Sex-linked markers in an Australian frog Platyplectrum ornatum (Limnodynastidae) with a small genome and homomorphic sex chromosomes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36463309
PubMed Central
PMC9719524
DOI
10.1038/s41598-022-25105-5
PII: 10.1038/s41598-022-25105-5
Knihovny.cz E-zdroje
- MeSH
- biologické markery MeSH
- lidé MeSH
- pohlavní chromozomy * genetika MeSH
- Rana temporaria MeSH
- Xenopus MeSH
- žáby * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
- Názvy látek
- biologické markery MeSH
Amphibians have highly diverse sex-determining modes leading to a notable interest in vertebrate sex determination and sex chromosome evolution. The identification of sex-determining systems in amphibians, however, is often difficult as a vast majority consist of homomorphic sex chromosomes making them hard to distinguish. In this study, we used Diversity Array Technology sequencing (DArTseq) to identify the sex-determining system in the ornate burrowing frog from Australia, Platyplectrum ornatum. We applied DArTseq to 44 individuals, 19 males and 25 females, collected from two locations to develop sex-linked markers. Unexpectedly, these 44 individuals were classified into two distinct population clusters based on our SNP analyses, 36 individuals in cluster 1, and 8 individuals in cluster 2. We then performed sex-linkage analyses separately in each cluster. We identified 35 sex-linked markers from cluster 1, which were all associated with maleness. Therefore, P. ornatum cluster 1 is utilising a male heterogametic (XX/XY) sex-determining system. On the other hand, we identified 210 sex-linked markers from cluster 2, of which 89 were male specific, i.e., identifying XX/XY sex determining system and 111 were female specific, i.e., identifying ZZ/ZW sex determining system, suggesting existence of either male or female heterogametic sex determining system in cluster 2. We also performed cytogenetic analyses in 1 male and 1 female from cluster 1; however, we did not detect any visible differentiation between the X and Y sex chromosomes. We also mapped sex-linked markers from the two clusters against the P. ornatum genome and our comparative analysis indicated that the sex chromosomes in both clusters shared homologies to chromosome 10 (autosome) of Rana temporaria and ZWY sex chromosome of Xenopus tropicalis. Our preliminary data suggest that it is plausible that the cluster 2 has a potential to be either male or female heterogamety in sex determination, requiring further investigation.
Zobrazit více v PubMed
Nishioka M, Hanada H, Miura I, Ryuzaki M. Four kinds of sex chromosomes in Rana rugosa. Sci. Rep. Lab. Amphibian Biol. 1994;13:1–34.
Nishioka M, Miura I, Saitoh K. Sex chromosomes of Rana rugosa with special reference to local differences in sex-determining mechanism. Sci. Rep. Lab. Amphibian Biol. 1993;1:55–81.
Rodrigues N, Merilä J, Patrelle C, Perrin N. Geographic variation in sex-chromosome differentiation in the common frog (Rana temporaria) Mol. Ecol. 2014;23:3409–3418. doi: 10.1111/mec.12829. PubMed DOI
Miura I. Sex determination and sex chromosomes in amphibia. Sex. Dev. 2017;11:298–306. doi: 10.1159/000485270. PubMed DOI
Toups MA, Rodrigues N, Perrin N, Kirkpatrick M. A reciprocal translocation radically reshapes sex-linked inheritance in the common frog. Mol. Ecol. 2019;28:1877–1889. doi: 10.1111/mec.14990. PubMed DOI PMC
Ma W-J, Veltsos P. The diversity and evolution of sex chromosomes in frogs. Genes. 2021;12:483. doi: 10.3390/genes12040483. PubMed DOI PMC
Vitt LJ, Caldwell JP. Herpetology: An Introductory Biology of Amphibians and Reptiles. Academic Press; 2013.
Jeffries DL, et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-06517-2. PubMed DOI PMC
Miura I, et al. Evolution of a multiple sex-chromosome system by three-sequential translocations among potential sex-chromosomes in the Taiwanese frog Odorrana swinhoana. Cells. 2021;10:661. doi: 10.3390/cells10030661. PubMed DOI PMC
Ruiz-García A, Roco ÁS, Bullejos M. Sex differentiation in amphibians: Effect of temperature and its influence on sex reversal. Sex. Dev. 2021;15:157–167. doi: 10.1159/000515220. PubMed DOI
Xu Y, et al. Male heterogametic sex determination in Rana dybowskii based on sex-linked molecular markers. Integr. Zool. 2022;17:105–114. doi: 10.1111/1749-4877.12577. PubMed DOI PMC
Miura I. An evolutionary witness: The frog Rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sex. Dev. 2007;1:323–331. doi: 10.1159/000111764. PubMed DOI
Ogata M, Hasegawa Y, Ohtani H, Mineyama M, Miura I. The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana rugosa. Heredity. 2008;100:92–99. doi: 10.1038/sj.hdy.6801068. PubMed DOI
Bachtrog D, et al. Sex determination: Why so many ways of doing it? PLoS Biol. 2014;12:e1001899. doi: 10.1371/journal.pbio.1001899. PubMed DOI PMC
Capel B. Vertebrate sex determination: Evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 2017;18:675–689. doi: 10.1038/nrg.2017.60. PubMed DOI
Ezaz T, Stiglec R, Veyrunes F, Graves JAM. Relationships between vertebrate ZW and XY sex chromosome systems. Curr. Biol. 2006 doi: 10.1016/j.cub.2006.08.021. PubMed DOI
Sarre SD, Ezaz T, Georges A. Transitions between sex-determining systems in reptiles and amphibians. Annu. Rev. Genomics Hum. Genet. 2011 doi: 10.1146/annurev-genom-082410-101518. PubMed DOI
Saidapur S, Gramapurohit N, Shanbhag B. Effect of sex steroids on gonadal differentiation and sex reversal in the frog, Rana curtipes. Gen. Comp. Endocrinol. 2001;124:115–123. doi: 10.1006/gcen.2001.7699. PubMed DOI
Yoshimoto S, et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. 2008;105:2469–2474. doi: 10.1073/pnas.0712244105. PubMed DOI PMC
Yoshimoto S, et al. Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: Implications of a ZZ/ZW-type sex-determining system. Development. 2010;137:2519–2526. doi: 10.1242/dev.048751. PubMed DOI
Clulow S, Swan M. A Complete Guide to Frogs of Australia. Australian Geographic; 2018.
Sopniewski J, Shams F, Scheele BC, Kefford BJ, Ezaz T. Identifying sex-linked markers in Litoria aurea: A novel approach to understanding sex chromosome evolution in an amphibian. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-52970-4. PubMed DOI PMC
Mahony M. Heteromorphic sex chromosomes in the Australian frog Crinia bilingua (Anura: Myobatrachidae) Genome. 1991;34:334–337. doi: 10.1139/g91-055. DOI
Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI
Lamichhaney S, et al. A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, Platyplectrum ornatum. Proc. Natl. Acad. Sci. 2021;118:1–10. doi: 10.1073/pnas.2011649118. PubMed DOI PMC
Nei M. Genetic distance between populations. Am. Nat. 1972;106:283–292. doi: 10.1086/282771. DOI
Uno Y, et al. Extraordinary diversity in the origins of sex chromosomes in anurans inferred from comparative gene mapping. Cytogenet. Genome Res. 2015;145:218–229. doi: 10.1159/000431211. PubMed DOI
Sakurai N, et al. Immunohistochemical detection and biological activities of CYP17 (P450c17) in the indifferent gonad of the frog Rana rugosa. J. Steroid Biochem. Mol. Biol. 2008;112:5–12. doi: 10.1016/j.jsbmb.2008.07.002. PubMed DOI
Suda M, Uno Y, Mori Y, Matsuda Y, Nakamura M. Molecular cytogenetic characterization of telomere-specific repetitive DNA sequences in Rana rugosa. J. Exp. Zool. A. 2011;315:222–231. doi: 10.1002/jez.668. PubMed DOI
Miura I. The late replication banding patterns of chromosomes are highly conserved in the genera Rana, Hyla, and Bufo (Amphibia: Anura) Chromosoma. 1995;103:567–574. doi: 10.1007/BF00355322. PubMed DOI
Furman BL, et al. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 2020;16:e1009121. doi: 10.1371/journal.pgen.1009121. PubMed DOI PMC
Roco ÁS, et al. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl. Acad. Sci. 2015;112:E4752–E4761. doi: 10.1073/pnas.1505291112. PubMed DOI PMC
King M. C-banding studies on Australian hylid frogs: Secondary constriction structure and the concept of euchromatin transformation. Chromosoma. 1980;80:191–217. doi: 10.1007/BF00286300. DOI
King M. Amphibia. Animal Cytogenetics 4 Chordata 2. Balogh Scientific Books; 1990.
Kilian A, et al. Data Production and Analysis in Population Genomics: Methods in Molecular Biology. Humana Press; 2012. pp. 67–89.
Gruber B, Unmack PJ, Berry OF, Georges A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018;18:691–699. doi: 10.1111/1755-0998.12745. PubMed DOI
Earl DA. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI
Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics. 2016;17:844. doi: 10.1186/s12864-016-3209-x. PubMed DOI PMC
Hill PL, Burridge CP, Ezaz T, Wapstra E. Conservation of sex-linked markers among conspecific populations of a viviparous skink, Niveoscincus ocellatus, exhibiting genetic and temperature-dependent sex determination. Genome Biol. Evol. 2018;10:1079–1087. doi: 10.1093/gbe/evy042. PubMed DOI PMC
Nguyen DHM, et al. Genome-wide SNP analysis suggests male heterogamety in bighead catfish (Clarias macrocephalus) Aquaculture. 2021;1:737005. doi: 10.1016/j.aquaculture.2021.737005. DOI
R Core Team. R: A Language and Environment for Statistical Computing, v. 3.3. 1 (R Foundation for Statistical Computing, 2017).
Shams F, et al. Application of DArT seq derived SNP tags for comparative genome analysis in fishes; An alternative pipeline using sequence data from a non-traditional model species, Macquaria ambigua. PLoS ONE. 2019;14:e0226564. doi: 10.1371/journal.pone.0226365. PubMed DOI PMC
Kearse M, et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Netto MRDCB, Pauls E, de Mello Affonso PRA. A standard protocol for obtaining fish chromosomes under post-mortem conditions. Micron. 2007;38:214–217. doi: 10.1016/j.micron.2006.07.019. PubMed DOI
Ezaz T, et al. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13:763–766. doi: 10.1007/s10577-005-1010-9. PubMed DOI