Predicting distributions of Wolbachia strains through host ecological contact-Who's manipulating whom?
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35432921
PubMed Central
PMC9006231
DOI
10.1002/ece3.8826
PII: ECE38826
Knihovny.cz E-zdroje
- Klíčová slova
- New Guinea, Wolbachia, cytoplasmic incompatibility, fig‐wasp, mutualism, speciation,
- Publikační typ
- časopisecké články MeSH
Reproductive isolation in response to divergent selection is often mediated via third-party interactions. Under these conditions, speciation is inextricably linked to ecological context. We present a novel framework for understanding arthropod speciation as mediated by Wolbachia, a microbial endosymbiont capable of causing host cytoplasmic incompatibility (CI). We predict that sympatric host sister-species harbor paraphyletic Wolbachia strains that provide CI, while well-defined congeners in ecological contact and recently diverged noninteracting congeners are uninfected due to Wolbachia redundancy. We argue that Wolbachia provides an adaptive advantage when coupled with reduced hybrid fitness, facilitating assortative mating between co-occurring divergent phenotypes-the contact contingency hypothesis. To test this, we applied a predictive algorithm to empirical pollinating fig wasp data, achieving up to 91.60% accuracy. We further postulate that observed temporal decay of Wolbachia incidence results from adaptive host purging-adaptive decay hypothesis-but implementation failed to predict systematic patterns. We then account for post-zygotic offspring mortality during CI mating, modeling fitness clines across developmental resources-the fecundity trade-off hypothesis. This model regularly favored CI despite fecundity losses. We demonstrate that a rules-based algorithm accurately predicts Wolbachia infection status. This has implications among other systems where closely related sympatric species encounter adaptive disadvantage through hybridization.
Agriculture and Environment Department Harper Adams University Newport UK
Biology Centre Institute of Entomology Czech Academy of Sciences Ceske Budejovice Czech Republic
Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czech Republic
The New Guinea Binatang Research Center Madang Papua New Guinea
Zobrazit více v PubMed
Aberer, A. J. , Kobert, K. , & Stamatakis, A. (2014). ExaBayes: massively parallel bayesian tree inference for the whole‐genome era. Molecular Biology and Evolution, 31, 2553–2556. 10.1093/molbev/msu236 PubMed DOI PMC
Bailly‐Bechet, M. , Martins‐Simões, P. , Szöllősi, G. J. , Mialdea, G. , Sagot, M.‐F. , & Charlat, S. (2017). How long does wolbachia remain on board? Molecular Biology and Evolution, 34, 1183–1193. 10.1093/molbev/msx073 PubMed DOI
Baldo, L. , Dunning Hotopp, J. C. , Bordenstein, S. R. , Biber, S. A. , Choudhury, R. R. , Hayashi, C. , Maiden, M. C. J. , Tettelin, H. , & Werren, J. H. (2006). Multilocus sequence typing system for the endosymbiont Wolbachia pipientis . Applied and Environmental Microbiology, 72, 7098–7110. PubMed PMC
Beckmann, J. F. , Bonneau, M. , Chen, H. , Hochstrasser, M. , Poinsot, D. , Merçot, H. , Weill, M. , Sicard, M. , & Charlat, S. (2019). The toxin‐antidote model of cytoplasmic incompatibility: Genetics and evolutionary implications. Trends in Genetics, 35, 175–185. 10.1016/j.tig.2018.12.004 PubMed DOI PMC
Beckmann, J. F. , Ronau, J. A. , & Hochstrasser, M. (2017). A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nature Microbiology, 2, 17007. 10.1038/nmicrobiol.2017.7 PubMed DOI PMC
Bordenstein, S. R. , O’Hara, F. P. , & Werren, J. H. (2001). Wolbachia‐induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature, 409, 707–710. 10.1038/35055543 PubMed DOI
Branca, A. , Vavre, F. , Silvain, J.‐F. , & Dupas, S. (2009). Maintenance of adaptive differentiation by Wolbachia induced bidirectional cytoplasmic incompatibility: The importance of sib‐mating and genetic systems. BMC Evolutionary Biology, 9, 185. 10.1186/1471-2148-9-185 PubMed DOI PMC
Breeuwer, J. A. , & Werren, J. H. (1990). Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature, 346, 558–560. 10.1038/346558a0 PubMed DOI
Bronstein, J. L. (1987). Maintenance of species‐specificity in a neotropical fig: Pollinator wasp mutualism. Oikos, 48, 39. 10.2307/3565686 DOI
Bruzzese, D. J. , Schuler, H. , Wolfe, T. M. , Glover, M. M. , Mastroni, J. V. , Doellman, M. M. , Tait, C. , Yee, W. L. , Rull, J. , Aluja, M. , Hood, G. R. , Goughnour, R. B. , Stauffer, C. , Nosil, P. , & Feder, J. L. (2021). Testing the potential contribution of Wolbachia to speciation when cytoplasmic incompatibility becomes associated with host‐related reproductive isolation. Molecular Ecology. 10.1111/mec.16157. Online ahead of print. PubMed DOI PMC
Caspari, E. , & Watson, G. S. (1959). On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 13, 568–570. 10.1111/j.1558-5646.1959.tb03045.x DOI
Champion de Crespigny, F. E. , & Wedell, N. (2006). Wolbachia infection reduces sperm competitive ability in an insect. Proceedings of the Royal Society B: Biological Sciences, 273, 1455–1458. PubMed PMC
Charlat, S. , Hornett, E. A. , Fullard, J. H. , Davies, N. , Roderick, G. K. , Wedell, N. , & Hurst, G. D. D. (2007). Extraordinary flux in sex ratio. Science, 317, 214. 10.1126/science.1143369 PubMed DOI
Chase, J. M. , & Leibold, M. A. (2003). Ecological niches: Linking classical and contemporary approaches. Chicago University.
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366. 10.1146/annurev.ecolsys.31.1.343 DOI
Cody, M. L. , MacArthur, R. H. , & Diamond, J. M. (1975). Ecology and evolution of communities. books.google.com
Cook, J. M. , & Segar, S. T. (2010). Speciation in fig wasps. Ecological Entomology, 35, 54–66. 10.1111/j.1365-2311.2009.01148.x DOI
Correa, C. C. , & Ballard, J. W. O. (2016). Wolbachia associations with insects: Winning or losing against a master manipulator. Frontiers in Ecology and Evolution, 3, 153.
Coyne, J. A. , & Orr, H. A. (2004). Speciation. Sinauer Associates is an imprint of Oxford University Press.
Cruaud, P. , Rasplus, J.‐Y. , Rodriguez, L. J. , & Cruaud, A. (2017). High‐throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Scientific Reports, 7, 41948. 10.1038/srep41948 PubMed DOI PMC
Darwell, C. T. , al‐Beidh, S. , & Cook, J. M. (2014). Molecular species delimitation of a symbiotic fig‐pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity. BMC Evolutionary Biology, 14, 189. 10.1186/s12862-014-0189-9 PubMed DOI PMC
Dedeine, F. , Vavre, F. , Fleury, F. , Loppin, B. , Hochberg, M. E. , & Boulétreau, M. (2001). Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the National Academy of Sciences of the United States of America, 98, 6247–6252. PubMed PMC
Dunn, D. W. , Jander, K. C. , Lamas, A. G. , & Pereira, R. A. S. (2015). Mortal combat and competition for oviposition sites in female pollinating fig wasps. Behavioral Ecology, 26, 262–268. 10.1093/beheco/aru191 DOI
Dunn, D. W. , Jansen‐González, S. , Cook, J. M. , Yu, D. W. , & Pereira, R. A. S. (2011). Measuring the discrepancy between fecundity and lifetime reproductive success in a pollinating fig wasp. Entomologia Experimentalis et Applicata, 140, 218–225. 10.1111/j.1570-7458.2011.01151.x DOI
Dunn, D. W. , Segar, S. T. , Ridley, J. O. , Chan, R. , Crozier, R. H. , Yu, D. W. , & Cook, J. M. (2008). A role for parasites in stabilising the fig‐pollinator mutualism. PLoS Biology, 6, e59. 10.1371/journal.pbio.0060059 PubMed DOI PMC
Engelstädter, J. , & Hurst, G. D. D. (2006a). The dynamics of parasite incidence across host species. Evolutionary Ecology, 20(6), 603–616. 10.1007/s10682-006-9120-1 DOI
Engelstädter, J. , & Hurst, G. D. D. (2006b). Can maternally transmitted endosymbionts facilitate the evolution of haplodiploidy? Journal of Evolutionary Biology, 19, 194–202. 10.1111/j.1420-9101.2005.00974.x PubMed DOI
Engelstädter, J. , & Telschow, A. (2009). Cytoplasmic incompatibility and host population structure. Heredity, 103, 196–207. 10.1038/hdy.2009.53 PubMed DOI
Gavotte, L. , Mercer, D. R. , Stoeckle, J. J. , & Dobson, S. L. (2010). Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level. Journal of Invertebrate Pathology, 105, 341–346. 10.1016/j.jip.2010.08.005 PubMed DOI PMC
Gerth, M. , Röthe, J. , & Bleidorn, C. (2013). Tracing horizontal Wolbachia movements among bees (Anthophila): A combined approach using multilocus sequence typing data and host phylogeny. Molecular Ecology, 22, 6149–6162. PubMed
Greeff, J. M. , van Noort, S. , Rasplus, J.‐Y. , & Kjellberg, F. (2003). Dispersal and fighting in male pollinating fig wasps. Comptes Rendus Biologies, 326, 121–130. 10.1016/S1631-0691(03)00010-6 PubMed DOI
Haine, E. R. , & Cook, J. M. (2005). Convergent incidences of Wolbachia infection in fig wasp communities from two continents. Proceedings of the Royal Society B: Biological Sciences, 272, 421–429. PubMed PMC
Hall, T. A. (1999). BioEdit: A user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hamm, C. A. , Begun, D. J. , Vo, A. , Smith, C. C. R. , Saelao, P. , Shaver, A. O. , Jaenike, J. , & Turelli, M. (2014). Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella . Molecular Ecology, 23, 4871–4885. PubMed PMC
Hansen, A. K. , & Moran, N. A. (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology, 23, 1473–1496. 10.1111/mec.12421 PubMed DOI
Harmon, L. J. , Andreazzi, C. S. , Débarre, F. , Drury, J. , Goldberg, E. E. , Martins, A. B. , Melián, C. J. , Narwani, A. , Nuismer, S. L. , Pennell, M. W. , Rudman, S. M. , Seehausen, O. , Silvestro, D. , Weber, M. , & Matthews, B. (2019). Detecting the macroevolutionary signal of species interactions. Journal of Evolutionary Biology, 32, 769–782. 10.1111/jeb.13477 PubMed DOI
Hoffmann, A. A. , Turelli, M. , & Harshman, L. G. (1990). Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans . Genetics, 126, 933–948. 10.1093/genetics/126.4.933 PubMed DOI PMC
Hubbel, S. P. (2001). The unified neutral theory of biodiversity and biogeography (390 p). Princeton University Press.
Jäckel, R. , Mora, D. , & Dobler, S. (2013). Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Molecular Ecology, 22, 4241–4255. PubMed
Jaenike, J. , Dyer, K. A. , Cornish, C. , & Minhas, M. S. (2006). Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biology, 4, e325. 10.1371/journal.pbio.0040325 PubMed DOI PMC
Jiggins, F. M. , & Hurst, G. D. D. (2011). Microbiology. Rapid insect evolution by symbiont transfer. Science, 332, 185–186. 10.1126/science.1205386 PubMed DOI
Jolley, K. A. , Bray, J. E. , & Maiden, M. C. J. (2018). Open‐access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Research, 24, 124. 10.12688/wellcomeopenres.14826.1 PubMed DOI PMC
Jousselin, E. , Hossaert‐Mckey, M. , Vernet, D. , & Kjellberg, F. (2001). Egg deposition patterns of fig pollinating wasps: implications for studies on the stability of the mutualism. Ecological Entomology, 26, 602–608. 10.1046/j.1365-2311.2001.00368.x DOI
Koehncke, A. , Telschow, A. , Werren, J. H. , & Hammerstein, P. (2009). Life and death of an influential passenger: Wolbachia and the evolution of CI‐modifiers by their hosts. PLoS One, 4, e4425. 10.1371/journal.pone.0004425 PubMed DOI PMC
LePage, D. P. , Metcalf, J. A. , Bordenstein, S. R. , On, J. , Perlmutter, J. I. , Shropshire, J. D. , Layton, E. M. , Funkhouser‐Jones, L. J. , Beckmann, J. F. , & Bordenstein, S. R. (2017). Prophage WO genes recapitulate and enhance Wolbachia‐induced cytoplasmic incompatibility. Nature, 543, 243–247. 10.1038/nature21391 PubMed DOI PMC
Lindsey, A. R. I. , Rice, D. W. , Bordenstein, S. R. , Brooks, A. W. , Bordenstein, S. R. , & Newton, I. L. G. (2018). Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome Biology and Evolution, 10, 434–451. 10.1093/gbe/evy012 PubMed DOI PMC
Martinez, J. , Klasson, L. , Welch, J. J. , & Jiggins, F. M. (2021). Life and death of selfish genes: Comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Molecular Biology and Evolution, 38, 2–15. 10.1093/molbev/msaa209 PubMed DOI PMC
McFrederick, Q. S. , & Rehan, S. M. (2016). Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Molecular Ecology, 25, 2302–2311. 10.1111/mec.13608 PubMed DOI
Miraldo, A. , & Duplouy, A. (2019). High wolbachia strain diversity in a clade of dung beetles endemic to madagascar. Frontiers in Ecology and Evolution, 7, 157. 10.3389/fevo.2019.00157 DOI
Moe, A. M. , & Weiblen, G. D. (2012). Pollinator‐mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution, 66, 3710–3721. PubMed
Molbo, D. , Machado, C. A. , Sevenster, J. G. , Keller, L. , & Herre, E. A. (2003). Cryptic species of fig‐pollinating wasps: implications for the evolution of the fig‐wasp mutualism, sex allocation, and precision of adaptation. Proceedings of the National Academy of Sciences of the United States of America, 100, 5867–5872. 10.1073/pnas.0930903100 PubMed DOI PMC
Murray, M. G. (1990). Comparative morphology and mate competition of flightless male fig wasps. Animal Behaviour, 39, 434–443. 10.1016/S0003-3472(05)80406-3 DOI
Nice, C. C. , Gompert, Z. , Forister, M. L. , & Fordyce, J. A. (2009). An unseen foe in arthropod conservation efforts: The case of Wolbachia infections in the Karner blue butterfly. Biological Conservation, 142, 3137–3146. 10.1016/j.biocon.2009.08.020 DOI
Nosil, P. (2012). Ecological speciation. Oxford University Press.
Perrot‐Minnot, M. J. , Cheval, B. , Migeon, A. , & Navajas, M. (2002). Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae . Journal of Evolutionary Biology, 15, 808–817.
Raja, S. , Suleman, N. , Compton, S. G. , & Moore, J. C. (2008). The mechanism of sex ratio adjustment in a pollinating fig wasp. Proceedings of the Royal Society B: Biological Sciences, 275, 1603–1610. 10.1098/rspb.2008.0136 PubMed DOI PMC
Raychoudhury, R. , Baldo, L. , Oliveira, D. C. S. G. , & Werren, J. H. (2009). Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution, 63, 165–183. PubMed
Rundle, H. D. , & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8, 336–352. 10.1111/j.1461-0248.2004.00715.x DOI
Segar, S. T. , Fayle, T. M. , Srivastava, D. S. , Lewinsohn, T. M. , Lewis, O. T. , Novotny, V. , Kitching, R. L. , & Maunsell, S. C. (2020). The role of evolution in shaping ecological networks. Trends in Ecology & Evolution, 35, 454–466. 10.1016/j.tree.2020.01.004 PubMed DOI
Segar, S. T. , Volf, M. , Zima Jnr, J. , Isua, B. , Sisol, M. , Sam, L. , Sam, K. , Souto‐Vilarós, D. , & Novotny, V. (2017). Speciation in a keystone plant genus is driven by elevation: A case study in New Guinean Ficus. Journal of Evolutionary Biology, 30, 512–523. PubMed
Shoemaker, D. D. , Katju, V. , & Jaenike, J. (1999). Wolbachia and the evolution of reproductive isolation between drosophila recens and drosophila subquinaria. Evolution, 53, 1157–1164. PubMed
Shoemaker, D. D. , Machado, C. A. , Molbo, D. , Werren, J. H. , Windsor, D. M. , & Herre, E. A. (2002). The distribution of Wolbachia in fig wasps: Correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society B: Biological Sciences, 269, 2257–2267. PubMed PMC
Shropshire, J. D. , & Bordenstein, S. R. (2016). Speciation by symbiosis: The microbiome and behavior. MBio, 7, e01785. PubMed PMC
Shropshire, J. D. , Rosenberg, R. , & Bordenstein, S. R. (2021). The impacts of cytoplasmic incompatibility factor (cifA and cifB) genetic variation on phenotypes. Genetics, 217, 1–13. PubMed PMC
Sintupachee, S. , Milne, J. R. , Poonchaisri, S. , Baimai, V. , & Kittayapong, P. (2006). Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microbial Ecology, 51, 294–301. 10.1007/s00248-006-9036-x PubMed DOI
Smith, M. A. , Bertrand, C. , Crosby, K. , Eveleigh, E. S. , Fernandez‐Triana, J. , Fisher, B. L. , Gibbs, J. , Hajibabaei, M. , Hallwachs, W. , Hind, K. , Hrcek, J. , Huang, D.‐W. , Janda, M. , Janzen, D. H. , Li, Y. , Miller, S. E. , Packer, L. , Quicke, D. , Ratnasingham, S. , … Zhou, X. (2012). Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLoS One, 7, e36514. 10.1371/journal.pone.0036514 PubMed DOI PMC
Souto‐Vilarós, D. , Machac, A. , Michalek, J. , Darwell, C. T. , Sisol, M. , Kuyaiva, T. , Isua, B. , Weiblen, G. D. , Novotny, V. , & Segar, S. T. (2019). Faster speciation of fig wasps than their host figs leads to decoupled speciation dynamics: snapshots across the speciation continuum. Molecular Ecology, 28, 3958–3976. 10.1111/mec.15190 PubMed DOI
Souto‐Vilarós, D. , Proffit, M. , Buatois, B. , Rindos, M. , Sisol, M. , Kuyaiva, T. , Isua, B. , Michalek, J. , Darwell, C. T. , Hossaert‐McKey, M. , Weiblen, G. D. , Novotny, V. , & Segar, S. T. (2018). Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig‐wasp mutualism. The Journal of Ecology, 106, 2256–2273. 10.1111/1365-2745.12995 DOI
Teixeira, L. , Ferreira, A. , & Ashburner, M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster . PLoS Biology, 6, e2. 10.1371/journal.pbio.1000002 PubMed DOI PMC
Telschow, A. , Flor, M. , Kobayashi, Y. , Hammerstein, P. , & Werren, J. H. (2007). Wolbachia‐induced unidirectional cytoplasmic incompatibility and speciation: Mainland‐island model. PLoS One, 2, e701. 10.1371/journal.pone.0000701 PubMed DOI PMC
Telschow, A. , Hammerstein, P. , & Werren, J. H. (2002). The effect of Wolbachia on genetic divergence between populations: models with two‐way migration. The American Naturalist, 160(Suppl. 4), S54–66. PubMed
Telschow, A. , Yamamura, N. , & Werren, J. H. (2005). Bidirectional cytoplasmic incompatibility and the stable coexistence of two Wolbachia strains in parapatric host populations. Journal of Theoretical Biology, 235, 265–274. 10.1016/j.jtbi.2005.01.008 PubMed DOI
Turelli, M. (2010). Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64, 232–241. 10.1111/j.1558-5646.2009.00822.x PubMed DOI
Turelli, M. , & Hoffmann, A. A. (1991). Rapid spread of an incompatibility factor among natural Drosophila simulans populations. Nature, 353, 440–442. PubMed
Via, S. , & Hawthorne, D. J. (2002). The genetic architecture of ecological specialization: Correlated gene effects on host use and habitat choice in pea aphids. The American Naturalist, 159(Suppl. 3), S76–S88. 10.1086/338374 PubMed DOI
Wangen, J. R. , & Green, R. (2020). Stop codon context influences genome‐wide stimulation of termination codon readthrough by aminoglycosides. eLife, 9, 52611. 10.7554/eLife.52611 PubMed DOI PMC
Weeks, A. R. , Turelli, M. , Harcombe, W. R. , Reynolds, K. T. , & Hoffmann, A. A. (2007). From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biology, 5, e114. 10.1371/journal.pbio.0050114 PubMed DOI PMC
Weiblen, G. D. (2004). Correlated evolution in fig pollination. Systematic Biology, 53, 128–139. 10.1080/10635150490265012 PubMed DOI
Weinert, L. A. , Araujo‐Jnr, E. V. , Ahmed, M. Z. , & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282, 20150249. 10.1098/rspb.2015.0249 PubMed DOI PMC
Werren, J. H. (2011). Selfish genetic elements, genetic conflict, and evolutionary innovation. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 2), 10863–10870. 10.1073/pnas.1102343108 PubMed DOI PMC
Wolfe, T. M. , Bruzzese, D. J. , Klasson, L. , Corretto, E. , Lečić, S. , Stauffer, C. , Feder, J. L. , & Schuler, H. (2021). Comparative genome sequencing reveals insights into the dynamics of Wolbachia in native and invasive cherry fruit flies. Molecular Ecology, 30, 6259–6272. 10.1111/mec.15923 PubMed DOI PMC
Xiao, J.‐H. , Wang, N.‐X. , Murphy, R. W. , Cook, J. , Jia, L.‐Y. , & Huang, D.‐W. (2012). Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a fig wasp. Evolution, 66, 1907–1916. 10.1111/j.1558-5646.2011.01561.x PubMed DOI
Yang, C.‐Y. , Xiao, J.‐H. , Niu, L.‐M. , Ma, G.‐C. , Cook, J. M. , Bian, S.‐N. , Fu, Y.‐G. , & Huang, D.‐W. (2012). Chaos of Wolbachia sequences inside the compact fig syconia of Ficus benjamina (Ficus: moraceae). PLoS One, 7, e48882. PubMed PMC
Yu, H. , Tian, E. , Zheng, L. , Deng, X. , Cheng, Y. , Chen, L. , Wu, W. , Tanming, W. , Zhang, D. , Compton, S. G. , & Kjellberg, F. (2019). Multiple parapatric pollinators have radiated across a continental fig tree displaying clinal genetic variation. Molecular Ecology, 28, 2391–2405. 10.1111/mec.15046 PubMed DOI
Zimmer, C. (2001). Wolbachia. A tale of sex and survival. Science, 292, 1093–1095. PubMed
Zug, R. , Koehncke, A. , & Hammerstein, P. (2012). Epidemiology in evolutionary time: The case of Wolbachia horizontal transmission between arthropod host species. Journal of Evolutionary Biology, 25, 2149–2160. PubMed