Maternal auxin supply contributes to early embryo patterning in Arabidopsis

. 2018 Aug ; 4 (8) : 548-553. [epub] 20180716

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30013211

Grantová podpora
282300 European Research Council - International

Odkazy

PubMed 30013211
PubMed Central PMC6076996
DOI 10.1038/s41477-018-0204-z
PII: 10.1038/s41477-018-0204-z
Knihovny.cz E-zdroje

The angiosperm seed is composed of three genetically distinct tissues: the diploid embryo that originates from the fertilized egg cell, the triploid endosperm that is produced from the fertilized central cell, and the maternal sporophytic integuments that develop into the seed coat1. At the onset of embryo development in Arabidopsis thaliana, the zygote divides asymmetrically, producing a small apical embryonic cell and a larger basal cell that connects the embryo to the maternal tissue2. The coordinated and synchronous development of the embryo and the surrounding integuments, and the alignment of their growth axes, suggest communication between maternal tissues and the embryo. In contrast to animals, however, where a network of maternal factors that direct embryo patterning have been identified3,4, only a few maternal mutations have been described to affect embryo development in plants5-7. Early embryo patterning in Arabidopsis requires accumulation of the phytohormone auxin in the apical cell by directed transport from the suspensor8-10. However, the origin of this auxin has remained obscure. Here we investigate the source of auxin for early embryogenesis and provide evidence that the mother plant coordinates seed development by supplying auxin to the early embryo from the integuments of the ovule. We show that auxin response increases in ovules after fertilization, due to upregulated auxin biosynthesis in the integuments, and this maternally produced auxin is required for correct embryo development.

Zobrazit více v PubMed

Figueiredo DD, Köhler CC. Auxin: a molecular trigger of seed development. Genes Dev. 2018;32:479–490. PubMed PMC

Mansfield SG, Briarty LG. Early embryogenesis in Arabidopsis thaliana 2. the developing embryo. Canadian Journal of Botany-Revue Canadienne De Botanique. 1991;69:461–476.

Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet. 2001;35:365–406. PubMed

Riechmann V, Ephrussi A. Axis formation during Drosophila oogenesis. Curr Opin Gen Dev. 2001;11:374–383. PubMed

Ray S, Golden T, Ray A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev Biol. 1995;180:365–369. PubMed

Prigge MJ, Wagner DR. The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell. 2001;13:1263–1280. PubMed PMC

Costa LM, et al. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science. 2014;344:168–172. PubMed

Möller BK, Weijers D. Auxin control of embryo patterning. Cold Spring Harbor Perspect Biol. 2009;1:a001545. PubMed PMC

Friml J, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. PubMed

Robert HS, et al. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol. 2013;23:2506–2512. PubMed

Brunoud G, et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012;482:103–106. PubMed

Liao C-Y, et al. Reporters for sensitive and quantitative measurement of auxin response. Nat Methods. 2015;12:207–210. PubMed PMC

Paciorek T, Friml J. Auxin signaling. Journal of Cell Science. 2006;119:1199–1202. PubMed

Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. PubMed

Stepanova AN, et al. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 2011;23:3961–3973. PubMed PMC

Mashiguchi K, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA. 2011;108:18512–18517. PubMed PMC

Won C, et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA. 2011;108:18518–18523. PubMed PMC

Stepanova AN, et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–191. PubMed

Jensen PJ, Hangarter RP, Estelle M. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol. 1998;116:455–462. PubMed PMC

Debeaujon I, et al. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell. 2003;15:2514–2531. PubMed PMC

Figueiredo DD, Batista RA, Roszak PJ, Köhler CC. Auxin production couples endosperm development to fertilization. Nature Plants. 2015 doi: 10.1038/nplants.2015.184. 15184. PubMed DOI

Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler CC. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife. 2016;5:e20542. PubMed PMC

Blilou I, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. PubMed

Vieten A, et al. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development. 2005;132:4521–4531. PubMed

Weijers D, et al. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell. 2006;10:265–270. PubMed

Larsson E, Vivian-Smith A, Offringa R, Sundberg E. Auxin homeostasis in Arabidopsis ovules Is anther-dependent at maturation and changes dynamically upon fertilization. Front Plant Sci. 2017;8:315–14. PubMed PMC

Weijers D, et al. Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell. 2005;17:2517–2526. PubMed PMC

Wabnik K, Robert HS, Smith RS, Friml J. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr. Biol. 2013;23:2513–2518. PubMed

Prat T, et al. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet. 2018;14:e1007177. PubMed PMC

Gallavotti A, Yang Y, Schmidt RJ, Jackson DP. The relationship between auxin transport and maize branching. Plant Physiol. 2008;147:1913–1923. PubMed PMC

Zhang J, Peer WA. Auxin homeostasis: the DAO of catabolism. J Exp Bot. 2017:1–10. doi: 10.1093/jxb/erx221. PubMed DOI

Pencík A, et al. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J Exp Bot. 2018;69:2569–2579. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The MADS-box protein SHATTERPROOF 2 regulates TAA1 expression in the gynoecium valve margins

. 2025 Jan 10 ; 38 (1) : 6. [epub] 20250110

Integrative phenotyping analyses reveal the relevance of the phyB-PIF4 pathway in Arabidopsis thaliana reproductive organs at high ambient temperature

. 2024 Jul 29 ; 24 (1) : 721. [epub] 20240729

The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein

. 2022 Jun 06 ; 23 (11) : . [epub] 20220606

Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus

. 2022 ; 13 () : 844292. [epub] 20220422

An Essential Function for Auxin in Embryo Development

. 2021 Apr 01 ; 13 (4) : . [epub] 20210401

Auxin does not inhibit endocytosis of PIN1 and PIN2 auxin efflux carriers

. 2021 Mar 20 ; 186 (2) : 808-11. [epub] 20210320

Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis

. 2021 Feb 02 ; 72 (2) : 320-340.

Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization

. 2020 Jul 14 ; 11 (1) : 3508. [epub] 20200714

CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana

. 2019 Dec 04 ; 20 (24) : . [epub] 20191204

The Nuts and Bolts of PIN Auxin Efflux Carriers

. 2019 ; 10 () : 985. [epub] 20190731

Molecular Communication for Coordinated Seed and Fruit Development: What Can We Learn from Auxin and Sugars?

. 2019 Feb 21 ; 20 (4) : . [epub] 20190221

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...