Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of AHP2, a signal transmitter protein from Arabidopsis thaliana
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
J 3173
Austrian Science Fund FWF - Austria
PubMed
23385758
PubMed Central
PMC3564619
DOI
10.1107/s174430911205186x
PII: S174430911205186X
Knihovny.cz E-zdroje
- Klíčová slova
- AHP2, Arabidopsis thaliana, histidine phosphotransfer proteins, multi-step phosphorelay,
- MeSH
- Arabidopsis metabolismus MeSH
- difrakce rentgenového záření MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fosfotransferasy chemie izolace a purifikace MeSH
- krystalizace MeSH
- proteiny huseníčku chemie izolace a purifikace MeSH
- signální transdukce * MeSH
- tranzitní teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AHP2 protein, Arabidopsis MeSH Prohlížeč
- fosfotransferasy MeSH
- proteiny huseníčku MeSH
Histidine-containing phosphotransfer proteins from Arabidopsis thaliana (AHP1-5) act as intermediates between sensor histidine kinases and response regulators in a signalling system called multi-step phosphorelay (MSP). AHP proteins mediate and potentially integrate various MSP-based signalling pathways (e.g. cytokinin or osmosensing). However, structural information about AHP proteins and their importance in MSP signalling is still lacking. To obtain a deeper insight into the structural basis of AHP-mediated signal transduction, the three-dimensional structure of AHP2 was determined. The AHP2 coding sequence was cloned into pRSET B expression vector, enabling production of AHP2 fused to an N-terminal His tag. AHP2 was expressed in soluble form in Escherichia coli strain BL21 (DE3) pLysS and then purified to homogeneity using metal chelate affinity chromatography and anion-exchange chromatography under reducing conditions. Successful crystallization in a buffer which was optimized for thermal stability yielded crystals that diffracted to 2.5 Å resolution.
Zobrazit více v PubMed
Argyros, R. D., Mathews, D. E., Chiang, Y.-H., Palmer, C. M., Thibault, D. M., Etheridge, N., Argyros, D. A., Mason, M. G., Kieber, J. J. & Schaller, G. E. (2008). Plant Cell, 20, 2102–2116. PubMed PMC
Bradford, M. M. (1976). Anal. Biochem. 72, 248–254. PubMed
Deng, Y., Dong, H., Mu, J., Ren, B., Zheng, B., Ji, Z., Yang, W.-C., Liang, Y. & Zuo, J. (2010). Plant Cell, 22, 1232–1248. PubMed PMC
Desikan, R., Horák, J., Chaban, C., Mira-Rodado, V., Witthöft, J., Elgass, K., Grefen, C., Cheung, M.-K., Meixner, A. J., Hooley, R., Neill, S. J., Hancock, J. T. & Harter, K. (2008). PLoS One, 3, e2491. PubMed PMC
Diederichs, K. & Karplus, P. A. (1997). Nature Struct. Biol. 4, 269–275. PubMed
Dortay, H., Mehnert, N., Bürkle, L., Schmülling, T. & Heyl, A. (2006). FEBS J. 273, 4631–4644. PubMed
Ericsson, U. B., Hallberg, B. M., DeTitta, G. T., Dekker, N. & Nordlund, P. (2006). Anal. Biochem. 357, 289–298. PubMed
Evans, P. (2006). Acta Cryst. D62, 72–82. PubMed
Gamble, R. L., Coonfield, M. L. & Schaller, G. E. (1998). Proc. Natl Acad. Sci. USA, 95, 7825–7829. PubMed PMC
Gamble, R. L., Qu, X. & Schaller, G. E. (2002). Plant Physiol. 128, 1428–1438. PubMed PMC
Hall, B., Shakeel, S., Amir, M., Ul Haq, N., Qu, X. & Schaller, G. E. (2012). Plant Physiol. 159, 682–695. PubMed PMC
Hejátko, J., Pernisová, M., Eneva, T., Palme, K. & Brzobohatý, B. (2003). Mol. Genet. Genomics, 269, 443–453. PubMed
Hejátko, J., Ryu, H., Kim, G.-T., Dobešová, R., Choi, S., Choi, S. M., Souček, P., Horák, J., Pekárová, B., Palme, K., Brzobohatý, B. & Hwang, I. (2009). Plant Cell, 21, 2008–2021. PubMed PMC
Higuchi, M., Pischke, M. S., Mähönen, A. P., Miyawaki, K., Hashimoto, Y., Seki, M., Kobayashi, M., Shinozaki, K., Kato, T., Tabata, S., Helariutta, Y., Sussman, M. R. & Kakimoto, T. (2004). Proc. Natl Acad. Sci. USA, 101, 8821–8826. PubMed PMC
Horák, J., Janda, L., Pekárová, B. & Hejátko, J. (2011). Curr. Protein Pept. Sci. 12, 126–136. PubMed
Hutchison, C. E., Li, J., Argueso, C., Gonzalez, M., Lee, E., Lewis, M. W., Maxwell, B. B., Perdue, T. D., Schaller, G. E., Alonso, J. M., Ecker, J. R. & Kieber, J. J. (2006). Plant Cell, 18, 3073–3087. PubMed PMC
Iwama, A., Yamashino, T., Tanaka, Y., Sakakibara, H., Kakimoto, T., Sato, S., Kato, T., Tabata, S., Nagatani, A. & Mizuno, T. (2007). Plant Cell Physiol. 48, 375–380. PubMed
Kabsch, W. (2010). Acta Cryst. D66, 125–132. PubMed PMC
Kakimoto, T. (1996). Science, 274, 982–985. PubMed
Krug, M., Weiss, M. S., Heinemann, U. & Mueller, U. (2012). J. Appl. Cryst. 45, 568–572.
