AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis

. 2019 Jul 12 ; 20 (14) : . [epub] 20190712

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31336871

Grantová podpora
PD128055, PD115502, OTKA124828, Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
GINOP-2.3.2-15-2016-00001 Hungarian Ministry for National Economy

Seedling establishment following germination requires the fine tuning of plant hormone levels including that of auxin. Directional movement of auxin has a central role in the associated processes, among others, in hypocotyl hook development. Regulated auxin transport is ensured by several transporters (PINs, AUX1, ABCB) and their tight cooperation. Here we describe the regulatory role of the Arabidopsis thaliana CRK5 protein kinase during hypocotyl hook formation/opening influencing auxin transport and the auxin-ethylene-GA hormonal crosstalk. It was found that the Atcrk5-1 mutant exhibits an impaired hypocotyl hook establishment phenotype resulting only in limited bending in the dark. The Atcrk5-1 mutant proved to be deficient in the maintenance of local auxin accumulation at the concave side of the hypocotyl hook as demonstrated by decreased fluorescence of the auxin sensor DR5::GFP. Abundance of the polar auxin transport (PAT) proteins PIN3, PIN7, and AUX1 were also decreased in the Atcrk5-1 hypocotyl hook. The AtCRK5 protein kinase was reported to regulate PIN2 protein activity by phosphorylation during the root gravitropic response. Here it is shown that AtCRK5 can also phosphorylate in vitro the hydrophilic loops of PIN3. We propose that AtCRK5 may regulate hypocotyl hook formation in Arabidopsis thaliana through the phosphorylation of polar auxin transport (PAT) proteins, the fine tuning of auxin transport, and consequently the coordination of auxin-ethylene-GA levels.

Zobrazit více v PubMed

Vandenbussche F., Verbelen J.P., Van Der Straeten D. Of light and length: Regulation of hypocotyl growth in Arabidopsis. Bioessays. 2005;27:275–284. doi: 10.1002/bies.20199. PubMed DOI

Zhong S., Shi H., Xue C., Wei N., Guo H., Deng X.W. Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc. Natl. Acad. Sci. USA. 2014;111:3913–3920. doi: 10.1073/pnas.1402491111. PubMed DOI PMC

Yu Q., Zhang Y., Wang J., Yan X., Wang C., Xu J., Pan J. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis. Mol. Plant. 2016;9:101–112. doi: 10.1016/j.molp.2015.09.018. PubMed DOI

Salome P.A. Life’s a gas under pressure: Ethylene and etioplast maintenance in germinating seedlings. Plant Cell. 2017;29:2951–2952. doi: 10.1105/tpc.17.00939. PubMed DOI PMC

Vandenbussche F., Petrásek J., Zádníková P., Hoyerová K., Pesek B., Raz V., Swarup R., Bennett M., Zazímalová E., Benková E., et al. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development. 2010;137:597–606. doi: 10.1242/dev.040790. PubMed DOI

Zadnikova P., Petrasek J., Marhavy P., Raz V., Vandenbussche F., Ding Z., Schwarzerová K., Morita M.T., Tasaka M., Hejátko J., et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development. 2010;137:607–617. doi: 10.1242/dev.041277. PubMed DOI

Gallego-Bartolomé J., Arana M.V., Vandenbussche F., Zadnikova P., Minguet E.G., Guardiola V., Van Der Straeten D., Benkova E., Alabadi D., Blazquez M.A. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J. 2011;67:622–634. doi: 10.1111/j.1365-313X.2011.04621.x. PubMed DOI

Raz V., Ecker J.R. Regulation of differential growth in the apical hook of Arabidopsis. Development. 1999;126:3661–3668. PubMed

Li H., Johnson P., Stepanova A., Alonso J.M., Ecker J.R. Convergence of signaling of differential cell growth pathways in the control of differential cell growth in Arabidopsis. Dev. Cell. 2004;7:193–204. doi: 10.1016/j.devcel.2004.07.002. PubMed DOI

Abbas M., Alabadi D., Blazquez M.A. Differential growth at the apical hook: All roads lead to auxin. Front. Plant Sci. 2013;4:441–450. doi: 10.3389/fpls.2013.00441. PubMed DOI PMC

Mazzella M.A., Casal J.J., Muschietti J.P., Fox A.R. Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 2014;5:52–65. doi: 10.3389/fpls.2014.00052. PubMed DOI PMC

Zadnikova P., Smet D., Zhu Q., Van Der Straeten V., Benkova E. Strategies of seedlings to overcome their sessile nature: Auxin in mobility control. Front. Plant Sci. 2015;6:218. doi: 10.3389/fpls.2015.00218. PubMed DOI PMC

Zádnikova P., Wabnik K., Abuzeineh A., Gallemi M., Van Der Straeten D., Smith R.S., Inze D., Friml J., Prusinkiewicz P., Benkova E. A model of differential growth-guided apical hook formation in plants. Plant Cell. 2016;28:2464–2477. PubMed PMC

Bennett M.J., Marchant A., Green H.G., May S.T., Ward S.P., Millner P.A., Walker A.R., Schulz B., Feldmann K.A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science. 1996;273:948–950. doi: 10.1126/science.273.5277.948. PubMed DOI

Petrasek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertova D., Wiśniewska J., Tadele Z., Kubeš M., Čovanová M., et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science. 2006;312:914–918. doi: 10.1126/science.1123542. PubMed DOI

Robert H.S., Grunewald W., Sauer M., Cannoot B., Soriano M., Swarup R., Weijers D., Bennett M., Boutilier K., Friml J. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development. 2015;142:702–711. doi: 10.1242/dev.115832. PubMed DOI

Adamowski M., Friml J. PIN-dependent auxin transport: Action, regulation and evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC

Liu Y., Dong Q., Kita D., Huang J.B., Liu G., Wu X., Zhu X., Cheung A.Y., Wu H.M., Tao L.Z. RopGEF1 Plays a Critical Role in Polar Auxin Transport in Early Development. Plant Physiol. 2017;175:157–171. doi: 10.1104/pp.17.00697. PubMed DOI PMC

Zhou J.J., Luo J. The PIN-FORMED auxin efflux carriers in plants. Int. J. Mol. Sci. 2018;19:2759. doi: 10.3390/ijms19092759. PubMed DOI PMC

Wisniewska J., Xu J., Seifertova D., Brewer P.B., Ruzicka K., Blilou I., Rouquie D., Benkova E., Scheres B., Friml J. Polar PIN localization directs auxin flow in plants. Science. 2006;312:883. doi: 10.1126/science.1121356. PubMed DOI

Daviere J.M., Achard P. Gibberellin signaling in plants. Development. 2013;140:1147–1151. doi: 10.1242/dev.087650. PubMed DOI

Guzmán P., Ecker J.R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990;2:513–523. PubMed PMC

Roman G., Lubarsky B., Kieber J.J., Rothenberg M., Ecker J.R. Genetic Analysis of Ethylene Signal Transduction in Arabidopsis thaliana: Five Novel Mutant Loci Integrated into a Stress Response Pathway. Genetics. 1995;139:1393–1409. PubMed PMC

Lehman A., Black R., Ecker J.R. (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996;85:183–194. doi: 10.1016/S0092-8674(00)81095-8. PubMed DOI

Locascio A., Roig-Villanova I., Bernardi J., Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: A focus on auxin. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00412. Article412/1. PubMed DOI PMC

Daviere J.M., Achard P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant. 2016;9:10–20. doi: 10.1016/j.molp.2015.09.011. PubMed DOI

Willige B.C., Ogiso-Tanaka E., Zourelidou M., Schwechheimer C. WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Development. 2012;139:4020–4028. doi: 10.1242/dev.081240. PubMed DOI

Frigerio M., Alabadí D., Pérez-Gómez J., García-Cárcel L., Phillips A.L., Hedden P., Blázquez M.A. Transcriptional Regulation of Gibberellin Metabolism Genes by Auxin Signaling in Arabidopsis. Plant Physiol. 2006;142:553–563. doi: 10.1104/pp.106.084871. PubMed DOI PMC

Rieu I., Ruiz-Rivero O., Fernandez-Garcia N., Griffiths J., Powers S.J., Gong F., Linhartova T., Eriksson S., Nilsson O., Thomas S.G., et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008;53:488–504. doi: 10.1111/j.1365-313X.2007.03356.x. PubMed DOI

Chapman E.J., Greenham K., Castillejo C., Sartor R., Bialy A., Sun T., Estelle M. Hypocotyl Transcriptome Reveals Auxin Regulation of Growth-Promoting Genes through GA-Dependent and -Independent Pathways. PLoS ONE. 2012;7:e36210. doi: 10.1371/journal.pone.0036210. PubMed DOI PMC

Hedden P., Thomas S.G. Annual Plant Reviews, The Gibberellins. 1st ed. Wiley and Sons, Ltd.; Chichester, UK: 2016. pp. 285–312.

Harper J.F., Breton G., Harmon A. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol. 2004;55:263–288. doi: 10.1146/annurev.arplant.55.031903.141627. PubMed DOI

Reddy A.S.N., Ali G.S., Celesnik H., Day I.S. Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell. 2011;23:2010–2032. doi: 10.1105/tpc.111.084988. PubMed DOI PMC

Boudsocq M., Sheen J. CDPKs in immune and stress signaling. Trends Plant Sci. 2013;18:30–40. doi: 10.1016/j.tplants.2012.08.008. PubMed DOI PMC

Wang J.P., Xu Y.P., Munyampundu J.P., Liu T.Y., Cai X.Z. Calcium dependent protein kinase (CDPK) and CDPK related kinase (CRK) gene families in tomato: Genome wide identification and functional analyses indisease resistance. Mol. Genet. Genom. 2016;291:661–676. doi: 10.1007/s00438-015-1137-0. PubMed DOI

Simeunovic A., Mair A., Wurzinger B., Teige M. Know where your clients are: Subcellular localization and targets of calcium-dependent protein kinases. J. Exp. Bot. 2016;67:3855–3872. doi: 10.1093/jxb/erw157. PubMed DOI

Baba A.I., Rigó G., Ayaydin F., Rehman A.U., Andrási N., Zsigmond L., Valkai I., Urbancsok J., Vass I., Pasternak T., et al. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light. Int. J. Mol. Sci. 2018;19:1282. doi: 10.3390/ijms19051282. PubMed DOI PMC

Baba A.I., Rigó G., Andrási N., Tietz O., Palme K., Szabados L., Cséplő Á. Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members. In: Palocz-Andresen M., Szalay D., Gosztom A., Sípos L., Taligás T., editors. International Climate Protection. Springer Nature; Cham, Switzerland: 2019. pp. 99–105.

Renna L., Stefano G., Majeran W., Micalella C., Meinnel T., Giglione C., Brandizzi F. Golgi traffic integrity depends on N-Myristoyl transferase-1 in Arabidopsis. Plant Cell. 2013;25:1756–1773. doi: 10.1105/tpc.113.111393. PubMed DOI PMC

Xu W., Huang W. Calcium-Dependent Protein Kinases in Phytohormon Signaling Pathways. Int. J. Mol. Sci. 2017;18:2436. doi: 10.3390/ijms18112436. PubMed DOI PMC

Singh A., Sagar S., Biswas D.K. Calcium Dependent Protein Kinase, a Versatile Player in Plant Stress Management and Development. Crit. Rev. Plant Sci. 2017;36:336–352. doi: 10.1080/07352689.2018.1428438. DOI

Rigó G., Ayaydin F., Tietz O., Zsigmond L., Kovács H., Páy A., Salchert K., Darula Z., Medzihradszky K.F., Szabados L., et al. Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell. 2013;25:1592–1608. doi: 10.1105/tpc.113.110452. PubMed DOI PMC

Nemoto K., Takemori N., Seki M., Shinozaki K., Sawasaki T. Members of the Plant CRK Superfamily Are Capable of Trans- and Autophosphorylation of Tyrosine Residues. J. Biol. Chem. 2015;290:16665–16677. doi: 10.1074/jbc.M114.617274. PubMed DOI PMC

Takanoa J., Tanaka M., Toyoda A., Miwa K., Kasai K., Fuji K., Onouchi H., Naito S., Fujiwara T. Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc. Natl. Acad. Sci. USA. 2010;107:5220–5225. doi: 10.1073/pnas.0910744107. PubMed DOI PMC

Yang F.Y., Hoffman N.E. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 1984;35:155–189. doi: 10.1146/annurev.pp.35.060184.001103. DOI

Ottenschläger I., Wolff P., Wolverton C., Bhalerao R.P., Sandberg G., Ishikawa H., Evans M., Palme K. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl. Acad. Sci. USA. 2003;100:2987–2991. doi: 10.1073/pnas.0437936100. PubMed DOI PMC

Baster P., Robert S., Kleine-Vehn J., Vanneste S., Kania U., Grunewald W., De Rybel B., Beeckman T., Friml J. SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 2013;32:260–274. doi: 10.1038/emboj.2012.310. PubMed DOI PMC

Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. doi: 10.1038/nature03184. PubMed DOI

Swarup R., Friml J., Marchant A., Ljung K., Sandberg G., Klaus Palme K., Malcolm Bennett M. Localization of the auxin permease AUX 1suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 2001;15:2648–2653. doi: 10.1101/gad.210501. PubMed DOI PMC

Béziat C., Kleine-Vehn J. The Road to Auxin-Dependent Growth Repression and Promotion in Apical Hooks. Curr. Biol. 2018;28:R519–R525. doi: 10.1016/j.cub.2018.01.069. PubMed DOI

Krecek P., Skupa P., Libus J., Naramoto S., Tejos R., Friml J. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009;10:249–260. doi: 10.1186/gb-2009-10-12-249. PubMed DOI PMC

Abas L., Benjamins R., Malenica N., Paciorek T., Wiśniewska J., Moulinier–Anzola J.C., Sieberer T., Friml J., Luschnig C. Intracellular trafficking and proteolysis of the Arabidopsis auxin efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 2006;8:249–256. doi: 10.1038/ncb1369. PubMed DOI

Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., Friml J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. USA. 2008;105/46:17812–17817. doi: 10.1073/pnas.0808073105. PubMed DOI PMC

Leitner J., Petrásek J., Tomanov K., Retzer K., Parezová M., Korbei B., Bachmair A., Zažímalová E., Luschnig C. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Prot Natl. Acad. Sci. USA. 2012;109/21:8322–8327. doi: 10.1073/pnas.1200824109. PubMed DOI PMC

Wu G., Cameron J.N., Ljung K., Spalding E.P. A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. Plant J. 2010;62:179–191. doi: 10.1111/j.1365-313X.2010.04137.x. PubMed DOI

Koczka L. Master’s Thesis. University of Szeged; Szeged, Hungary: 2016. Determination of the Arabidopsis thaliana CRK5 protein kinase phosphorylation sites on the PIN1, PIN2 and PIN3 hydrophilic loop region.

Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI

Dhonukshe P., Huang F., Galvan-Ampudia C.S., Mähönen A.P., Kleine-Vehn J., Xu J., Quint A., Prasad K., Friml J., Scheres B., et al. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development. 2010;137:3245–3255. doi: 10.1242/dev.052456. PubMed DOI

Zhang J., Nodzynski T., Pencík A., Rolcík J., Friml J. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc. Natl. Acad. Sci. USA. 2010;107:918–922. doi: 10.1073/pnas.0909460107. PubMed DOI PMC

Ganguly A., Lee S.H., Cho H.T. Functional identification of the phosphorylation sites of Arabidopsis PIN-FORMED3 for its subcellular localization and biological role. Plant J. 2012;71:810–823. doi: 10.1111/j.1365-313X.2012.05030.x. PubMed DOI

Barbosa I.C.R., Hammes U.Z., Schwechheimer C. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 2018;23/6:523–538. doi: 10.1016/j.tplants.2018.03.009. PubMed DOI

Schwechheimer C. Gibberellin signaling in plants—The extended version. Front. Plant Sci. 2012;2 doi: 10.3389/fpls.2011.00107. 107. PubMed DOI PMC

Salanenka Y., Verstraeten I., Löfke C., Tabata K., Naramoto S., Glanc M., Friml J. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc. Natl. Acad. Sci. USA. 2018;115/14:3716–3721. doi: 10.1073/pnas.1721760115. PubMed DOI PMC

Sun T.-P., Kamiya Y. The Arabidopsis GAl Locus Encodes the Cyclase ent-Kaurene Synthetase A of Gibberellin Biosynthesis. Plant Cell. 1994;6:1509–1518. PubMed PMC

Willige C.V., Ghosh S., Nill C., Zourelidou M., Dohmann E.M.N., Maier A., Schwechheimer C. The DELLA Domain of GA INSENSITIVE Mediates the Interaction with the GA INSENSITIVE DWARF1A Gibberellin Receptor of Arabidopsis. Plant Cell. 2007;19:1209–1220. doi: 10.1105/tpc.107.051441. PubMed DOI PMC

Willige B.C., Isono E., Richter R., Zourelidou M., Schwechheimer C. Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport–Dependent Growth and Development in Arabidopsis thaliana. Plant Cell. 2011;23:2184–2195. doi: 10.1105/tpc.111.086355. PubMed DOI PMC

Bechtold N., Ellis J., Pelletier G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R.Acad.Sci. Paris Life Sci. 1993;316:1194–1199.

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.R. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiol. 2005;139:5–17. doi: 10.1104/pp.105.063743. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...