AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PD128055, PD115502, OTKA124828,
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
GINOP-2.3.2-15-2016-00001
Hungarian Ministry for National Economy
PubMed
31336871
PubMed Central
PMC6678082
DOI
10.3390/ijms20143432
PII: ijms20143432
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, Ca2+/calmodulin-dependent kinase-related kinases (CRKs), polar auxin transport (PAT) proteins, GA3, auxin gradient, ethylene, skotomorphogenesis,
- MeSH
- Arabidopsis účinky léků fyziologie MeSH
- biologické markery MeSH
- fenotyp MeSH
- fosforylace MeSH
- hypokotyl fyziologie MeSH
- klíčení MeSH
- morfogeneze * účinky léků genetika MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- reportérové geny MeSH
- signální transdukce MeSH
- vývoj rostlin * účinky léků genetika MeSH
- xantony farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- CRK5 protein, Arabidopsis MeSH Prohlížeč
- GA3 compound MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- proteiny huseníčku MeSH
- receptory buněčného povrchu MeSH
- xantony MeSH
Seedling establishment following germination requires the fine tuning of plant hormone levels including that of auxin. Directional movement of auxin has a central role in the associated processes, among others, in hypocotyl hook development. Regulated auxin transport is ensured by several transporters (PINs, AUX1, ABCB) and their tight cooperation. Here we describe the regulatory role of the Arabidopsis thaliana CRK5 protein kinase during hypocotyl hook formation/opening influencing auxin transport and the auxin-ethylene-GA hormonal crosstalk. It was found that the Atcrk5-1 mutant exhibits an impaired hypocotyl hook establishment phenotype resulting only in limited bending in the dark. The Atcrk5-1 mutant proved to be deficient in the maintenance of local auxin accumulation at the concave side of the hypocotyl hook as demonstrated by decreased fluorescence of the auxin sensor DR5::GFP. Abundance of the polar auxin transport (PAT) proteins PIN3, PIN7, and AUX1 were also decreased in the Atcrk5-1 hypocotyl hook. The AtCRK5 protein kinase was reported to regulate PIN2 protein activity by phosphorylation during the root gravitropic response. Here it is shown that AtCRK5 can also phosphorylate in vitro the hydrophilic loops of PIN3. We propose that AtCRK5 may regulate hypocotyl hook formation in Arabidopsis thaliana through the phosphorylation of polar auxin transport (PAT) proteins, the fine tuning of auxin transport, and consequently the coordination of auxin-ethylene-GA levels.
Agricultural Biotechnology Institute Szent Györgyi Albert u 4 H 2100 Gödöllő Hungary
Department of Plant Biology University of Szeged 52 Közép fasor H 6726 Szeged Hungary
Developmental and Cell Biology of Plants CEITEC Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Vandenbussche F., Verbelen J.P., Van Der Straeten D. Of light and length: Regulation of hypocotyl growth in Arabidopsis. Bioessays. 2005;27:275–284. doi: 10.1002/bies.20199. PubMed DOI
Zhong S., Shi H., Xue C., Wei N., Guo H., Deng X.W. Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc. Natl. Acad. Sci. USA. 2014;111:3913–3920. doi: 10.1073/pnas.1402491111. PubMed DOI PMC
Yu Q., Zhang Y., Wang J., Yan X., Wang C., Xu J., Pan J. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis. Mol. Plant. 2016;9:101–112. doi: 10.1016/j.molp.2015.09.018. PubMed DOI
Salome P.A. Life’s a gas under pressure: Ethylene and etioplast maintenance in germinating seedlings. Plant Cell. 2017;29:2951–2952. doi: 10.1105/tpc.17.00939. PubMed DOI PMC
Vandenbussche F., Petrásek J., Zádníková P., Hoyerová K., Pesek B., Raz V., Swarup R., Bennett M., Zazímalová E., Benková E., et al. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development. 2010;137:597–606. doi: 10.1242/dev.040790. PubMed DOI
Zadnikova P., Petrasek J., Marhavy P., Raz V., Vandenbussche F., Ding Z., Schwarzerová K., Morita M.T., Tasaka M., Hejátko J., et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development. 2010;137:607–617. doi: 10.1242/dev.041277. PubMed DOI
Gallego-Bartolomé J., Arana M.V., Vandenbussche F., Zadnikova P., Minguet E.G., Guardiola V., Van Der Straeten D., Benkova E., Alabadi D., Blazquez M.A. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J. 2011;67:622–634. doi: 10.1111/j.1365-313X.2011.04621.x. PubMed DOI
Raz V., Ecker J.R. Regulation of differential growth in the apical hook of Arabidopsis. Development. 1999;126:3661–3668. PubMed
Li H., Johnson P., Stepanova A., Alonso J.M., Ecker J.R. Convergence of signaling of differential cell growth pathways in the control of differential cell growth in Arabidopsis. Dev. Cell. 2004;7:193–204. doi: 10.1016/j.devcel.2004.07.002. PubMed DOI
Abbas M., Alabadi D., Blazquez M.A. Differential growth at the apical hook: All roads lead to auxin. Front. Plant Sci. 2013;4:441–450. doi: 10.3389/fpls.2013.00441. PubMed DOI PMC
Mazzella M.A., Casal J.J., Muschietti J.P., Fox A.R. Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 2014;5:52–65. doi: 10.3389/fpls.2014.00052. PubMed DOI PMC
Zadnikova P., Smet D., Zhu Q., Van Der Straeten V., Benkova E. Strategies of seedlings to overcome their sessile nature: Auxin in mobility control. Front. Plant Sci. 2015;6:218. doi: 10.3389/fpls.2015.00218. PubMed DOI PMC
Zádnikova P., Wabnik K., Abuzeineh A., Gallemi M., Van Der Straeten D., Smith R.S., Inze D., Friml J., Prusinkiewicz P., Benkova E. A model of differential growth-guided apical hook formation in plants. Plant Cell. 2016;28:2464–2477. PubMed PMC
Bennett M.J., Marchant A., Green H.G., May S.T., Ward S.P., Millner P.A., Walker A.R., Schulz B., Feldmann K.A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science. 1996;273:948–950. doi: 10.1126/science.273.5277.948. PubMed DOI
Petrasek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertova D., Wiśniewska J., Tadele Z., Kubeš M., Čovanová M., et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science. 2006;312:914–918. doi: 10.1126/science.1123542. PubMed DOI
Robert H.S., Grunewald W., Sauer M., Cannoot B., Soriano M., Swarup R., Weijers D., Bennett M., Boutilier K., Friml J. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development. 2015;142:702–711. doi: 10.1242/dev.115832. PubMed DOI
Adamowski M., Friml J. PIN-dependent auxin transport: Action, regulation and evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Liu Y., Dong Q., Kita D., Huang J.B., Liu G., Wu X., Zhu X., Cheung A.Y., Wu H.M., Tao L.Z. RopGEF1 Plays a Critical Role in Polar Auxin Transport in Early Development. Plant Physiol. 2017;175:157–171. doi: 10.1104/pp.17.00697. PubMed DOI PMC
Zhou J.J., Luo J. The PIN-FORMED auxin efflux carriers in plants. Int. J. Mol. Sci. 2018;19:2759. doi: 10.3390/ijms19092759. PubMed DOI PMC
Wisniewska J., Xu J., Seifertova D., Brewer P.B., Ruzicka K., Blilou I., Rouquie D., Benkova E., Scheres B., Friml J. Polar PIN localization directs auxin flow in plants. Science. 2006;312:883. doi: 10.1126/science.1121356. PubMed DOI
Daviere J.M., Achard P. Gibberellin signaling in plants. Development. 2013;140:1147–1151. doi: 10.1242/dev.087650. PubMed DOI
Guzmán P., Ecker J.R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990;2:513–523. PubMed PMC
Roman G., Lubarsky B., Kieber J.J., Rothenberg M., Ecker J.R. Genetic Analysis of Ethylene Signal Transduction in Arabidopsis thaliana: Five Novel Mutant Loci Integrated into a Stress Response Pathway. Genetics. 1995;139:1393–1409. PubMed PMC
Lehman A., Black R., Ecker J.R. (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996;85:183–194. doi: 10.1016/S0092-8674(00)81095-8. PubMed DOI
Locascio A., Roig-Villanova I., Bernardi J., Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: A focus on auxin. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00412. Article412/1. PubMed DOI PMC
Daviere J.M., Achard P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant. 2016;9:10–20. doi: 10.1016/j.molp.2015.09.011. PubMed DOI
Willige B.C., Ogiso-Tanaka E., Zourelidou M., Schwechheimer C. WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Development. 2012;139:4020–4028. doi: 10.1242/dev.081240. PubMed DOI
Frigerio M., Alabadí D., Pérez-Gómez J., García-Cárcel L., Phillips A.L., Hedden P., Blázquez M.A. Transcriptional Regulation of Gibberellin Metabolism Genes by Auxin Signaling in Arabidopsis. Plant Physiol. 2006;142:553–563. doi: 10.1104/pp.106.084871. PubMed DOI PMC
Rieu I., Ruiz-Rivero O., Fernandez-Garcia N., Griffiths J., Powers S.J., Gong F., Linhartova T., Eriksson S., Nilsson O., Thomas S.G., et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008;53:488–504. doi: 10.1111/j.1365-313X.2007.03356.x. PubMed DOI
Chapman E.J., Greenham K., Castillejo C., Sartor R., Bialy A., Sun T., Estelle M. Hypocotyl Transcriptome Reveals Auxin Regulation of Growth-Promoting Genes through GA-Dependent and -Independent Pathways. PLoS ONE. 2012;7:e36210. doi: 10.1371/journal.pone.0036210. PubMed DOI PMC
Hedden P., Thomas S.G. Annual Plant Reviews, The Gibberellins. 1st ed. Wiley and Sons, Ltd.; Chichester, UK: 2016. pp. 285–312.
Harper J.F., Breton G., Harmon A. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol. 2004;55:263–288. doi: 10.1146/annurev.arplant.55.031903.141627. PubMed DOI
Reddy A.S.N., Ali G.S., Celesnik H., Day I.S. Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell. 2011;23:2010–2032. doi: 10.1105/tpc.111.084988. PubMed DOI PMC
Boudsocq M., Sheen J. CDPKs in immune and stress signaling. Trends Plant Sci. 2013;18:30–40. doi: 10.1016/j.tplants.2012.08.008. PubMed DOI PMC
Wang J.P., Xu Y.P., Munyampundu J.P., Liu T.Y., Cai X.Z. Calcium dependent protein kinase (CDPK) and CDPK related kinase (CRK) gene families in tomato: Genome wide identification and functional analyses indisease resistance. Mol. Genet. Genom. 2016;291:661–676. doi: 10.1007/s00438-015-1137-0. PubMed DOI
Simeunovic A., Mair A., Wurzinger B., Teige M. Know where your clients are: Subcellular localization and targets of calcium-dependent protein kinases. J. Exp. Bot. 2016;67:3855–3872. doi: 10.1093/jxb/erw157. PubMed DOI
Baba A.I., Rigó G., Ayaydin F., Rehman A.U., Andrási N., Zsigmond L., Valkai I., Urbancsok J., Vass I., Pasternak T., et al. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light. Int. J. Mol. Sci. 2018;19:1282. doi: 10.3390/ijms19051282. PubMed DOI PMC
Baba A.I., Rigó G., Andrási N., Tietz O., Palme K., Szabados L., Cséplő Á. Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members. In: Palocz-Andresen M., Szalay D., Gosztom A., Sípos L., Taligás T., editors. International Climate Protection. Springer Nature; Cham, Switzerland: 2019. pp. 99–105.
Renna L., Stefano G., Majeran W., Micalella C., Meinnel T., Giglione C., Brandizzi F. Golgi traffic integrity depends on N-Myristoyl transferase-1 in Arabidopsis. Plant Cell. 2013;25:1756–1773. doi: 10.1105/tpc.113.111393. PubMed DOI PMC
Xu W., Huang W. Calcium-Dependent Protein Kinases in Phytohormon Signaling Pathways. Int. J. Mol. Sci. 2017;18:2436. doi: 10.3390/ijms18112436. PubMed DOI PMC
Singh A., Sagar S., Biswas D.K. Calcium Dependent Protein Kinase, a Versatile Player in Plant Stress Management and Development. Crit. Rev. Plant Sci. 2017;36:336–352. doi: 10.1080/07352689.2018.1428438. DOI
Rigó G., Ayaydin F., Tietz O., Zsigmond L., Kovács H., Páy A., Salchert K., Darula Z., Medzihradszky K.F., Szabados L., et al. Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell. 2013;25:1592–1608. doi: 10.1105/tpc.113.110452. PubMed DOI PMC
Nemoto K., Takemori N., Seki M., Shinozaki K., Sawasaki T. Members of the Plant CRK Superfamily Are Capable of Trans- and Autophosphorylation of Tyrosine Residues. J. Biol. Chem. 2015;290:16665–16677. doi: 10.1074/jbc.M114.617274. PubMed DOI PMC
Takanoa J., Tanaka M., Toyoda A., Miwa K., Kasai K., Fuji K., Onouchi H., Naito S., Fujiwara T. Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc. Natl. Acad. Sci. USA. 2010;107:5220–5225. doi: 10.1073/pnas.0910744107. PubMed DOI PMC
Yang F.Y., Hoffman N.E. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 1984;35:155–189. doi: 10.1146/annurev.pp.35.060184.001103. DOI
Ottenschläger I., Wolff P., Wolverton C., Bhalerao R.P., Sandberg G., Ishikawa H., Evans M., Palme K. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl. Acad. Sci. USA. 2003;100:2987–2991. doi: 10.1073/pnas.0437936100. PubMed DOI PMC
Baster P., Robert S., Kleine-Vehn J., Vanneste S., Kania U., Grunewald W., De Rybel B., Beeckman T., Friml J. SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 2013;32:260–274. doi: 10.1038/emboj.2012.310. PubMed DOI PMC
Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. doi: 10.1038/nature03184. PubMed DOI
Swarup R., Friml J., Marchant A., Ljung K., Sandberg G., Klaus Palme K., Malcolm Bennett M. Localization of the auxin permease AUX 1suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 2001;15:2648–2653. doi: 10.1101/gad.210501. PubMed DOI PMC
Béziat C., Kleine-Vehn J. The Road to Auxin-Dependent Growth Repression and Promotion in Apical Hooks. Curr. Biol. 2018;28:R519–R525. doi: 10.1016/j.cub.2018.01.069. PubMed DOI
Krecek P., Skupa P., Libus J., Naramoto S., Tejos R., Friml J. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009;10:249–260. doi: 10.1186/gb-2009-10-12-249. PubMed DOI PMC
Abas L., Benjamins R., Malenica N., Paciorek T., Wiśniewska J., Moulinier–Anzola J.C., Sieberer T., Friml J., Luschnig C. Intracellular trafficking and proteolysis of the Arabidopsis auxin efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 2006;8:249–256. doi: 10.1038/ncb1369. PubMed DOI
Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., Friml J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. USA. 2008;105/46:17812–17817. doi: 10.1073/pnas.0808073105. PubMed DOI PMC
Leitner J., Petrásek J., Tomanov K., Retzer K., Parezová M., Korbei B., Bachmair A., Zažímalová E., Luschnig C. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Prot Natl. Acad. Sci. USA. 2012;109/21:8322–8327. doi: 10.1073/pnas.1200824109. PubMed DOI PMC
Wu G., Cameron J.N., Ljung K., Spalding E.P. A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. Plant J. 2010;62:179–191. doi: 10.1111/j.1365-313X.2010.04137.x. PubMed DOI
Koczka L. Master’s Thesis. University of Szeged; Szeged, Hungary: 2016. Determination of the Arabidopsis thaliana CRK5 protein kinase phosphorylation sites on the PIN1, PIN2 and PIN3 hydrophilic loop region.
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI
Dhonukshe P., Huang F., Galvan-Ampudia C.S., Mähönen A.P., Kleine-Vehn J., Xu J., Quint A., Prasad K., Friml J., Scheres B., et al. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development. 2010;137:3245–3255. doi: 10.1242/dev.052456. PubMed DOI
Zhang J., Nodzynski T., Pencík A., Rolcík J., Friml J. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc. Natl. Acad. Sci. USA. 2010;107:918–922. doi: 10.1073/pnas.0909460107. PubMed DOI PMC
Ganguly A., Lee S.H., Cho H.T. Functional identification of the phosphorylation sites of Arabidopsis PIN-FORMED3 for its subcellular localization and biological role. Plant J. 2012;71:810–823. doi: 10.1111/j.1365-313X.2012.05030.x. PubMed DOI
Barbosa I.C.R., Hammes U.Z., Schwechheimer C. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 2018;23/6:523–538. doi: 10.1016/j.tplants.2018.03.009. PubMed DOI
Schwechheimer C. Gibberellin signaling in plants—The extended version. Front. Plant Sci. 2012;2 doi: 10.3389/fpls.2011.00107. 107. PubMed DOI PMC
Salanenka Y., Verstraeten I., Löfke C., Tabata K., Naramoto S., Glanc M., Friml J. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc. Natl. Acad. Sci. USA. 2018;115/14:3716–3721. doi: 10.1073/pnas.1721760115. PubMed DOI PMC
Sun T.-P., Kamiya Y. The Arabidopsis GAl Locus Encodes the Cyclase ent-Kaurene Synthetase A of Gibberellin Biosynthesis. Plant Cell. 1994;6:1509–1518. PubMed PMC
Willige C.V., Ghosh S., Nill C., Zourelidou M., Dohmann E.M.N., Maier A., Schwechheimer C. The DELLA Domain of GA INSENSITIVE Mediates the Interaction with the GA INSENSITIVE DWARF1A Gibberellin Receptor of Arabidopsis. Plant Cell. 2007;19:1209–1220. doi: 10.1105/tpc.107.051441. PubMed DOI PMC
Willige B.C., Isono E., Richter R., Zourelidou M., Schwechheimer C. Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport–Dependent Growth and Development in Arabidopsis thaliana. Plant Cell. 2011;23:2184–2195. doi: 10.1105/tpc.111.086355. PubMed DOI PMC
Bechtold N., Ellis J., Pelletier G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R.Acad.Sci. Paris Life Sci. 1993;316:1194–1199.
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.R. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiol. 2005;139:5–17. doi: 10.1104/pp.105.063743. PubMed DOI PMC
CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana