The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
V 690
Austrian Science Fund FWF - Austria
PubMed
35683031
PubMed Central
PMC9181416
DOI
10.3390/ijms23116352
PII: ijms23116352
Knihovny.cz E-zdroje
- Klíčová slova
- PIN1, dimerization, hydrophilic hoop, intrinsic disorder, subcellular trafficking,
- MeSH
- Arabidopsis * metabolismus MeSH
- biologický transport MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové transportní proteiny genetika metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- vnitřně neuspořádané proteiny * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- PIN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku * MeSH
- vnitřně neuspořádané proteiny * MeSH
Much of plant development depends on cell-to-cell redistribution of the plant hormone auxin, which is facilitated by the plasma membrane (PM) localized PIN FORMED (PIN) proteins. Auxin export activity, developmental roles, subcellular trafficking, and polarity of PINs have been well studied, but their structure remains elusive besides a rough outline that they contain two groups of 5 alpha-helices connected by a large hydrophilic loop (HL). Here, we focus on the PIN1 HL as we could produce it in sufficient quantities for biochemical investigations to provide insights into its secondary structure. Circular dichroism (CD) studies revealed its nature as an intrinsically disordered protein (IDP), manifested by the increase of structure content upon thermal melting. Consistent with IDPs serving as interaction platforms, PIN1 loops homodimerize. PIN1 HL cytoplasmic overexpression in Arabidopsis disrupts early endocytic trafficking of PIN1 and PIN2 and causes defects in the cotyledon vasculature formation. In summary, we demonstrate that PIN1 HL has an intrinsically disordered nature, which must be considered to gain further structural insights. Some secondary structures may form transiently during pairing with known and yet-to-be-discovered interactors.
Department of Applied Genetics and Cell Biology Muthgasse 18 1190 Vienna Austria
Institute of Science and Technology 3400 Klosterneuburg Austria
VIB UGent Center for Plant Systems Technologiepark 71 9052 Ghent Belgium
Zobrazit více v PubMed
Paque S., Weijers D. Q&A: Auxin: The Plant Molecule That Influences Almost Anything. BMC Biol. 2016;14:67. doi: 10.1186/s12915-016-0291-0. PubMed DOI PMC
Robert H.S., Park C., Gutièrrez C.L., Wójcikowska B., Pěnčík A., Novák O., Chen J., Grunewald W., Dresselhaus T., Friml J., et al. Maternal Auxin Supply Contributes to Early Embryo Patterning in Arabidopsis. Nat. Plants. 2018;4:548–553. doi: 10.1038/s41477-018-0204-z. PubMed DOI PMC
Vanneste S., Friml J. Auxin: A Trigger for Change in Plant Development. Cell. 2009;136:1005–1016. doi: 10.1016/j.cell.2009.03.001. PubMed DOI
Petrášek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertová D., Wiśniewska J., Tadele Z., Kubeš M., Čovanová M., et al. PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Science. 2006;312:914–918. doi: 10.1126/science.1123542. PubMed DOI
Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., Palme K. Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue. Science. 1998;282:2226–2230. doi: 10.1126/science.282.5397.2226. PubMed DOI
Wisniewska J., Xu J., Seifartová D., Brewer P.B., Růžička K., Blilou L., Rouquié D., Benková E., Scheres B., Friml J. Polar PIN Localization Directs Auxin Flow in Plants. Science. 2006;312:883. doi: 10.1126/science.1121356. PubMed DOI
Michniewicz M., Zago M.K., Abas L., Weijers D., Schweighofer A., Meskiene I., Heisler M.G., Ohno C., Zhang J., Huang F., et al. Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux. Cell. 2007;130:1044–1056. doi: 10.1016/j.cell.2007.07.033. PubMed DOI
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-Dependent Auxin Gradients Establish the Apical-Basal Axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI
Sauer M., Balla J., Luschnig C., Wiśniewska J., Reinöhl V., Friml J., Benková E. Canalization of Auxin Flow by Aux/IAA-ARF-Dependent Feedback Regulation of PIN Polarity. Genes Dev. 2006;20:2902–2911. doi: 10.1101/gad.390806. PubMed DOI PMC
Nodzyński T., Vanneste S., Zwiewka M., Pernisová M., Hejátko J., Friml J. Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components. Mol. Plant. 2016;9:1504–1519. doi: 10.1016/j.molp.2016.08.010. PubMed DOI PMC
Křeček P., Skůpa P., Libus J., Naramoto S., Tejos R., Friml J., Zažímalová E. The PIN-FORMED (PIN) Protein Family of Auxin Transporters. Genome Biol. 2009;10:249. doi: 10.1186/gb-2009-10-12-249. PubMed DOI PMC
Zwiewka M., Bilanovičová V., Seifu Y.W., Nodzyński T. The Nuts and Bolts of PIN Auxin Efflux Carriers. Front. Plant Sci. 2019;10:985. doi: 10.3389/fpls.2019.00985. PubMed DOI PMC
Narasimhan M., Johnson A., Prizak R., Kaufmann W.A., Tan S., Casillas-Pérez B., Friml J. Evolutionarily Unique Mechanistic Framework of Clathrin-Mediated Endocytosis in Plants. eLife. 2020;9:e52067. doi: 10.7554/eLife.52067. PubMed DOI PMC
Nodzyński T., Vanneste S., Friml J. Endocytosis in Plants. Springer; Berlin/Heidelberg, Germany: 2012. Endocytic Trafficking of PIN Proteins and Auxin Transport.
Sancho-Andrés G., Soriano-Ortega E., Gao C., Bernabé-Orts J.M., Narasimhan M., Müller A.O., Tejos R., Jiang L., Friml J., Aniento F., et al. Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier. Plant Physiol. 2016;171:1965–1982. doi: 10.1104/pp.16.00373. PubMed DOI PMC
Zhang J., Nodzyński T., Pěnčík A., Rolčík J., Friml J. PIN Phosphorylation Is Sufficient to Mediate PIN Polarity and Direct Auxin Transport. Proc. Natl. Acad. Sci. USA. 2010;107:918–922. doi: 10.1073/pnas.0909460107. PubMed DOI PMC
Huang F., Zago M.K., Abas L., van Marion A., Galván-Ampudia C.S., Offringa R. Phosphorylation of Conserved PIN Motifs Directs Arabidopsis PIN1 Polarity and Auxin Transport. Plant Cell. 2010;22:1129–1142. doi: 10.1105/tpc.109.072678. PubMed DOI PMC
Abas L., Benjamins R., Malenica N., Paciorek T.T., Wiřniewska J., Moulinier-Anzola J.C., Sieberer T., Friml J., Luschnig C. Intracellular Trafficking and Proteolysis of the Arabidopsis Auxin-Efflux Facilitator PIN2 Are Involved in Root Gravitropism. Nat. Cell Biol. 2006;8:249–256. doi: 10.1038/ncb1369. PubMed DOI
Leitner J., Petrášek J., Tomanov K., Retzer K., Pařezová M., Korbei B., Bachmair A., Zažímalová E., Luschnig C. Lysine63-Linked Ubiquitylation of PIN2 Auxin Carrier Protein Governs Hormonally Controlled Adaptation of Arabidopsis Root Growth. Proc. Natl. Acad. Sci. USA. 2012;109:8322–8327. doi: 10.1073/pnas.1200824109. PubMed DOI PMC
Friml J., Yang X., Michniewicz M., Weijers D., Quint A., Tietz O., Benjamins R., Ouwerkerk P.B.F., Ljung K., Sandberg G., et al. A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux. Science. 2004;306:862–865. doi: 10.1126/science.1100618. PubMed DOI
Zourelidou M., Müller I., Willige B.C., Nill C., Jikumaru Y., Li H., Schwechheimer C. The Polarly Localized D6 PROTEIN KINASE Is Required for Efficient Auxin Transport in Arabidopsis Thaliana. Development. 2009;136:627–636. doi: 10.1242/dev.028365. PubMed DOI
Zourelidou M., Absmanner B., Weller B., Barbosa I.C.R., Willige B.C., Fastner A., Streit V., Port S.A., Colcombet J., de la Fuente van Bentem S., et al. Auxin Efflux by PIN-FORMED Proteins Is Activated by Two Different Protein Kinases, D6 PROTEIN KINASE and PINOID. eLife. 2014;3:e02860. doi: 10.7554/eLife.02860. PubMed DOI PMC
Barbosa I.C.R., Hammes U.Z., Schwechheimer C. Activation and Polarity Control of PIN-FORMED Auxin Transporters by Phosphorylation. Trends Plant Sci. 2018;23:523–538. doi: 10.1016/j.tplants.2018.03.009. PubMed DOI
Kleine-Vehn J., Huang F., Naramoto S., Zhang J., Michniewicz M., Offringa R., Friml J. PIN Auxin Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated Recruitment into GNOM-Independent Trafficking in Arabidopsis. Plant Cell. 2009;21:3839–3849. doi: 10.1105/tpc.109.071639. PubMed DOI PMC
Weller B., Zourelidou M., Frank L., Barbosa I.C.R., Fastner A., Richter S., Jürgens G., Hammes U.Z., Schwechheimer C. Dynamic PIN-FORMED Auxin Efflux Carrier Phosphorylation at the Plasma Membrane Controls Auxin Efflux-Dependent Growth. Proc. Natl. Acad. Sci. USA. 2017;114:E887–E896. doi: 10.1073/pnas.1614380114. PubMed DOI PMC
Xi W., Gong X., Yang Q., Yu H., Liou Y.C. Pin1At Regulates PIN1 Polar Localization and Root Gravitropism. Nat. Commun. 2016;7:10430. doi: 10.1038/ncomms10430. PubMed DOI PMC
Johnson L.N., Lewis R.J. Structural Basis for Control by Phosphorylation. Chem. Rev. 2001;101:2209–2242. doi: 10.1021/cr000225s. PubMed DOI
Orlicky S., Tang X., Willems A., Tyers M., Sicheri F. Structural Basis for Phosphodependent Substrate Selection and Orientation by the SCFCdc4 Ubiquitin Ligase. Cell. 2003;112:243–256. doi: 10.1016/S0092-8674(03)00034-5. PubMed DOI
Kleine-Vehn J., Wabnik K., Martinière A., Łangowski Ł., Willig K., Naramoto S., Leitner J., Tanaka H., Jakobs S., Robert S., et al. Recycling, Clustering, and Endocytosis Jointly Maintain PIN Auxin Carrier Polarity at the Plasma Membrane. Mol. Syst. Biol. 2011;7:540. doi: 10.1038/msb.2011.72. PubMed DOI PMC
Li H., von Wangenheim D., Zhang X., Tan S., Darwish-Miranda N., Naramoto S., Wabnik K., de Rycke R., Kaufmann W.A., Gütl D., et al. Cellular Requirements for PIN Polar Cargo Clustering in Arabidopsis Thaliana. New Phytol. 2021;229:351–369. doi: 10.1111/nph.16887. PubMed DOI PMC
Retzer K., Lacek J., Skokan R., del Genio C.I., Vosolsobě S., Laňková M., Malínská K., Konstantinova N., Zažímalová E., Napier R.M., et al. Evolutionary Conserved Cysteines Function as Cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. Int. J. Mol. Sci. 2017;18:2274. doi: 10.3390/ijms18112274. PubMed DOI PMC
Abas L., Kolb M., Stadlmann J., Janacek D.P., Lukic K., Schwechheimer C., Sazanov L.A., Mach L., Friml J., Hammes U.Z. Naphthylphthalamic Acid Associates with and Inhibits PIN Auxin Transporters. Proc. Natl. Acad. Sci. USA. 2020;118:e2020857118. doi: 10.1073/pnas.2020857118. PubMed DOI PMC
Feraru E., Feraru M.I., Kleine-Vehn J., Martinière A., Mouille G., Vanneste S., Vernhettes S., Runions J., Friml J. PIN Polarity Maintenance by the Cell Wall in Arabidopsis. Curr. Biol. 2011;21:338–343. doi: 10.1016/j.cub.2011.01.036. PubMed DOI
Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Greenfield N.J. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat. Protoc. 2007;1:2876–2890. doi: 10.1038/nprot.2006.202. PubMed DOI PMC
Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J.E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC
Pauling L., Corey R.B., Branson H.R. The Structure of Proteins; Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain. Proc. Natl. Acad. Sci. USA. 1951;37:205–211. doi: 10.1073/pnas.37.4.205. PubMed DOI PMC
Chou P.Y., Fasman G.D. Prediction of Protein Conformation. Biochemistry. 1974;13:222–245. doi: 10.1021/bi00699a002. PubMed DOI
Uversky V.N. Intrinsically Disordered Proteins and Their Environment: Effects of Strong Denaturants, Temperature, PH, Counter Ions, Membranes, Binding Partners, Osmolytes, and Macromolecular Crowding. Protein J. 2009;28:305–325. doi: 10.1007/s10930-009-9201-4. PubMed DOI
Tompa P., Schad E., Tantos A., Kalmar L. Intrinsically Disordered Proteins: Emerging Interaction Specialists. Curr. Opin. Struct. Biol. 2015;35:49–59. doi: 10.1016/j.sbi.2015.08.009. PubMed DOI
Petrasek J., Hoyerova K., Motyka V., Hejatko J., Dobrev P., Kaminek M., Vankova R. Auxins and Cytokinins in Plant Development 2018. Int. J. Mol. Sci. 2019;20:909. doi: 10.3390/ijms20040909. PubMed DOI PMC
Blakeslee J.J., Bandyopadhyay A., Ok R.L., Mravec J., Titapiwatanakun B., Sauer M., Makam S.N., Cheng Y., Bouchard R., Adamec J., et al. Interactions among PIN-FORMED and P-Glycoprotein Auxin Transporters in Arabidopsis. Plant Cell. 2007;19:131–147. doi: 10.1105/tpc.106.040782. PubMed DOI PMC
Rojas-Pierce M., Titapiwatanakun B., Sohn E.J., Fang F., Larive C.K., Blakeslee J., Cheng Y., Cuttler S., Peer W.A., Murphy A.S., et al. Arabidopsis P-Glycoprotein19 Participates in the Inhibition of Gravitropism by Gravacin. Chem. Biol. 2007;14:1366–1376. doi: 10.1016/j.chembiol.2007.10.014. PubMed DOI
Uversky V.N. Functional Roles of Transiently and Intrinsically Disordered Regions within Proteins. FEBS J. 2015;282:1182–1189. doi: 10.1111/febs.13202. PubMed DOI
Jelínková A., Malínská K., Simon S., Kleine-Vehn J., Pařezová M., Pejchar P., Kubeš M., Martinec J., Friml J., Zažímalová E., et al. Probing Plant Membranes with FM Dyes: Tracking, Dragging or Blocking? Plant J. 2010;61:883–892. doi: 10.1111/j.1365-313X.2009.04102.x. PubMed DOI
Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., Delbarre A., Ueda T., Nakano A., Jürgens G. The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth. Cell. 2003;112:219–230. doi: 10.1016/S0092-8674(03)00003-5. PubMed DOI
Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., Friml J. Differential Degradation of PIN2 Auxin Efflux Carrier by Retromer-Dependent Vacuolar Targeting. Proc. Natl. Acad. Sci. USA. 2008;105:17812–17817. doi: 10.1073/pnas.0808073105. PubMed DOI PMC
Kuhn B.M., Nodzyński T., Errafi S., Bucher R., Gupta S., Aryal B., Dobrev P., Bigler L., Geisler M., Zažímalová E., et al. Flavonol-Induced Changes in PIN2 Polarity and Auxin Transport in the Arabidopsis Thaliana Rol1-2 Mutant Require Phosphatase Activity. Sci. Rep. 2017;7:41906. doi: 10.1038/srep41906. PubMed DOI PMC
Scarpella E., Marcos D., Friml J., Berleth T. Control of Leaf Vascular Patterning by Polar Auxin Transport. Genes Dev. 2006;20:1015–1027. doi: 10.1101/gad.1402406. PubMed DOI PMC
Luschnig C., Gaxiola R.A., Grisafi P., Fink G.R. EIR1, a Root-Specific Protein Involved in Auxin Transport, Is Required for Gravitropism in Arabidopsis Thaliana. Genes Dev. 1998;12:2175–2187. doi: 10.1101/gad.12.14.2175. PubMed DOI PMC
Hegyi H., Gerstein M. The Relationship between Protein Structure and Function: A Comprehensive Survey with Application to the Yeast Genome. J. Mol. Biol. 1999;288:147–164. doi: 10.1006/jmbi.1999.2661. PubMed DOI
Dunker A.K., Brown C.J., Lawson J.D., Iakoucheva L.M., Obradović Z. Intrinsic Disorder and Protein Function. Biochemistry. 2002;41:6573–6582. doi: 10.1021/bi012159+. PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Dass R., Mulder F.A.A., Nielsen J.T. ODiNPred: Comprehensive Prediction of Protein Order and Disorder. Sci. Rep. 2020;10:14780. doi: 10.1038/s41598-020-71716-1. PubMed DOI PMC
Paciorek T., Zažímalová E., Ruthardt N., Petrášek J., Stierhof Y.D., Kleine-Vehn J., Morris D.A., Emans N., Jürgens G., Geldner N., et al. Auxin Inhibits Endocytosis and Promotes Its Own Efflux from Cells. Nature. 2005;435:1251–1256. doi: 10.1038/nature03633. PubMed DOI
Permyakov S.E., Permyakov E.A., Uversky V.N. Intrinsically Disordered Caldesmon Binds Calmodulin via the “Buttons on a String” Mechanism. PeerJ. 2015;2015:1265. doi: 10.7717/peerj.1265. PubMed DOI PMC
Blondelle S.E., Forood B., Houghten R.A., Pérez-Payé E. Secondary Structure Induction in Aqueous vs Membrane-like Environments. Biopolymers. 1997;42:489–498. doi: 10.1002/(SICI)1097-0282(19971005)42:4<489::AID-BIP11>3.0.CO;2-B. PubMed DOI
Joerger A.C., Fersht A.R. The Tumor Suppressor P53: From Structures to Drug Discovery. Cold Spring Harb. Perspect. Biol. 2010;2:a000919. doi: 10.1101/cshperspect.a000919. PubMed DOI PMC
Alberti S., Gladfelter A., Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell. 2019;176:419–434. doi: 10.1016/j.cell.2018.12.035. PubMed DOI PMC
Franzmann T.M., Alberti S. Prion-like Low-Complexity Sequences: Key Regulators of Protein Solubility and Phase Behavior. J. Biol. Chem. 2019;294:7128–7136. doi: 10.1074/jbc.TM118.001190. PubMed DOI PMC
Case L.B., Ditlev J.A., Rosen M.K. Regulation of Transmembrane Signaling by Phase Separation. Annu. Rev. Biophys. 2019;48:465–494. doi: 10.1146/annurev-biophys-052118-115534. PubMed DOI PMC
Mayer B.J., Yu J. Protein Clusters in Phosphotyrosine Signal Transduction. J. Mol. Biol. 2018;430:4547–4556. doi: 10.1016/j.jmb.2018.05.040. PubMed DOI PMC
Bailly A., Sovero V., Vincenzetti V., Santelia D., Bartnik D., Koenig B.W., Mancuso S., Martinoia E., Geisler M. Modulation of P-Glycoproteins by Auxin Transport Inhibitors Is Mediated by Interaction with Immunophilins. J. Biol. Chem. 2008;283:21817–21826. doi: 10.1074/jbc.M709655200. PubMed DOI
Mravec J., Skůpa P., Bailly A., Hoyerová K., Křeček P., Bielach A., Petrášek J., Zhang J., Gaykova V., Stierhof Y.D., et al. Subcellular Homeostasis of Phytohormone Auxin Is Mediated by the ER-Localized PIN5 Transporter. Nature. 2009;459:1136–1140. doi: 10.1038/nature08066. PubMed DOI
Robinson M.S. Forty Years of Clathrin-Coated Vesicles. Traffic. 2015;16:1210–1238. doi: 10.1111/tra.12335. PubMed DOI
Hajný J., Prát T., Rydza N., Rodriguez L., Tan S., Verstraeten I., Domjan D., Mazur E., Smakowska-Luzan E., Smet W., et al. Receptor Kinase Module Targets PIN-Dependent Auxin Transport during Canalization. Science. 2020;370:550–557. doi: 10.1126/science.aba3178. PubMed DOI PMC
Naramoto S., Nodzyński T., Dainobu T., Takatsuka H., Okada T., Friml J., Fukuda H. VAN4 Encodes a Putative TRS120 That Is Required for Normal Cell Growth and Vein Development in Arabidopsis. Plant Cell Physiol. 2014;55:750–763. doi: 10.1093/pcp/pcu012. PubMed DOI
Titapiwatanakun B., Blakeslee J.J., Bandyopadhyay A., Yang H., Mravec J., Sauer M., Cheng Y., Adamec J., Nagashima A., Geisler M., et al. ABCB19/PGP19 Stabilises PIN1 in Membrane Microdomains in Arabidopsis. Plant J. 2009;57:27–44. doi: 10.1111/j.1365-313X.2008.03668.x. PubMed DOI
Xu J., Scheres B. Dissection of Arabidopsis ADP-Ribosylation Factor 1 Function in Epidermal Cell Polarity. Plant Cell. 2005;17:525–536. doi: 10.1105/tpc.104.028449. PubMed DOI PMC
Cutler S.R., Ehrhardt D.W., Griffitts J.S., Somerville C.R. Random GFP::CDNA Fusions Enable Visualization of Subcellular Structures in Cells of Arabidopsis at a High Frequency. Proc. Natl. Acad. Sci. USA. 2000;97:3718–3723. doi: 10.1073/pnas.97.7.3718. PubMed DOI PMC
Dhonukshe P., Aniento F., Hwang I., Robinson D.G., Mravec J., Stierhof Y.D., Friml J. Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis. Curr. Biol. 2007;17:520–527. doi: 10.1016/j.cub.2007.01.052. PubMed DOI
Tanaka H., Kitakura S., de Rycke R., De Groodt R., Friml J. Fluorescence Imaging-Based Screen Identifies ARF GEF Component of Early Endosomal Trafficking. Curr. Biol. 2009;19:391–397. doi: 10.1016/j.cub.2009.01.057. PubMed DOI
Eshed Y., Baum S.F., Perea J.V., Bowman J.L. Establishment of Polarity in Lateral Organs of Plants. Curr. Biol. 2001;11:1251–1260. doi: 10.1016/S0960-9822(01)00392-X. PubMed DOI
Lancaster A.K., Nutter-Upham A., Lindquist S., King O.D. PLAAC: A Web and Command-Line Application to Identify Proteins with Prion-like Amino Acid Composition. Bioinformatics. 2014;30:2501–2502. doi: 10.1093/bioinformatics/btu310. PubMed DOI PMC
Golovanov A.P., Hautbergue G.M., Wilson S.A., Lian L.Y. A Simple Method for Improving Protein Solubility and Long-Term Stability. J. Am. Chem. Soc. 2004;126:8933–8939. doi: 10.1021/ja049297h. PubMed DOI
Zhao H., Brautigam C.A., Ghirlando R., Schuck P. Overview of Current Methods in Sedimentation Velocity and Sedimentation Equilibrium Analytical Ultracentrifugation. Curr. Protoc. Protein Sci. 2013;71:20.12.1–20.12.49. doi: 10.1002/0471140864.ps2012s71. PubMed DOI PMC
Schuck P. Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Mravec J., Petrášek J., Li N., Boeren S., Karlova R., Kitakura S., Pařezová M., Naramoto S., Nodzyński T., Dhonukshe P., et al. Cell Plate Restricted Association of DRP1A and PIN Proteins Is Required for Cell Polarity Establishment in Arabidopsis. Curr. Biol. 2011;21:1055–1060. doi: 10.1016/j.cub.2011.05.018. PubMed DOI
Degtjarik O., Dopitova R., Puehringer S., Nejedla E., Kuty M., Weiss M.S., Hejatko J., Janda L., Kuta Smatanova I. Cloning, Expression, Purification, Crystallization and Preliminary X-Ray Diffraction Analysis of AHP2, a Signal Transmitter Protein from Arabidopsis Thaliana. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013;69:158–161. doi: 10.1107/S174430911205186X. PubMed DOI PMC
Skokan R., Medvecká E., Viaene T., Vosolsobě S., Zwiewka M., Müller K., Skůpa P., Karady M., Zhang Y., Janacek D.P., et al. PIN-Driven Auxin Transport Emerged Early in Streptophyte Evolution. Nat. Plants. 2019;5:1114–1119. doi: 10.1038/s41477-019-0542-5. PubMed DOI
Abràmoff M.D., Magalhães P.J., Ram S.J. Image Processing with ImageJ. Biophotonics Int. 2004;11:36–42.