An Essential Function for Auxin in Embryo Development
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33431580
PubMed Central
PMC8015691
DOI
10.1101/cshperspect.a039966
PII: cshperspect.a039966
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- semena rostlinná růst a vývoj MeSH
- signální transdukce MeSH
- výhonky rostlin růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
Embryogenesis in seed plants is the process during which a single cell develops into a mature multicellular embryo that encloses all the modules and primary patterns necessary to build the architecture of the new plant after germination. This process involves a series of cell divisions and coordinated cell fate determinations resulting in the formation of an embryonic pattern with a shoot-root axis and cotyledon(s). The phytohormone auxin profoundly controls pattern formation during embryogenesis. Auxin functions in the embryo through its maxima/minima distribution, which acts as an instructive signal for tissue specification and organ initiation. In this review, we describe how disruptions of auxin biosynthesis, transport, and response severely affect embryo development. Also, the mechanism of auxin action in the development of the shoot-root axis and the three-tissue system is discussed with recent findings. Biological tools that can be implemented to study the auxin function during embryo development are presented, as they may be of interest to the reader.
Zobrazit více v PubMed
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. 1997. Genes involved in organ separation in PubMed DOI PMC
Aida M, Ishida T, Tasaka M. 1999. Shoot apical meristem and cotyledon formation during PubMed
Aida M, Vernoux T, Furutani M, Traas J, Tasaka M. 2002. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the PubMed
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B. 2004. The PLETHORA genes mediate patterning of the PubMed DOI
Barton MK, Poethig RS. 1993. Formation of the shoot apical meristem in
Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. 2008. Storage reserve accumulation in PubMed DOI PMC
Berleth T, Jurgens G. 1993. The role of the monopteros gene in organising the basal body region of the
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. 2005. The PIN auxin efflux facilitator network controls growth and patterning in PubMed DOI
Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. 2008. Differential expression of PubMed DOI
Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN. 2018. Local auxin biosynthesis is a key regulator of plant development. Dev Cell 47: 306–318.e5. 10.1016/j.devcel.2018.09.022 PubMed DOI
Cao X, Yang H, Shang C, Ma S, Liu L, Cheng J. 2019. The roles of auxin biosynthesis YUCCA gene family in plants. Int J Mol Sci 20: 6343. PubMed PMC
Capron A, Chatfield S, Provart N, Berleth T. 2009. Embryogenesis: pattern formation from a single cell. Arabidopsis Book 7: e0126. 10.1199/tab.0126 PubMed DOI PMC
Chakrabortty B, Willemsen V, de Zeeuw T, Liao CY, Weijers D, Mulder B, Scheres B. 2018. A plausible microtubule-based mechanism for cell division orientation in plant embryogenesis. Curr Biol 28: 3031–3043.e2. 10.1016/j.cub.2018.07.025 PubMed DOI
Cheng Y, Dai X, Zhao Y. 2007. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in PubMed DOI PMC
Crawford BCW, Sewell J, Golembeski G, Roshan C, Long JA, Yanofsky MF. 2015. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347: 655–659. 10.1126/science.aaa0196 PubMed DOI
De Rybel B, Möller B, Yoshida S, Grabowicz I, Barbier de Reuille P, Boeren S, Smith RS, Borst JW, Weijers D. 2013. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in PubMed DOI
De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J, et al. 2014. Integration of growth and patterning during vascular tissue formation in PubMed DOI
de Vries SC, Weijers D. 2017. Plant embryogenesis. Curr Biol 27: R870–R873. 10.1016/j.cub.2017.05.026 PubMed DOI
Dharmasiri N, Dharmasiri S, Estelle M. 2005a. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445. 10.1038/nature03543 PubMed DOI
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M. 2005b. Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9: 109–119. 10.1016/j.devcel.2005.05.014 PubMed DOI
Ehrhardt DW, Shaw SL. 2006. Microtubule dynamics and organization in the plant cortical array. Annu Rev Plant Biol 57: 859–875. 10.1146/annurev.arplant.57.032905.105329 PubMed DOI
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G. 2003. Efflux-dependent auxin gradients establish the apical–basal axis of PubMed DOI
Friml J, Benfey P, Benková E, Bennett M, Berleth T, Geldner N, Grebe M, Heisler M, Hejátko J, Jürgens G, et al. 2006. Apical-basal polarity: why plant cells don't stand on their heads. Trends Plant Sci 11: 12–14. 10.1016/j.tplants.2005.11.010 PubMed DOI
Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M. 2004. PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in PubMed DOI
Gao P, Xiang D, Quilichini TD, Venglat P, Pandey PK, Wang E, Gillmor CS, Datla R. 2019. Gene expression atlas of embryo development in PubMed DOI
Gooh K, Ueda M, Aruga K, Park J, Arata H, Higashiyama T, Kurihara D. 2015. Live-cell imaging and optical manipulation of PubMed DOI
Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in PubMed DOI
Hamann T, Mayer U, Jurgens G. 1999. The auxin-insensitive PubMed
Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G. 2002. The PubMed DOI PMC
Han Q, Bartels A, Cheng X, Meyer A, An YC, Hsieh TF, Xiao W. 2019. Epigenetics regulates reproductive development in plants. Plants (Basel) 8: 564. 10.3390/plants8120564 PubMed DOI PMC
Hardtke CS, Berleth T. 1998. The PubMed DOI PMC
Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T. 2004. Overlapping and non-redundant functions of the PubMed DOI
Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN. 2000. The SHORT-ROOT gene controls radial patterning of the PubMed DOI
Huang F, Zago MK, Abas L, van Marion A, Galván-Ampudia CS, Offringa R. 2010. Phosphorylation of conserved PIN motifs directs PubMed DOI PMC
Kaplan DR, Cooke TJ. 1997. Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. Plant Cell 9: 1903. 10.2307/3870553 PubMed DOI PMC
Khakhar A, Leydon AR, Lemmex AC, Klavins E, Nemhauser JL. 2018. Synthetic hormone-responsive transcription factors can monitor and re-program plant development. eLife 7: e34702. 10.7554/eLife.34702 PubMed DOI PMC
Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. 2009. Functional analyses of PubMed DOI PMC
Laux T, Würschum T, Breuninger H. 2004. Genetic regulation of embryonic pattern formation. Plant Cell 16: S190–S202. 10.1105/tpc.016014 PubMed DOI PMC
Lavy M, Estelle M. 2016. Mechanisms of auxin signaling. Development 143: 3226–3229. 10.1242/dev.131870 PubMed DOI PMC
Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, et al. 2006. Whole-genome analysis of the SHORT-ROOT developmental pathway in PubMed DOI PMC
Leyser O. 2018. Auxin signaling. Plant Physiol 176: 465–479. 10.1104/pp.17.00765 PubMed DOI PMC
Liao CY, Weijers D. 2018. A toolkit for studying cellular reorganization during early embryogenesis in PubMed DOI PMC
Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 2015. Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12: 207–210. 10.1038/nmeth.3279 PubMed DOI PMC
Lie C, Kelsom C, Wu X. 2012. PubMed DOI
Liu Y, Li X, Zhao J, Tang X, Tian S, Chen J, Shi C, Wang W, Zhang L, Feng X, et al. 2015. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. Proc Natl Acad Sci 112: 12432–12437. 10.1073/pnas.1508651112 PubMed DOI PMC
Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development 140: 943–950. 10.1242/dev.086363 PubMed DOI
Locascio A, Roig-Villanova I, Bernardi J, Varotto S. 2014. Current perspectives on the hormonal control of seed development in PubMed DOI PMC
Mansfield SG, Briarty LG. 1991. Early embryogenesis in DOI
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, et al. 2011. The main auxin biosynthesis pathway in PubMed DOI PMC
Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the PubMed DOI
Mironova VV, Omelyanchuk NA, Wiebe DS, Levitsky VG. 2014. Computational analysis of auxin responsive elements in the PubMed DOI PMC
Mironova V, Teale W, Shahriari M, Dawson J, Palme K. 2017. The systems biology of auxin in developing embryos. Trends Plant Sci 22: 225–235. 10.1016/j.tplants.2016.11.010 PubMed DOI
Möller BK, ten Hove CA, Xiang D, Williams N, López LG, Yoshida S, Smit M, Datla R, Weijers D. 2017. Auxin response cell-autonomously controls ground tissue initiation in the early PubMed DOI PMC
Mravec J, Kubeš M, Bielach A, Gaykova V, Petrášek J, Skůpa P, Chand S, Benková E, Zažímalová E, Friml J. 2008. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135: 3345–3354. 10.1242/dev.021071 PubMed DOI
Mroue S, Simeunovic A, Robert HS. 2018. Auxin production as an integrator of environmental cues for developmental growth regulation. J Exp Bot 69: 201–212. 10.1093/jxb/erx259 PubMed DOI
Nakajima K, Sena G, Nawy T, Benfey PN. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413: 307–311. 10.1038/35095061 PubMed DOI
Ohashi-Ito K, Bergmann DC. 2007. Regulation of the PubMed DOI PMC
Palovaara J, Saiga S, Wendrich JR, van ‘t Wout Hofland N, van Schayck JP, Hater F, Mutte S, Sjollema J, Boekschoten M, Hooiveld GJ, et al. 2017. Transcriptome dynamics revealed by a gene expression atlas of the early PubMed DOI PMC
Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M. 2009. Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci 106: 22540–22545. 10.1073/pnas.0911967106 PubMed DOI PMC
Peng X, Sun MX. 2018. The suspensor as a model system to study the mechanism of cell fate specification during early embryogenesis. Plant Reprod 31: 59–65. 10.1007/s00497-018-0326-5 PubMed DOI PMC
Ploense SE, Wu MF, Nagpal P, Reed JW. 2009. A gain-of-function mutation in PubMed DOI PMC
Prigge MJ, Greenham K, Zhang Y, Santner A, Castillejo C, Mutka AM, O'Malley RC, Ecker JR, Kunkel BN, Estelle M. 2016. The PubMed DOI PMC
Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, Szutu W, Pandey BK, Bhosale RA, Bennett MJ, Busch W, et al. 2020. Genetic analysis of the PubMed DOI PMC
Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D. 2011. A cellular expression map of the PubMed DOI
Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M, Kientz M, Rios AF, Borst JW, Lukowitz W, Jürgens G, et al. 2012. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell 22: 211–222. 10.1016/j.devcel.2011.10.026 PubMed DOI
Radhakrishnan D, Shanmukhan AP, Kareem A, Aiyaz M, Varapparambathu V, Toms A, Kerstens M, Valsakumar D, Landge AN, Shaji A, et al. 2020. A coherent feed-forward loop drives vascular regeneration in damaged aerial organs of plants growing in a normal developmental context. Development 147: dev185710. 10.1242/dev.185710 PubMed DOI
Radoeva T, Vaddepalli P, Zhang Z, Weijers D. 2019a. Evolution, initiation, and diversity in early plant embryogenesis. Dev Cell 50: 533–543. 10.1016/j.devcel.2019.07.011 PubMed DOI
Radoeva T, Lokerse AS, Llavata-Peris CI, Wendrich JR, Xiang D, Liao CY, Vlaar L, Boekschoten M, Hooiveld G, Datla R, et al. 2019b. A robust auxin response network controls embryo and suspensor development through a basic helix loop helix transcriptional module. Plant Cell 31: 52–67. 10.1105/tpc.18.00518 PubMed DOI PMC
Radoeva T, Albrecht C, Piepers M, De Vries SC, Weijers D. 2020. Suspensor-derived somatic embryogenesis in PubMed DOI
Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, Weijers D, Friml J. 2013. Local auxin sources orient the apical-basal axis in PubMed DOI
Robert HS, Crhak Khaitova L, Mroue S, Benková E. 2015a. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in PubMed DOI
Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J. 2015b. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142: 702–711. 10.1242/dev.115832 PubMed DOI
Robert HS, Park C, Gutièrrez CL, Wójcikowska B, Pěnčík A, Novák O, Chen J, Grunewald W, Dresselhaus T, Friml J, et al. 2018. Maternal auxin supply contributes to early embryo patterning in PubMed DOI PMC
