CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana

. 2019 Dec 04 ; 20 (24) : . [epub] 20191204

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31817249

The fine tuning of hormone (e.g., auxin and gibberellin) levels and hormone signaling is required for maintaining normal embryogenesis. Embryo polarity, for example, is ensured by the directional movement of auxin that is controlled by various types of auxin transporters. Here, we present pieces of evidence for the auxin-gibberellic acid (GA) hormonal crosstalk during embryo development and the regulatory role of the Arabidopsis thaliana Calcium-Dependent Protein Kinase-Related Kinase 5 (AtCRK5) in this regard. It is pointed out that the embryogenesis of the Atcrk5-1 mutant is delayed in comparison to the wild type. This delay is accompanied with a decrease in the levels of GA and auxin, as well as the abundance of the polar auxin transport (PAT) proteins PIN1, PIN4, and PIN7 in the mutant embryos. We have previously showed that AtCRK5 can regulate the PIN2 and PIN3 proteins either directly by phosphorylation or indirectly affecting the GA level during the root gravitropic and hypocotyl hook bending responses. In this manuscript, we provide evidence that the AtCRK5 protein kinase can in vitro phosphorylate the hydrophilic loops of additional PIN proteins that are important for embryogenesis. We propose that AtCRK5 can govern embryo development in Arabidopsis through the fine tuning of auxin-GA level and the accumulation of certain polar auxin transport proteins.

Zobrazit více v PubMed

Mayer U., Buttner G., Jurgens G. Apical-basal pattern formation in the Arabidopsis embryo: Studies on the role of the gnom gene. Development. 1993;117:149–162.

Ten Hove C.A., Lu K.-J., Weijers D. Building a plant: Cell fate specification in the early Arabidopsis embryo. Development. 2015;142:420–430. doi: 10.1242/dev.111500. PubMed DOI

Hu Y., Zhou L., Huang M., He X., Yang Y., Liu X., Li Y., Hou X. Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nat. Plants. 2018;4:289–298. doi: 10.1038/s41477-018-0143-8. PubMed DOI

Locascio A., Roig-Villanova I., Bernardi J., Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: A focus on auxin. Front. Plant Sci. 2014;5:412. doi: 10.3389/fpls.2014.00412. PubMed DOI PMC

Teale W.D., Paponov I.A., Palme K. Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006;7:847–859. doi: 10.1038/nrm2020. PubMed DOI

Vanneste S., Friml J. Auxin: A trigger for change in plant development. Cell. 2009;136:1005–1016. doi: 10.1016/j.cell.2009.03.001. PubMed DOI

Vanstraelen M., Benkova E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 2012;28:463–487. doi: 10.1146/annurev-cellbio-101011-155741. PubMed DOI

Zádnikova P., Smet D., Zhu Q., Van der Straeten D., Benková E. Strategies of seedlings to overcome their sessile nature: Auxin in mobility control. Front. Plant Sci. 2015;6:218. doi: 10.3389/fpls.2015.00218. PubMed DOI PMC

Hamann T., Benkova E., Baurle I., Kientz M., Jurgens G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 2002;16:1610–1615. doi: 10.1101/gad.229402. PubMed DOI PMC

Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI

Jenik P.D., Barton M.K. Surge and destroy: The role of auxin in plant embryogenesis. Development. 2005;132:3577–3585. doi: 10.1242/dev.01952. PubMed DOI

Wabnik K., Robert H.S., Smith R.S., Friml J. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr. Biol. 2013;23:2513–2518. doi: 10.1016/j.cub.2013.10.038. PubMed DOI

Bennett M.J., Marchant A., Green H.G., May S.T., Ward S.P., Millner P.A., Walker A.R., Schulz B.F., Feldmann K.A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science. 1996;273:948–950. doi: 10.1126/science.273.5277.948. PubMed DOI

Petrasek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertova D., Wiśniewska J., Tadele Z., Kubeš M., Čovanová M., et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science. 2006;312:914–918. doi: 10.1126/science.1123542. PubMed DOI

Krecek P., Skupa P., Libus J., Naramoto S., Tejos R., Friml J. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009;10:249–260. doi: 10.1186/gb-2009-10-12-249. PubMed DOI PMC

Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., Rosquete M.R., Zhu J., Dobrev P.I., Lee Y., et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485:119–122. doi: 10.1038/nature11001. PubMed DOI

Robert H.S., Grunewald W., Sauer M., Cannoot B., Soriano M., Swarup R., Weijers D., Bennett M., Boutilier K., Friml J. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development. 2015;142:702–711. doi: 10.1242/dev.115832. PubMed DOI

Adamowski M., Friml J. PIN-dependent auxin transport: Action, regulation and evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC

Liu Y., Dong Q., Kita D., Huang J.B., Liu G., Wu X., Zhu X., Cheung A.Y., Wu H.M., Tao L.Z. RopGEF1 Plays a Critical Role in Polar Auxin Transport in Early Development. Plant Physiol. 2017;175:157–171. doi: 10.1104/pp.17.00697. PubMed DOI PMC

Zhou J.J., Luo J. The PIN-FORMED auxin effux carriers in plants. Int. J. Mol. Sci. 2018;19:2759. doi: 10.3390/ijms19092759. PubMed DOI PMC

Wisniewska J., Xu J., Seifertova D., Brewer P.B., Ruzicka K., Blilou I., Rouquie D., Benkova E., Scheres B., Friml J. Polar PIN localization directs auxin flow in plants. Science. 2006;312:883. doi: 10.1126/science.1121356. PubMed DOI

Möller B., Weijers D. Auxin Control of Embryo Patterning. Cold Spring Harb. Perspect. Biol. 2009;1:a001545. doi: 10.1101/cshperspect.a001545. PubMed DOI PMC

Robert H.S., Chulmin Park C., Gutierrez C.L., Wójcikowska B., Pěnčík A., Novák O., Chen J., Grunewald W., Dresselhaus T., Friml J., et al. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat. Plants. 2018;4:548–553. doi: 10.1038/s41477-018-0204-z. PubMed DOI PMC

Ugartechea-Chirino Y., Swarup Y.R., Swarup K., Peret B., Whitworth M., Bennett M., Bougourd S. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann. Bot. 2010;105:277–289. doi: 10.1093/aob/mcp287. PubMed DOI PMC

Swain S.M., Reid J.B., Kamiya Y. Gibberellins are required for embryo growth and seed development in pea. Plant J. 1997;12:1329–1338. doi: 10.1046/j.1365-313x.1997.12061329.x. DOI

Hays D.B., Yeung E.C., Pharis R.P. The role of gibberellins in embryo axis development. J. Exp. Bot. 2002;53:1747–1751. doi: 10.1093/jxb/erf017. PubMed DOI

Singh D.P., Jermakow A.M., Swain S.M. Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell. 2002;14:3133–3147. doi: 10.1105/tpc.003046. PubMed DOI PMC

Sun T.P. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arab. Book. 2008;6:e0103. doi: 10.1199/tab.0103. PubMed DOI PMC

Yamaguchi S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008;59:225–251. doi: 10.1146/annurev.arplant.59.032607.092804. PubMed DOI

Schwecheimer C. Gibberellin signaling in plants—The extended version. Front. Plant Sci. 2012;2:107. doi: 10.3389/fpls.2011.00107. PubMed DOI PMC

Abbas M., Alabadi D., Blazquez M.A. Differential growth at the apical hook: All roads lead to auxin. Front. Plant Sci. 2013;4:441–450. doi: 10.3389/fpls.2013.00441. PubMed DOI PMC

Salanenka Y., Verstraeten I., Löfke C., Tabata K., Naramoto S., Glanc M., Friml J. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc. Natl. Acad. Sci. USA. 2018;115:3716–3721. doi: 10.1073/pnas.1721760115. PubMed DOI PMC

Willige B.C., Isono E., Richter R., Zourelidou M., Schwechheimer C. Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport–Dependent Growth and Development in Arabidopsis thaliana. Plant Cell. 2011;23:2184–2195. doi: 10.1105/tpc.111.086355. PubMed DOI PMC

Sun T.P., Kamiya Y. The Arabidopsis GAl Locus Encodes the Cyclase ent-Kaurene Synthetase A of Gibberellin Biosynthesis. Plant Cell. 1994;6:1509–1518. PubMed PMC

Willige C.V., Ghosh S., Nill C., Zourelidou M., Dohmann E.M.N., Maier A., Schwechheimer C. The DELLA Domain of GA INSENSITIVE Mediates the Interaction with the GA INSENSITIVE DWARF1A Gibberellin Receptor of Arabidopsis. Plant Cell. 2007;19:1209–1220. doi: 10.1105/tpc.107.051441. PubMed DOI PMC

Sreenivasulu N., Wobus U. Seed-development programs: A systems biology-based comparison between dicots and monocots. Annu. Rev. Plant Biol. 2013;64:189–217. doi: 10.1146/annurev-arplant-050312-120215. PubMed DOI

Ye N., Zhang J. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice. Plant Signal. Behav. 2012;7:563–565. doi: 10.4161/psb.19919. PubMed DOI PMC

Liu X., Hou X. Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways. Front. Plant Sci. 2018;9:251. doi: 10.3389/fpls.2018.00251. PubMed DOI PMC

Shu K., Zhou W., Chen F., Luo X., Yang W. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses. Front. Plant Sci. 2018;9:416. doi: 10.3389/fpls.2018.00416. PubMed DOI PMC

Koornneef M., Jorna M.L., Brinkhorst-Van Der Swan D.L., Karssen C.M. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. Theor. Appl. Genet. 1982;61:385–393. doi: 10.1007/BF00272861. PubMed DOI

Roscoe T.T., Guilleminot J., Bessoule J.-J., Berger F., Devic M. Complementation of Seed Maturation Phenotype by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. Plant Cell Physiol. 2015;56:1215–1228. doi: 10.1093/pcp/pcv049. PubMed DOI

West M.A.L., Yee K.M., Danao J., Zimmermann J.L., Fischer R.L., Goldberg R.B., Harada J.J. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell. 1994;6:1731–1745. doi: 10.2307/3869904. PubMed DOI PMC

Luerssen H., Kirik V., Herrmann P., Misera S. FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 1998;15:755–764. doi: 10.1046/j.1365-313X.1998.00259.x. PubMed DOI

Stone S.L., Kwong L.W., Yee K.M., Pelletier J., Lepiniec L., Fischer R.L., Goldberg R.B., Harada J.J. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. USA. 2001;98:11806–11811. doi: 10.1073/pnas.201413498. PubMed DOI PMC

Lee H., Fischer R.L., Goldberg R.B., Harada J.J. Arabidopsis LEAFYCOTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc. Natl. Acad. Sci. USA. 2003;100:2152–2156. doi: 10.1073/pnas.0437909100. PubMed DOI PMC

Braybrook S.A., Harada J.J. LECs go crazy in embryo development. Trends Plant Sci. 2008;13:624–630. doi: 10.1016/j.tplants.2008.09.008. PubMed DOI

Yamamoto A., Yoshii M., Murase S., Fujita M., Kurata N., Hobo T., Kagaya Y., Takeda S., Hattori T. Cell-by-Cell Developmental Transition from Embryo to Post-Germination Phase Revealed by Heterochronic Gene Expression and ER-Body Formation in Arabidopsis leafy cotyledon Mutants. Plant Cell Physiol. 2014;55:2112–2125. doi: 10.1093/pcp/pcu139. PubMed DOI

Cheng Y., Dai X., Zhao Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell. 2007;19:2430–2439. doi: 10.1105/tpc.107.053009. PubMed DOI PMC

Liu X., Zhang H., Zhao Y., Feng Z., Li Q., Yang H.Q., Luan S., Li J., He Z.H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2013;110:15485–15490. doi: 10.1073/pnas.1304651110. PubMed DOI PMC

Frigerio M., Alabadı D., APerez-Gomez J., Garcıa-Carcel L., Phillips A.F., Hedden P., Blazquez M.A. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 2006;142:553–563. doi: 10.1104/pp.106.084871. PubMed DOI PMC

Rieu I., Ruiz-Rivero O., Fernandez-Garcia N., Griffiths J., Powers S.J., Gong F., Linhartova T., Eriksson S., Nilsson O., Thomas S.G., et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008;53:488–504. doi: 10.1111/j.1365-313X.2007.03356.x. PubMed DOI

Dorcey E., Urbez C., Blazquez M.A., Carbonell J., Perez-Amador M.A. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J. 2009;58:318–332. doi: 10.1111/j.1365-313X.2008.03781.x. PubMed DOI

Peng J., Carol P., Richards D.E., King K.E., Cowling R.J., Murphy G.P., Harberd N.P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1997;11:3194–3205. doi: 10.1101/gad.11.23.3194. PubMed DOI PMC

Silverstone A.L., Ciampaglio C.N., Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell. 1998;10:1555–1566. doi: 10.1105/tpc.10.2.155. PubMed DOI PMC

Lee S., Cheng H., King K.E., Wang W., He Y., Hussain A., Lo L., Harberd N.P., Peng J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 2002;16:646–658. doi: 10.1101/gad.969002. PubMed DOI PMC

Daviere J.M., Achard P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant. 2016;9:10–20. doi: 10.1016/j.molp.2015.09.011. PubMed DOI

Rigó G., Ayaydin F., Tietz O., Zsigmond L., Kovács H., Páy A., Salchert K., Darula Z., Medzihradszky K.F., Szabados L., et al. Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell. 2013;25:1592–1608. PubMed PMC

Baba A.I., Rigó G., Ayaydin F., Rehman A.U., Andrási N., Zsigmond L., Valkai I., Urbancsok J., Vass I., Pasternak T., et al. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light. Int. J. Mol. Sci. 2018;19:1282. doi: 10.3390/ijms19051282. PubMed DOI PMC

Baba A.I., Andrási N., Valkai I., Gorcsa T., Koczka L., Darula Z., Medzihradszky K.F., Szabados L., Fehér A., Rigó G., et al. AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis. Int. J. Mol. Sci. 2019;20:3432. doi: 10.3390/ijms20143432. PubMed DOI PMC

Robert S.H. Molecular communication for coordinated seed and fruit dvelopment: What can we learn from auxin and sugars? Int. J. Mol. Sci. 2019;20:936. doi: 10.3390/ijms20040936. PubMed DOI PMC

Ottenschläger I., Wolff P., Wolverton C., Bhalerao R.P., Sandberg G., Ishikawa H., Evans M., Palme K. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl. Acad. Sci. USA. 2003;100:2987–2991. doi: 10.1073/pnas.0437936100. PubMed DOI PMC

Jenik P.D., Gillmor C.S., Lukowitz W. Embryonic patterning in Arabidopsis thaliana. Annu. Rev. Cell Dev. Biol. 2007;23:207–236. doi: 10.1146/annurev.cellbio.22.011105.102609. PubMed DOI

Offringa R., Huang F. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. J. Integr. Plant Biol. 2013;55:789–808. doi: 10.1111/jipb.12096. PubMed DOI

Luschnig C., Vert G. The dynamics of plant plasma membrane proteins: PINs and beyond. Development. 2014;141:2924–2938. doi: 10.1242/dev.103424. PubMed DOI

Barbosa I.C.R., Hammes U.Z., Schwechheimer C. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 2018;23:523–538. doi: 10.1016/j.tplants.2018.03.009. PubMed DOI

Hrabak E.M., Chan C.W.M., Gribskov M., Harper J.F., Choi J.H., Halford N., Kudla J., Luan S., Nimmo H.G., Sussman M.R., et al. The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiol. 2003;132:666–680. doi: 10.1104/pp.102.011999. PubMed DOI PMC

Harper J.F., Breton G., Harmon A. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol. 2004;55:263–288. doi: 10.1146/annurev.arplant.55.031903.141627. PubMed DOI

Zhang L., Lu Y.-T. Calmodulin-binding protein kinases in plants. Trends Plant Sci. 2003;8:123–127. doi: 10.1016/S1360-1385(03)00013-X. PubMed DOI

Zhang L., Du L., Poovaiah B.W. Calcium signaling and biotic defense responses in plants. Plant Signal Behav. 2014;9:e973818. doi: 10.4161/15592324.2014.973818. PubMed DOI PMC

Zeng H., Xu L., Singh A., Wang H., Du L., Poovaiah B.W. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci. 2015;6:600. doi: 10.3389/fpls.2015.00600. PubMed DOI PMC

Wang J.P., Xu Y.P., Munyampundu J.P., Liu T.Y., Cai X.Z. Calcium dependent protein kinase (CDPK) and CDPK related kinase (CRK) gene families in tomato: Genome wide identification and functional analyses in disease resistance. Mol. Genet. Genom. 2016;291:661–676. doi: 10.1007/s00438-015-1137-0. PubMed DOI

Simeunovic A., Mair A., Wurzinger B., Teige M. Know where your clients are: Subcellular localization and targets of calcium-dependent protein kinases. J. Exp. Bot. 2016;67:3855–3872. doi: 10.1093/jxb/erw157. PubMed DOI

Delormel T.Y., Boudsocq M. Properties and functions of calcium dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol. 2019 doi: 10.1111/nph.16088. PubMed DOI

Baba A.I., Rigó G., Andrási N., Tietz O., Palme K., Szabados L., Cséplő Á. Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members. In: Palócz-Andresen M., Szalay D., Gosztom A., Sípos L., Taligás T., editors. International Climate Protection. Springer; Cham, Switzerland: 2019. pp. 99–105.

Leyser O. Dynamic integration of auxin transport and signalling. Curr. Biol. 2006;16:R424–R433. doi: 10.1016/j.cub.2006.05.014. PubMed DOI

Paponov I.A., Paponov M., Teale W., Menges M., Chakrabortee S., Murray J.A.H., Palme K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol. Plant. 2008;1:321–337. doi: 10.1093/mp/ssm021. PubMed DOI

Ganguly A., Sasayama D., Cho H.T. Regulation of the polarity of protein trafficking by phosphorylation. Mol. Cells. 2012;33:423–430. doi: 10.1007/s10059-012-0039-9. PubMed DOI PMC

Barbosa I.C.R., Schwechheimer C. Dynamic control of auxin transport-dependent growth by AGCVIII protein kinases. Curr. Opin. Plant Biol. 2014;22:108–115. doi: 10.1016/j.pbi.2014.09.010. PubMed DOI

Mazzella M.A., Casal J.J., Muschietti J.P., Fox A.R. Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 2014;5:52–65. doi: 10.3389/fpls.2014.00052. PubMed DOI PMC

Fu X., Harberd N.P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003;421:740–743. doi: 10.1038/nature01387. PubMed DOI

Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI

Zadnikova P., Petrasek J., Marhavy P., Raz V., Vandenbussche F., Ding Z., Schwarzerová K., Morita M.T., Tasaka M., Hejátko J., et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development. 2010;137:607–617. doi: 10.1242/dev.041277. PubMed DOI

Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. doi: 10.1038/nature03184. PubMed DOI

Swarup R., Friml J., Marchant A., Ljung K., Sandberg G., Palme K., Bennett M. Localization of the auxin permease AUX 1suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 2001;15:2648–2653. doi: 10.1101/gad.210501. PubMed DOI PMC

Bechtold N., Ellis J., Pelletier G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris Life Sci. 1993;316:1194–1199.

Stangeland B., Salehian Z. An Improved Clearing Method for GUS Assay in Arabidopsis Endosperm and Seeds. Plant Mol. Biol. Rep. 2002;20:107–114. doi: 10.1007/BF02799426. DOI

Jaakola L., Pirttilä A., Halonen M., Hohtola A. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol. 2001;19:201–203. doi: 10.1385/MB:19:2:201. PubMed DOI

Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.R. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiol. 2005;139:5–17. doi: 10.1104/pp.105.063743. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...