Maternal auxin supply contributes to early embryo patterning in Arabidopsis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
282300
European Research Council - International
PubMed
30013211
PubMed Central
PMC6076996
DOI
10.1038/s41477-018-0204-z
PII: 10.1038/s41477-018-0204-z
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- kyseliny indoloctové farmakologie MeSH
- semena rostlinná účinky léků růst a vývoj MeSH
- vývoj rostlin účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
The angiosperm seed is composed of three genetically distinct tissues: the diploid embryo that originates from the fertilized egg cell, the triploid endosperm that is produced from the fertilized central cell, and the maternal sporophytic integuments that develop into the seed coat1. At the onset of embryo development in Arabidopsis thaliana, the zygote divides asymmetrically, producing a small apical embryonic cell and a larger basal cell that connects the embryo to the maternal tissue2. The coordinated and synchronous development of the embryo and the surrounding integuments, and the alignment of their growth axes, suggest communication between maternal tissues and the embryo. In contrast to animals, however, where a network of maternal factors that direct embryo patterning have been identified3,4, only a few maternal mutations have been described to affect embryo development in plants5-7. Early embryo patterning in Arabidopsis requires accumulation of the phytohormone auxin in the apical cell by directed transport from the suspensor8-10. However, the origin of this auxin has remained obscure. Here we investigate the source of auxin for early embryogenesis and provide evidence that the mother plant coordinates seed development by supplying auxin to the early embryo from the integuments of the ovule. We show that auxin response increases in ovules after fertilization, due to upregulated auxin biosynthesis in the integuments, and this maternally produced auxin is required for correct embryo development.
Gregor Mendel Institute of Molecular Plant Biology Austrian Academy of Sciences Vienna Austria
Institute of Science and Technology Austria Klosterneuburg Austria
Zobrazit více v PubMed
Figueiredo DD, Köhler CC. Auxin: a molecular trigger of seed development. Genes Dev. 2018;32:479–490. PubMed PMC
Mansfield SG, Briarty LG. Early embryogenesis in Arabidopsis thaliana 2. the developing embryo. Canadian Journal of Botany-Revue Canadienne De Botanique. 1991;69:461–476.
Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet. 2001;35:365–406. PubMed
Riechmann V, Ephrussi A. Axis formation during Drosophila oogenesis. Curr Opin Gen Dev. 2001;11:374–383. PubMed
Ray S, Golden T, Ray A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev Biol. 1995;180:365–369. PubMed
Prigge MJ, Wagner DR. The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell. 2001;13:1263–1280. PubMed PMC
Costa LM, et al. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science. 2014;344:168–172. PubMed
Möller BK, Weijers D. Auxin control of embryo patterning. Cold Spring Harbor Perspect Biol. 2009;1:a001545. PubMed PMC
Friml J, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. PubMed
Robert HS, et al. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol. 2013;23:2506–2512. PubMed
Brunoud G, et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012;482:103–106. PubMed
Liao C-Y, et al. Reporters for sensitive and quantitative measurement of auxin response. Nat Methods. 2015;12:207–210. PubMed PMC
Paciorek T, Friml J. Auxin signaling. Journal of Cell Science. 2006;119:1199–1202. PubMed
Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. PubMed
Stepanova AN, et al. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 2011;23:3961–3973. PubMed PMC
Mashiguchi K, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA. 2011;108:18512–18517. PubMed PMC
Won C, et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA. 2011;108:18518–18523. PubMed PMC
Stepanova AN, et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–191. PubMed
Jensen PJ, Hangarter RP, Estelle M. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol. 1998;116:455–462. PubMed PMC
Debeaujon I, et al. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell. 2003;15:2514–2531. PubMed PMC
Figueiredo DD, Batista RA, Roszak PJ, Köhler CC. Auxin production couples endosperm development to fertilization. Nature Plants. 2015 doi: 10.1038/nplants.2015.184. 15184. PubMed DOI
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler CC. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife. 2016;5:e20542. PubMed PMC
Blilou I, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. PubMed
Vieten A, et al. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development. 2005;132:4521–4531. PubMed
Weijers D, et al. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell. 2006;10:265–270. PubMed
Larsson E, Vivian-Smith A, Offringa R, Sundberg E. Auxin homeostasis in Arabidopsis ovules Is anther-dependent at maturation and changes dynamically upon fertilization. Front Plant Sci. 2017;8:315–14. PubMed PMC
Weijers D, et al. Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell. 2005;17:2517–2526. PubMed PMC
Wabnik K, Robert HS, Smith RS, Friml J. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr. Biol. 2013;23:2513–2518. PubMed
Prat T, et al. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet. 2018;14:e1007177. PubMed PMC
Gallavotti A, Yang Y, Schmidt RJ, Jackson DP. The relationship between auxin transport and maize branching. Plant Physiol. 2008;147:1913–1923. PubMed PMC
Zhang J, Peer WA. Auxin homeostasis: the DAO of catabolism. J Exp Bot. 2017:1–10. doi: 10.1093/jxb/erx221. PubMed DOI
Pencík A, et al. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J Exp Bot. 2018;69:2569–2579. PubMed PMC
The MADS-box protein SHATTERPROOF 2 regulates TAA1 expression in the gynoecium valve margins
Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus
An Essential Function for Auxin in Embryo Development
Auxin does not inhibit endocytosis of PIN1 and PIN2 auxin efflux carriers
Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis
Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization
CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana
The Nuts and Bolts of PIN Auxin Efflux Carriers