Mähönen, A. P., Bishopp, A., Higuchi, M., Nieminen, K. M., Kinoshita, K., Törmäkangas, K., Ikeda, Y., Oka, A., Kakimoto, T. & Helariutta, Y. (2006). Science, 311, 94–98. PubMed
Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497. PubMed
Miyata, S., Urao, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1998). FEBS Lett. 437, 11–14. PubMed
Moussatche, P. & Klee, H. J. (2004). J. Biol. Chem. 279, 48734–48741. PubMed
Mueller, U., Darowski, N., Fuchs, M. R., Förster, R., Hellmig, M., Paithankar, K. S., Pühringer, S., Steffien, M., Zocher, G. & Weiss, M. S. (2012). J. Synchrotron Rad. 19, 442–449. PubMed PMC
Nakamura, A., Kakimoto, T., Imamura, A., Suzuki, T., Ueguchi, C. & Mizuno, T. (1999). Biosci. Biotechnol. Biochem. 63, 1627–1630. PubMed
Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S. & Ueguchi, C. (2004). Plant Cell, 16, 1365–1377. PubMed PMC
Pekárová, B., Klumpler, T., Třísková, O., Horák, J., Jansen, S., Dopitová, R., Borkovcová, P., Papoušková, V., Nejedlá, E., Sklenář, V., Marek, J., Zídek, L., Hejátko, J. & Janda, L. (2011). Plant J. 67, 827–839. PubMed
Pischke, M. S., Jones, L. G., Otsuga, D., Fernandez, D. E., Drews, G. N. & Sussman, M. R. (2002). Proc. Natl Acad. Sci. USA, 99, 15800–15805. PubMed PMC
Riefler, M., Novak, O., Strnad, M. & Schmülling, T. (2006). Plant Cell, 18, 40–54. PubMed PMC
Schaller, G. E., Kieber, J. J. & Shiu, S.-H. (2008). Arabidopsis Book, 6, e0112. PubMed PMC
Stock, A. M., Robinson, V. L. & Goudreau, P. N. (2000). Annu. Rev. Biochem. 69, 183–215. PubMed
Suzuki, T., Imamura, A., Ueguchi, C. & Mizuno, T. (1998). Plant Cell Physiol. 39, 1258–1268. PubMed
Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H. & Mizuno, T. (2001). Plant Cell Physiol. 42, 107–113. PubMed
Suzuki, T., Sakurai, K., Imamura, A., Nakamura, A., Ueguchi, C. & Mizuno, T. (2000). Biosci. Biotechnol. Biochem. 64, 2486–2489. PubMed
To, J. P. C., Haberer, G., Ferreira, F. J., Deruère, J., Mason, M. G., Schaller, G. E., Alonso, J. M., Ecker, J. R. & Kieber, J. J. (2004). Plant Cell, 16, 658–671. PubMed PMC
To, J. P. C. & Kieber, J. J. (2008). Trends Plant Sci. 13, 85–92. PubMed
Tran, L.-S. P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Proc. Natl Acad. Sci. USA, 104, 20623–20628. PubMed PMC
Urao, T., Miyata, S., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2000). FEBS Lett. 478, 227–232. PubMed
Wang, W., Hall, A. E., O’Malley, R. & Bleecker, A. B. (2003). Proc. Natl Acad. Sci. USA, 100, 352–357. PubMed
Weiss, M. S. & Hilgenfeld, R. (1997). J. Appl. Cryst. 30, 203–205.
Weiss, M. S., Metzner, H. J. & Hilgenfeld, R. (1998). FEBS Lett. 243, 291–296. PubMed
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed