Molecular Communication for Coordinated Seed and Fruit Development: What Can We Learn from Auxin and Sugars?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30795528
PubMed Central
PMC6412287
DOI
10.3390/ijms20040936
PII: ijms20040936
Knihovny.cz E-zdroje
- Klíčová slova
- auxin, embryo, endosperm, fruit, molecular communication, seed, sucrose,
- MeSH
- cukry metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- ovoce růst a vývoj metabolismus MeSH
- semena rostlinná růst a vývoj metabolismus MeSH
- signální transdukce * MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cukry MeSH
- kyseliny indoloctové MeSH
Seed development in flowering plants is a critical part of plant life for successful reproduction. The formation of viable seeds requires the synchronous growth and development of the fruit and the three seed structures: the embryo, the endosperm, the seed coat. Molecular communication between these tissues is crucial to coordinate these developmental processes. The phytohormone auxin is a significant player in embryo, seed and fruit development. Its regulated local biosynthesis and its cell-to-cell transport capacity make of auxin the perfect candidate as a signaling molecule to coordinate the growth and development of the embryo, endosperm, seed and fruit. Moreover, newly formed seeds need nutrients and form new carbon sink, generating high sugar flow from vegetative tissues to the seeds. This review will discuss how auxin and sugars may be considered as signaling molecules to coordinate seed and fruit development.
Zobrazit více v PubMed
Dorcey E., Urbez C., Blázquez M.A., Carbonell J., Perez-Amador M.A. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J. 2009;58:318–332. doi: 10.1111/j.1365-313X.2008.03781.x. PubMed DOI
Cucinotta M., Manrique S., Cuesta C., Benková E., Novak O., Colombo L.L. CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis. J. Exp. Bot. 2018;69:5169–5176. doi: 10.1093/jxb/ery281. PubMed DOI PMC
Cucinotta M., Manrique S., Guazzotti A., Quadrelli N.E., Mendes M.A., Benková E., Colombo L.L. Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. 2016;143:4419–4424. doi: 10.1242/dev.143545. PubMed DOI
Gómez M.D., Barro-Trastoy D., Escoms E., Saura-Sánchez M., Sánchez I., Briones-Moreno A., Vera-Sirera F., Carrera E., Ripoll J.J., Yanofsky M.F., et al. Gibberellins negatively modulate ovule number in plants. Development. 2018;145:dev163865. doi: 10.1242/dev.163865. PubMed DOI PMC
Galván-Ampudia C.S., Cerutti G., Legrand J., Azais R., Brunoud G., Moussu S., Wenzl C., Lohmann J.U., Godin C.C., Vernoux T. From spatio-temporal morphogenetic gradients to rhythmic patterning at the shoot apex. bioRxiv. 2019 doi: 10.1101/469718. DOI
Wybouw B., De Rybel B. Cytokinin—A Developing Story. Trends Plant Sci. 2019;24:177–185. doi: 10.1016/j.tplants.2018.10.012. PubMed DOI
Robert H.S., Khaitova L.C., Mroue S., Benková E. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J. Exp. Bot. 2015;66:5029–5042. doi: 10.1093/jxb/erv256. PubMed DOI
Joldersma D., Liu Z. The making of virgin fruit: The molecular and genetic basis of parthenocarpy. J. Exp. Bot. 2018;69:955–962. doi: 10.1093/jxb/erx446. PubMed DOI PMC
Stepanova A.N., Yun J.J., Robles L.M., Novak O., He W., Guo H., Ljung K., Alonso J.M. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 2011;23:3961–3973. doi: 10.1105/tpc.111.088047. PubMed DOI PMC
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18512–18517. doi: 10.1073/pnas.1108434108. PubMed DOI PMC
Won C., Shen X., Mashiguchi K., Zheng Z., Dai X., Cheng Y., Kasahara H., Kamiya Y., Chory J., Zhao Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18518–18523. doi: 10.1073/pnas.1108436108. PubMed DOI PMC
Stepanova A.N., Robertson-Hoyt J., Yun J.J., Benavente L.M., Xie D.-Y., Dolezal K., Schlereth A., Juergens G., Alonso J. M TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–191. doi: 10.1016/j.cell.2008.01.047. PubMed DOI
Zhao Y. Auxin biosynthesis. Arab. Book. 2014;12:e0173. doi: 10.1199/tab.0173. PubMed DOI PMC
Figueiredo D.D., Batista R.A., Roszak P.J., Köhler C.C. Auxin production couples endosperm development to fertilization. Nat. Plants. 2015;1:15184. doi: 10.1038/nplants.2015.184. PubMed DOI
Figueiredo D.D., Batista R.A., Roszak P.J., Hennig L., Köhler C.C. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife. 2016;5:e20542. doi: 10.7554/eLife.20542. PubMed DOI PMC
Robert H.S., Grones P., Stepanova A.N., Robles L.M., Lokerse A.S., Alonso J.M., Weijers D., Friml J. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 2013;23:2506–2512. doi: 10.1016/j.cub.2013.09.039. PubMed DOI
Robert H.S., Park C., Gutièrrez C.L., Wójcikowska B., Pencík A., Novak O., Chen J., Grunewald W., Dresselhaus T., Friml J., et al. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat. Plants. 2018;4:548–553. doi: 10.1038/s41477-018-0204-z. PubMed DOI PMC
Brumos J., Robles L.M., Yun J.J., Vu T.C., Jackson S., Alonso J.M., Stepanova A.N. Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Dev. Cell. 2018;47:306–318.e5. doi: 10.1016/j.devcel.2018.09.022. PubMed DOI
Cheng Y., Dai X., Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20:1790–1799. doi: 10.1101/gad.1415106. PubMed DOI PMC
Cheng Y., Dai X., Zhao Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant. Cell. 2007;19:2430–2439. doi: 10.1105/tpc.107.053009. PubMed DOI PMC
Chen Q., Dai X., DePaoli H.C., Cheng Y., Takebayashi Y., Kasahara H., Kamiya Y., Zhao Y. Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant. Cell Physiol. 2014;55:1072–1079. doi: 10.1093/pcp/pcu039. PubMed DOI PMC
Benková E., Michniewicz M., Sauer M., Teichmann T.T., Seifertová D., Juergens G., Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI
Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Park J., Lee Y., Martinoia E., Geisler M. Plant hormone transporters: What we know and what we would like to know. BMC Biol. 2017;15:93. doi: 10.1186/s12915-017-0443-x. PubMed DOI PMC
Péret B., Swarup K., Ferguson A., Seth M., Yang Y., Dhondt S., James N., Casimiro I., Perry P., Syed A., et al. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell. 2012;24:2874–2885. doi: 10.1105/tpc.112.097766. PubMed DOI PMC
Weijers D., Wagner D. Transcriptional Responses to the Auxin Hormone. Annu. Rev. Plant Biol. 2016;67:539–574. doi: 10.1146/annurev-arplant-043015-112122. PubMed DOI
Liao C.-Y., Smet W., Brunoud G., Yoshida S., Vernoux T., Weijers D. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods. 2015;12:207–210. doi: 10.1038/nmeth.3279. PubMed DOI PMC
Brunoud G., Wells D.M., Oliva M., Larrieu A., Mirabet V., Burrow A.H., Beeckman T., Kepinski S., Traas J., Bennett M.J., et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012;482:103–106. doi: 10.1038/nature10791. PubMed DOI
Ulmasov T., Murfett J., Hagen G., Guilfoyle T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 1997;9:1963–1971. doi: 10.1105/tpc.9.11.1963. PubMed DOI PMC
Christensen C.A., King E.J., Jordan J., Drews G.N. Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex. Plant Reprod. 1997;10:49–64. doi: 10.1007/s004970050067. DOI
Drews G.N., Yadegari R. Development and function of the angiosperm female gametophyte. Annu. Rev. Genet. 2002;36:99–124. doi: 10.1146/annurev.genet.36.040102.131941. PubMed DOI
Bencivenga S., Colombo L.L., Masiero S. Cross talk between the sporophyte and the megagametophyte during ovule development. Sex. Plant. Reprod. 2011;24:113–121. doi: 10.1007/s00497-011-0162-3. PubMed DOI
Lau S.S., Slane D., Herud O., Kong J., Juergens G. Early embryogenesis in flowering plants: Setting up the basic body pattern. Annu. Rev. Plant. Biol. 2012;63:483–506. doi: 10.1146/annurev-arplant-042811-105507. PubMed DOI
Larsson E., Franks R.G., Sundberg E. Auxin and the Arabidopsis thaliana gynoecium. J. Exp. Bot. 2013;64:2619–2627. doi: 10.1093/jxb/ert099. PubMed DOI
Moubayidin L.L., Østergaard L. Gynoecium formation: An intimate and complicated relationship. Curr. Opin. Gen. Dev. 2017;45:15–21. doi: 10.1016/j.gde.2017.02.005. PubMed DOI
Figueiredo D.D., Köhler C.C. Auxin: A molecular trigger of seed development. Genes Dev. 2018;32:479–490. doi: 10.1101/gad.312546.118. PubMed DOI PMC
Vivian-Smith A., Koltunow A.M. Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol. 1999;121:437–451. doi: 10.1104/pp.121.2.437. PubMed DOI PMC
Larsson E., Vivian-Smith A., Offringa R., Sundberg E. Auxin homeostasis in Arabidopsis ovules Is anther-dependent at maturation and changes dynamically upon fertilization. Front. Plant Sci. 2017;8:1735. doi: 10.3389/fpls.2017.01735. PubMed DOI PMC
Lituiev D.S., Krohn N.G., Müller B., Jackson D.P., Hellriegel B., Dresselhaus T., Grossniklaus U. Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development. 2013;140:4544–4553. doi: 10.1242/dev.098301. PubMed DOI
Panoli A., Martin M.V., Alandete-Saez M., Simon M.K., Neff C., Swarup R., Bellido A., Yuan L., Pagnussat G.C., Sundaresan V. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana. PLoS ONE. 2015;10:e0126164. doi: 10.1371/journal.pone.0126164. PubMed DOI PMC
Mozgova I., Köhler C.C., Hennig L. Keeping the gate closed: Functions of the polycomb repressive complex PRC2 in development. Plant J. 2015;83:121–132. doi: 10.1111/tpj.12828. PubMed DOI
Mravec J., Kubes M., Bielach A., Gaykova V., Petrásek J., Skůpa P., Chand S., Benková E., Zazímalová E., Friml J. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development. 2008;135:3345–3354. doi: 10.1242/dev.021071. PubMed DOI
Forestan C., Meda S., Varotto S. ZmPIN1-Mediated Auxin Transport Is Related to Cellular Differentiation during Maize Embryogenesis and Endosperm Development. Plant Physiol. 2010;152:1373–1390. doi: 10.1104/pp.109.150193. PubMed DOI PMC
Bernardi J., Lanubile A., Li Q.-B., Kumar D., Kladnik A., Cook S.D., Ross J.J., Marocco A., Chourey P.S. Impaired Auxin Biosynthesis in the defective endosperm18 Mutant Is Due to Mutational Loss of Expression in the ZmYuc1 Gene Encoding Endosperm-Specific YUCCA1 Protein in Maize. Plant Physiol. 2012;160:1318–1328. doi: 10.1104/pp.112.204743. PubMed DOI PMC
Locascio A., Roig-Villanova I., Bernardi J., Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: A focus on auxin. Front. Plant. Sci. 2014;5:412. doi: 10.3389/fpls.2014.00412. PubMed DOI PMC
Bernardi J., Li Q.-B., Gao Y., Zhao Y., Battaglia R., Marocco A., Chourey P.S. The Auxin-Deficient Defective Kernel18 (dek18) Mutation Alters the Expression of Seed-Specific Biosynthetic Genes in Maize. J. Plant Growth Regul. 2016;35:770–777. doi: 10.1007/s00344-016-9581-6. DOI
Chen J., Lausser A., Dresselhaus T. Hormonal responses during early embryogenesis in maize. Biochem. Soc. Trans. 2014;42:325–331. doi: 10.1042/BST20130260. PubMed DOI
Robert H.S., Friml J. Auxin and other signals on the move in plants. Nat. Chem. Biol. 2009;5:325–332. doi: 10.1038/nchembio.170. PubMed DOI
Stadler R., Lauterbach C., Sauer N. Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol. 2005;139:701–712. doi: 10.1104/pp.105.065607. PubMed DOI PMC
Kawashima T., Goldberg R.B. The suspensor: Not just suspending the embryo. Trends Plant Sci. 2010;15:23–30. doi: 10.1016/j.tplants.2009.11.002. PubMed DOI
Yeung E.C. Embryogeny of Phaseolus: The Role of the Suspensor. Z. Für Pflanzenphysiol. 1980;96:17–28. doi: 10.1016/S0044-328X(80)80096-1. DOI
Nagl W. Translocation of Putrescine in the Ovule, Suspensor and Embryo of Phaseolus coccineus. J. Plant. Physiol. 1990;136:587–591. doi: 10.1016/S0176-1617(11)80218-X. DOI
Creff A., Brocard L., Joubes J., Taconnat L., Doll N.M., Pascal S., Galletti R., Marsollier A.-C., Moussu S., Widiez T., et al. A stress-response-related inter-compartmental signalling pathway regulates embryonic cuticle integrity in Arabidopsis. bioRxiv. 2018:477109-35. doi: 10.1101/477109. PubMed DOI PMC
Ingram G.C. Family life at close quarters: Communication and constraint in angiosperm seed development. Protoplasma. 2010;247:195–214. doi: 10.1007/s00709-010-0184-y. PubMed DOI
Moussu S., Doll N.M., Chamot S., Brocard L., Creff A., Fourquin C., Widiez T., Nimchuk Z.L., Ingram G.C. ZHOUPI and KERBEROS Mediate Embryo/Endosperm Separation by Promoting the Formation of an Extracuticular Sheath at the Embryo Surface. Plant Cell. 2017;29:1642–1656. doi: 10.1105/tpc.17.00016. PubMed DOI PMC
Morley-Smith E.R., Pike M.J., Findlay K., Köckenberger W., Hill L.M., Smith A., Rawsthorne S. The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiol. 2008;147:2121–2130. doi: 10.1104/pp.108.124644. PubMed DOI PMC
Chen L.-Q., Lin I.W., Qu X.-Q., Sosso D., McFarlane H.E., Londoño A., Samuels A.L., Frommer W.B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell. 2015;27:607–619. doi: 10.1105/tpc.114.134585. PubMed DOI PMC
Baud S., Wuillème S., Lemoine R., Kronenberger J., Caboche M., Lepiniec L., Rochat C. The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J. 2005;43:824–836. doi: 10.1111/j.1365-313X.2005.02496.x. PubMed DOI
Aguirre M., Kiegle E., Leo G., Ezquer I. Carbohydrate reserves and seed development: An overview. Plant Reprod. 2018;31:263–290. doi: 10.1007/s00497-018-0336-3. PubMed DOI
Durand M., Mainson D., Porcheron B., Maurousset L., Lemoine R., Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: The role of sucrose transporters. Planta. 2018;247:587–611. doi: 10.1007/s00425-017-2807-4. PubMed DOI PMC
Chen L.-Q., Qu X.-Q., Hou B.-H., Sosso D., Osorio S.S., Fernie A.R., Frommer W.B. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science. 2012;335:207–211. doi: 10.1126/science.1213351. PubMed DOI
Sauer N. Molecular physiology of higher plant sucrose transporters. FEBS Lett. 2007;581:2309–2317. doi: 10.1016/j.febslet.2007.03.048. PubMed DOI
Wang L., Ruan Y.-L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol. 2012;160:777–787. doi: 10.1104/pp.112.203893. PubMed DOI PMC
Wang L., Ruan Y.-L. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 2013;4:163. doi: 10.3389/fpls.2013.00163. PubMed DOI PMC
Baud S., Boutin J.-P., Miquel M., Lepiniec L., Rochat C. An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 2002;40:151–160. doi: 10.1016/S0981-9428(01)01350-X. DOI
Hehenberger E.E., Kradolfer D.D., Köhler C.C. Endosperm cellularization defines an important developmental transition for embryo development. Development. 2012;139:2031–2039. doi: 10.1242/dev.077057. PubMed DOI
Serrani J.C., Ruiz-Rivero O., Fos M., García-Martínez J.L. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J. 2008;56:922–934. doi: 10.1111/j.1365-313X.2008.03654.x. PubMed DOI
Ozga J.A., Reinecke D.M., Ayele B.T., Ngo P., Nadeau C., Wickramarathna A.D. Developmental and Hormonal Regulation of Gibberellin Biosynthesis and Catabolism in Pea Fruit. Plant Physiol. 2009;150:448–462. doi: 10.1104/pp.108.132027. PubMed DOI PMC
Hu Y., Zhou L., Huang M., He X., Yang Y., Liu X., Li Y., Hou X. Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nat. Plants. 2018;4:289–298. doi: 10.1038/s41477-018-0143-8. PubMed DOI
Fuentes S., Ljung K., Sorefan K., Alvey E., Harberd N.P., Østergaard L. Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell. 2012;24:3982–3996. doi: 10.1105/tpc.112.103192. PubMed DOI PMC
Rieu I., Eriksson S., Powers S.J., Gong F., Griffiths J., Woolley L., Benlloch R., Nilsson O., Thomas S.G., Hedden P., et al. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell. 2008;20:2420–2436. doi: 10.1105/tpc.108.058818. PubMed DOI PMC
Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T.-Y., Hsing Y.-I.C., Kitano H., Yamaguchi I., et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature. 2005;437:693–698. doi: 10.1038/nature04028. PubMed DOI
Sun T.-P. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 2011;21:R338–R345. doi: 10.1016/j.cub.2011.02.036. PubMed DOI
Hu J., Israeli A., Ori N., Sun T.-P. The Interaction between DELLA and ARF/IAA Mediates Crosstalk between Gibberellin and Auxin Signaling to Control Fruit Initiation in Tomato. Plant Cell. 2018;30:1710–1728. doi: 10.1105/tpc.18.00363. PubMed DOI PMC
De Jong M., Wolters-Arts M., Feron R., Mariani C., Vriezen W.H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 2009;57:160–170. doi: 10.1111/j.1365-313X.2008.03671.x. PubMed DOI
Goetz M., Vivian-Smith A., Johnson S.D., Koltunow A.M. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell. 2006;18:1873–1886. doi: 10.1105/tpc.105.037192. PubMed DOI PMC
Du L., Bao C., Hu T., Zhu Q., Hu H., He Q., Mao W. SmARF8, a transcription factor involved in parthenocarpy in eggplant. Mol. Genet. Genom. 2016;291:93–105. doi: 10.1007/s00438-015-1088-5. PubMed DOI
CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana