray, M. G. (1990). Comparative morphology and mate competition of flightless male fig wasps. Animal Behaviour, 39, 434–443. 10.1016/S0003-3472(05)80406-3 DOI

Nice, C. C. , Gompert, Z. , Forister, M. L. , & Fordyce, J. A. (2009). An unseen foe in arthropod conservation efforts: The case of Wolbachia infections in the Karner blue butterfly. Biological Conservation, 142, 3137–3146. 10.1016/j.biocon.2009.08.020 DOI

Nosil, P. (2012). Ecological speciation. Oxford University Press.

Perrot‐Minnot, M. J. , Cheval, B. , Migeon, A. , & Navajas, M. (2002). Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae . Journal of Evolutionary Biology, 15, 808–817.

Raja, S. , Suleman, N. , Compton, S. G. , & Moore, J. C. (2008). The mechanism of sex ratio adjustment in a pollinating fig wasp. Proceedings of the Royal Society B: Biological Sciences, 275, 1603–1610. 10.1098/rspb.2008.0136 PubMed DOI PMC

Raychoudhury, R. , Baldo, L. , Oliveira, D. C. S. G. , & Werren, J. H. (2009). Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution, 63, 165–183. PubMed

Rundle, H. D. , & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8, 336–352. 10.1111/j.1461-0248.2004.00715.x DOI

Segar, S. T. , Fayle, T. M. , Srivastava, D. S. , Lewinsohn, T. M. , Lewis, O. T. , Novotny, V. , Kitching, R. L. , & Maunsell, S. C. (2020). The role of evolution in shaping ecological networks. Trends in Ecology & Evolution, 35, 454–466. 10.1016/j.tree.2020.01.004 PubMed DOI

Segar, S. T. , Volf, M. , Zima Jnr, J. , Isua, B. , Sisol, M. , Sam, L. , Sam, K. , Souto‐Vilarós, D. , & Novotny, V. (2017). Speciation in a keystone plant genus is driven by elevation: A case study in New Guinean Ficus. Journal of Evolutionary Biology, 30, 512–523. PubMed

Shoemaker, D. D. , Katju, V. , & Jaenike, J. (1999). Wolbachia and the evolution of reproductive isolation between drosophila recens and drosophila subquinaria. Evolution, 53, 1157–1164. PubMed

Shoemaker, D. D. , Machado, C. A. , Molbo, D. , Werren, J. H. , Windsor, D. M. , & Herre, E. A. (2002). The distribution of Wolbachia in fig wasps: Correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society B: Biological Sciences, 269, 2257–2267. PubMed PMC

Shropshire, J. D. , & Bordenstein, S. R. (2016). Speciation by symbiosis: The microbiome and behavior. MBio, 7, e01785. PubMed PMC

Shropshire, J. D. , Rosenberg, R. , & Bordenstein, S. R. (2021). The impacts of cytoplasmic incompatibility factor (cifA and cifB) genetic variation on phenotypes. Genetics, 217, 1–13. PubMed PMC

Sintupachee, S. , Milne, J. R. , Poonchaisri, S. , Baimai, V. , & Kittayapong, P. (2006). Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microbial Ecology, 51, 294–301. 10.1007/s00248-006-9036-x PubMed DOI

Smith, M. A. , Bertrand, C. , Crosby, K. , Eveleigh, E. S. , Fernandez‐Triana, J. , Fisher, B. L. , Gibbs, J. , Hajibabaei, M. , Hallwachs, W. , Hind, K. , Hrcek, J. , Huang, D.‐W. , Janda, M. , Janzen, D. H. , Li, Y. , Miller, S. E. , Packer, L. , Quicke, D. , Ratnasingham, S. , … Zhou, X. (2012). Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLoS One, 7, e36514. 10.1371/journal.pone.0036514 PubMed DOI PMC

Souto‐Vilarós, D. , Machac, A. , Michalek, J. , Darwell, C. T. , Sisol, M. , Kuyaiva, T. , Isua, B. , Weiblen, G. D. , Novotny, V. , & Segar, S. T. (2019). Faster speciation of fig wasps than their host figs leads to decoupled speciation dynamics: snapshots across the speciation continuum. Molecular Ecology, 28, 3958–3976. 10.1111/mec.15190 PubMed DOI

Souto‐Vilarós, D. , Proffit, M. , Buatois, B. , Rindos, M. , Sisol, M. , Kuyaiva, T. , Isua, B. , Michalek, J. , Darwell, C. T. , Hossaert‐McKey, M. , Weiblen, G. D. , Novotny, V. , & Segar, S. T. (2018). Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig‐wasp mutualism. The Journal of Ecology, 106, 2256–2273. 10.1111/1365-2745.12995 DOI

Teixeira, L. , Ferreira, A. , & Ashburner, M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster . PLoS Biology, 6, e2. 10.1371/journal.pbio.1000002 PubMed DOI PMC

Telschow, A. , Flor, M. , Kobayashi, Y. , Hammerstein, P. , & Werren, J. H. (2007). Wolbachia‐induced unidirectional cytoplasmic incompatibility and speciation: Mainland‐island model. PLoS One, 2, e701. 10.1371/journal.pone.0000701 PubMed DOI PMC

Telschow, A. , Hammerstein, P. , & Werren, J. H. (2002). The effect of Wolbachia on genetic divergence between populations: models with two‐way migration. The American Naturalist, 160(Suppl. 4), S54–66. PubMed

Telschow, A. , Yamamura, N. , & Werren, J. H. (2005). Bidirectional cytoplasmic incompatibility and the stable coexistence of two Wolbachia strains in parapatric host populations. Journal of Theoretical Biology, 235, 265–274. 10.1016/j.jtbi.2005.01.008 PubMed DOI

Turelli, M. (2010). Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64, 232–241. 10.1111/j.1558-5646.2009.00822.x PubMed DOI

Turelli, M. , & Hoffmann, A. A. (1991). Rapid spread of an incompatibility factor among natural Drosophila simulans populations. Nature, 353, 440–442. PubMed

Via, S. , & Hawthorne, D. J. (2002). The genetic architecture of ecological specialization: Correlated gene effects on host use and habitat choice in pea aphids. The American Naturalist, 159(Suppl. 3), S76–S88. 10.1086/338374 PubMed DOI

Wangen, J. R. , & Green, R. (2020). Stop codon context influences genome‐wide stimulation of termination codon readthrough by aminoglycosides. eLife, 9, 52611. 10.7554/eLife.52611 PubMed DOI PMC

Weeks, A. R. , Turelli, M. , Harcombe, W. R. , Reynolds, K. T. , & Hoffmann, A. A. (2007). From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biology, 5, e114. 10.1371/journal.pbio.0050114 PubMed DOI PMC

Weiblen, G. D. (2004). Correlated evolution in fig pollination. Systematic Biology, 53, 128–139. 10.1080/10635150490265012 PubMed DOI

Weinert, L. A. , Araujo‐Jnr, E. V. , Ahmed, M. Z. , & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282, 20150249. 10.1098/rspb.2015.0249 PubMed DOI PMC

Werren, J. H. (2011). Selfish genetic elements, genetic conflict, and evolutionary innovation. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 2), 10863–10870. 10.1073/pnas.1102343108 PubMed DOI PMC

Wolfe, T. M. , Bruzzese, D. J. , Klasson, L. , Corretto, E. , Lečić, S. , Stauffer, C. , Feder, J. L. , & Schuler, H. (2021). Comparative genome sequencing reveals insights into the dynamics of Wolbachia in native and invasive cherry fruit flies. Molecular Ecology, 30, 6259–6272. 10.1111/mec.15923 PubMed DOI PMC

Xiao, J.‐H. , Wang, N.‐X. , Murphy, R. W. , Cook, J. , Jia, L.‐Y. , & Huang, D.‐W. (2012). Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a fig wasp. Evolution, 66, 1907–1916. 10.1111/j.1558-5646.2011.01561.x PubMed DOI

Yang, C.‐Y. , Xiao, J.‐H. , Niu, L.‐M. , Ma, G.‐C. , Cook, J. M. , Bian, S.‐N. , Fu, Y.‐G. , & Huang, D.‐W. (2012). Chaos of Wolbachia sequences inside the compact fig syconia of Ficus benjamina (Ficus: moraceae). PLoS One, 7, e48882. PubMed PMC

Yu, H. , Tian, E. , Zheng, L. , Deng, X. , Cheng, Y. , Chen, L. , Wu, W. , Tanming, W. , Zhang, D. , Compton, S. G. , & Kjellberg, F. (2019). Multiple parapatric pollinators have radiated across a continental fig tree displaying clinal genetic variation. Molecular Ecology, 28, 2391–2405. 10.1111/mec.15046 PubMed DOI

Zimmer, C. (2001). Wolbachia. A tale of sex and survival. Science, 292, 1093–1095. PubMed

Zug, R. , Koehncke, A. , & Hammerstein, P. (2012). Epidemiology in evolutionary time: The case of Wolbachia horizontal transmission between arthropod host species. Journal of Evolutionary Biology, 25, 2149–2160. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...