Salehin M, Bagchi R, Estelle M. 2015. SCF PubMed DOI PMC
Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D. 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464: 913–916. 10.1038/nature08836 PubMed DOI
Schwartz BW, Yeung EC, Meinke DW. 1994. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of PubMed
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, Levitsky V, Sevilem I, Roszak P, Slane D, Jürgens G, et al. 2020. Specification and regulation of vascular tissue identity in the PubMed DOI
Smith ZR, Long JA. 2010. Control of PubMed DOI PMC
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, Schlereth A, Jürgens G, Alonso JM. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133: 177–191. 10.1016/j.cell.2008.01.047 PubMed DOI
Swarup R, Bhosale R. 2019. Developmental roles of AUX1/LAX auxin influx carriers in plants. Front Plant Sci 10: 1306. 10.3389/fpls.2019.01306 PubMed DOI PMC
Takada S, Hibara K, Ishida T, Tasaka M. 2001. The CUP-SHAPED COTYLEDON1 gene of PubMed
Taylor-Teeples M, Lanctot A, Nemhauser JL. 2016. As above, so below: auxin's role in lateral organ development. Dev Biol 419: 156–164. 10.1016/j.ydbio.2016.03.020 PubMed DOI PMC
Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, Bennett M, Bougourd S. 2010. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in PubMed DOI PMC
Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M, Bainar P, Heckmann S, Tomancak P, Riha K. 2020. Imaging plant germline differentiation within PubMed DOI PMC
van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. 1997. Short-range control of cell differentiation in the PubMed DOI
Verna C, Ravichandran SJ, Sawchuk MG, Linh NM, Scarpella E. 2019. Coordination of tissue cell polarity by auxin transport and signaling. eLife 8: e51061. 10.7554/eLife.51061 PubMed DOI PMC
Vernon DM, Meinke DW. 1994. Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of PubMed DOI
Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, de Vries SC. 2003. The PubMed DOI PMC
Wasteneys GO. 2002. Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115: 1345–1354. PubMed
Weijers D, Jürgens G. 2005. Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol 8: 32–37. 10.1016/j.pbi.2004.11.001 PubMed DOI
Weijers D, Van Hamburg JP, Van Rijn E, Hooykaas PJ, Offringa R. 2003. Diphtheria toxin-mediated cell ablation reveals interregional communication during PubMed DOI PMC
Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G. 2006. Auxin triggers transient local signaling for cell specification in PubMed DOI
Wu X, Dabi T, Weigel D. 2005. Requirement of homeobox gene STIMPY/WOX9 for PubMed DOI
Wu X, Chory J, Weigel D. 2007. Combinations of WOX activities regulate tissue proliferation during PubMed DOI PMC
Xiong F, Liu HH, Duan CY, Zhang BK, Wei G, Zhang Y, Li S. 2019. PubMed DOI PMC
Yoshida S, de Reuille PB, Lane B, Bassel GW, Prusinkiewicz P, Smith RS, Weijers D. 2014. Genetic control of plant development by overriding a geometric division rule. Dev Cell 29: 75–87. 10.1016/j.devcel.2014.02.002 PubMed DOI
Yoshida S, Van Der Schuren A, Van Dop M, Van Galen L, Saiga S, Adibi M, Möller B, Colette A, Marhavy P, Smith R, et al. 2019. A SOSEKI-based coordinate system interprets global polarity cues in PubMed DOI PMC
Zhang J, Nodzyński T, Pěnčík A, Rolčík J, Friml J. 2010. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci 107: 918–922. 10.1073/pnas.0909460107 PubMed DOI PMC
Zhang Z, Tucker E, Hermann M, Laux T. 2017. A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell 40: 264–277.e4. 10.1016/j.devcel.2017.01.002 PubMed DOI
Zhao Y. 2014. Auxin biosynthesis. The Arabidopsis Book 12: e0173–e0173. 10.1199/tab.0173 PubMed DOI PMC
Zhou X, Shi C, Zhao P, Sun M. 2019. Isolation of living apical and basal cell lineages of early proembryos for transcriptome analysis. Plant Reprod 32: 105–111. 10.1007/s00497-018-00353-6 PubMed DOI
Epigenetics and plant hormone dynamics: a functional and methodological perspective
On the trail of auxin: Reporters and sensors
Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus