An Essential Function for Auxin in Embryo Development
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33431580
PubMed Central
PMC8015691
DOI
10.1101/cshperspect.a039966
PII: cshperspect.a039966
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- semena rostlinná růst a vývoj MeSH
- signální transdukce MeSH
- výhonky rostlin růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
Embryogenesis in seed plants is the process during which a single cell develops into a mature multicellular embryo that encloses all the modules and primary patterns necessary to build the architecture of the new plant after germination. This process involves a series of cell divisions and coordinated cell fate determinations resulting in the formation of an embryonic pattern with a shoot-root axis and cotyledon(s). The phytohormone auxin profoundly controls pattern formation during embryogenesis. Auxin functions in the embryo through its maxima/minima distribution, which acts as an instructive signal for tissue specification and organ initiation. In this review, we describe how disruptions of auxin biosynthesis, transport, and response severely affect embryo development. Also, the mechanism of auxin action in the development of the shoot-root axis and the three-tissue system is discussed with recent findings. Biological tools that can be implemented to study the auxin function during embryo development are presented, as they may be of interest to the reader.
Zobrazit více v PubMed
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. 1997. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9: 841–857. 10.1105/tpc.9.6.841 PubMed DOI PMC
Aida M, Ishida T, Tasaka M. 1999. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126: 1563. PubMed
Aida M, Vernoux T, Furutani M, Traas J, Tasaka M. 2002. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129: 3965. PubMed
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109–120. 10.1016/j.cell.2004.09.018 PubMed DOI
Barton MK, Poethig RS. 1993. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823.
Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. 2008. Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6: e0113. 10.1199/tab.0113 PubMed DOI PMC
Berleth T, Jurgens G. 1993. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118: 575.
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39–44. 10.1038/nature03184 PubMed DOI
Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. 2008. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell 14: 867–876. 10.1016/j.devcel.2008.03.008 PubMed DOI
Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN. 2018. Local auxin biosynthesis is a key regulator of plant development. Dev Cell 47: 306–318.e5. 10.1016/j.devcel.2018.09.022 PubMed DOI
Cao X, Yang H, Shang C, Ma S, Liu L, Cheng J. 2019. The roles of auxin biosynthesis YUCCA gene family in plants. Int J Mol Sci 20: 6343. PubMed PMC
Capron A, Chatfield S, Provart N, Berleth T. 2009. Embryogenesis: pattern formation from a single cell. Arabidopsis Book 7: e0126. 10.1199/tab.0126 PubMed DOI PMC
Chakrabortty B, Willemsen V, de Zeeuw T, Liao CY, Weijers D, Mulder B, Scheres B. 2018. A plausible microtubule-based mechanism for cell division orientation in plant embryogenesis. Curr Biol 28: 3031–3043.e2. 10.1016/j.cub.2018.07.025 PubMed DOI
Cheng Y, Dai X, Zhao Y. 2007. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19: 2430–2439. 10.1105/tpc.107.053009 PubMed DOI PMC
Crawford BCW, Sewell J, Golembeski G, Roshan C, Long JA, Yanofsky MF. 2015. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347: 655–659. 10.1126/science.aaa0196 PubMed DOI
De Rybel B, Möller B, Yoshida S, Grabowicz I, Barbier de Reuille P, Boeren S, Smith RS, Borst JW, Weijers D. 2013. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell 24: 426–437. 10.1016/j.devcel.2012.12.013 PubMed DOI
De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J, et al. 2014. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345: 1255215. 10.1126/science.1255215 PubMed DOI
de Vries SC, Weijers D. 2017. Plant embryogenesis. Curr Biol 27: R870–R873. 10.1016/j.cub.2017.05.026 PubMed DOI
Dharmasiri N, Dharmasiri S, Estelle M. 2005a. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445. 10.1038/nature03543 PubMed DOI
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M. 2005b. Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9: 109–119. 10.1016/j.devcel.2005.05.014 PubMed DOI
Ehrhardt DW, Shaw SL. 2006. Microtubule dynamics and organization in the plant cortical array. Annu Rev Plant Biol 57: 859–875. 10.1146/annurev.arplant.57.032905.105329 PubMed DOI
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G. 2003. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426: 147–153. 10.1038/nature02085 PubMed DOI
Friml J, Benfey P, Benková E, Bennett M, Berleth T, Geldner N, Grebe M, Heisler M, Hejátko J, Jürgens G, et al. 2006. Apical-basal polarity: why plant cells don't stand on their heads. Trends Plant Sci 11: 12–14. 10.1016/j.tplants.2005.11.010 PubMed DOI
Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M. 2004. PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131: 5021–5030. 10.1242/dev.01388 PubMed DOI
Gao P, Xiang D, Quilichini TD, Venglat P, Pandey PK, Wang E, Gillmor CS, Datla R. 2019. Gene expression atlas of embryo development in Arabidopsis. Plant Reprod 32: 93–104. 10.1007/s00497-019-00364-x PubMed DOI
Gooh K, Ueda M, Aruga K, Park J, Arata H, Higashiyama T, Kurihara D. 2015. Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Dev Cell 34: 242–251. 10.1016/j.devcel.2015.06.008 PubMed DOI
Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131: 657–668. 10.1242/dev.00963 PubMed DOI
Hamann T, Mayer U, Jurgens G. 1999. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126: 1387. PubMed
Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G. 2002. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16: 1610–1615. 10.1101/gad.229402 PubMed DOI PMC
Han Q, Bartels A, Cheng X, Meyer A, An YC, Hsieh TF, Xiao W. 2019. Epigenetics regulates reproductive development in plants. Plants (Basel) 8: 564. 10.3390/plants8120564 PubMed DOI PMC
Hardtke CS, Berleth T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17: 1405–1411. 10.1093/emboj/17.5.1405 PubMed DOI PMC
Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T. 2004. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131: 1089–1100. 10.1242/dev.00925 PubMed DOI
Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101: 555–567. 10.1016/S0092-8674(00)80865-X PubMed DOI
Huang F, Zago MK, Abas L, van Marion A, Galván-Ampudia CS, Offringa R. 2010. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell 22: 1129–1142. 10.1105/tpc.109.072678 PubMed DOI PMC
Kaplan DR, Cooke TJ. 1997. Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. Plant Cell 9: 1903. 10.2307/3870553 PubMed DOI PMC
Khakhar A, Leydon AR, Lemmex AC, Klavins E, Nemhauser JL. 2018. Synthetic hormone-responsive transcription factors can monitor and re-program plant development. eLife 7: e34702. 10.7554/eLife.34702 PubMed DOI PMC
Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. 2009. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21: 3152–3169. 10.1105/tpc.109.068676 PubMed DOI PMC
Laux T, Würschum T, Breuninger H. 2004. Genetic regulation of embryonic pattern formation. Plant Cell 16: S190–S202. 10.1105/tpc.016014 PubMed DOI PMC
Lavy M, Estelle M. 2016. Mechanisms of auxin signaling. Development 143: 3226–3229. 10.1242/dev.131870 PubMed DOI PMC
Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, et al. 2006. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4: e143. 10.1371/journal.pbio.0040143 PubMed DOI PMC
Leyser O. 2018. Auxin signaling. Plant Physiol 176: 465–479. 10.1104/pp.17.00765 PubMed DOI PMC
Liao CY, Weijers D. 2018. A toolkit for studying cellular reorganization during early embryogenesis in Arabidopsis thaliana. Plant J 93: 963–976. 10.1111/tpj.13841 PubMed DOI PMC
Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 2015. Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12: 207–210. 10.1038/nmeth.3279 PubMed DOI PMC
Lie C, Kelsom C, Wu X. 2012. WOX2 and STIMPY-LIKE/WOX8 promote cotyledon boundary formation in Arabidopsis. Plant J 72: 674–682. 10.1111/j.1365-313X.2012.05113.x PubMed DOI
Liu Y, Li X, Zhao J, Tang X, Tian S, Chen J, Shi C, Wang W, Zhang L, Feng X, et al. 2015. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. Proc Natl Acad Sci 112: 12432–12437. 10.1073/pnas.1508651112 PubMed DOI PMC
Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development 140: 943–950. 10.1242/dev.086363 PubMed DOI
Locascio A, Roig-Villanova I, Bernardi J, Varotto S. 2014. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Front Plant Sci 5: 412. 10.3389/fpls.2014.00412 PubMed DOI PMC
Mansfield SG, Briarty LG. 1991. Early embryogenesis in Arabidopsis thaliana. II: The developing embryo. Can J Bot 69: 461–476. 10.1139/b91-063 DOI
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, et al. 2011. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci 108: 18512–18517. 10.1073/pnas.1108434108 PubMed DOI PMC
Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95: 805–815. 10.1016/S0092-8674(00)81703-1 PubMed DOI
Mironova VV, Omelyanchuk NA, Wiebe DS, Levitsky VG. 2014. Computational analysis of auxin responsive elements in the Arabidopsis thaliana L. genome. BMC Genomics 15(Suppl 12): S4. 10.1186/1471-2164-15-S12-S4 PubMed DOI PMC
Mironova V, Teale W, Shahriari M, Dawson J, Palme K. 2017. The systems biology of auxin in developing embryos. Trends Plant Sci 22: 225–235. 10.1016/j.tplants.2016.11.010 PubMed DOI
Möller BK, ten Hove CA, Xiang D, Williams N, López LG, Yoshida S, Smit M, Datla R, Weijers D. 2017. Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo. Proc Natl Acad Sci 114: E2533–E2539. 10.1073/pnas.1616493114 PubMed DOI PMC
Mravec J, Kubeš M, Bielach A, Gaykova V, Petrášek J, Skůpa P, Chand S, Benková E, Zažímalová E, Friml J. 2008. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135: 3345–3354. 10.1242/dev.021071 PubMed DOI
Mroue S, Simeunovic A, Robert HS. 2018. Auxin production as an integrator of environmental cues for developmental growth regulation. J Exp Bot 69: 201–212. 10.1093/jxb/erx259 PubMed DOI
Nakajima K, Sena G, Nawy T, Benfey PN. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413: 307–311. 10.1038/35095061 PubMed DOI
Ohashi-Ito K, Bergmann DC. 2007. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134: 2959–2968. 10.1242/dev.006296 PubMed DOI PMC
Palovaara J, Saiga S, Wendrich JR, van ‘t Wout Hofland N, van Schayck JP, Hater F, Mutte S, Sjollema J, Boekschoten M, Hooiveld GJ, et al. 2017. Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo. Nat Plants 3: 894–904. 10.1038/s41477-017-0035-3 PubMed DOI PMC
Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M. 2009. Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci 106: 22540–22545. 10.1073/pnas.0911967106 PubMed DOI PMC
Peng X, Sun MX. 2018. The suspensor as a model system to study the mechanism of cell fate specification during early embryogenesis. Plant Reprod 31: 59–65. 10.1007/s00497-018-0326-5 PubMed DOI PMC
Ploense SE, Wu MF, Nagpal P, Reed JW. 2009. A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning. Development 136: 1509–1517. 10.1242/dev.025932 PubMed DOI PMC
Prigge MJ, Greenham K, Zhang Y, Santner A, Castillejo C, Mutka AM, O'Malley RC, Ecker JR, Kunkel BN, Estelle M. 2016. The Arabidopsis auxin receptor F-Box proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram. G3 (Bethesda) 6: 1383–1390. 10.1534/g3.115.025585 PubMed DOI PMC
Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, Szutu W, Pandey BK, Bhosale RA, Bennett MJ, Busch W, et al. 2020. Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife 9: e54740. 10.7554/eLife.54740 PubMed DOI PMC
Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D. 2011. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J 68: 597–606. 10.1111/j.1365-313X.2011.04710.x PubMed DOI
Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M, Kientz M, Rios AF, Borst JW, Lukowitz W, Jürgens G, et al. 2012. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell 22: 211–222. 10.1016/j.devcel.2011.10.026 PubMed DOI
Radhakrishnan D, Shanmukhan AP, Kareem A, Aiyaz M, Varapparambathu V, Toms A, Kerstens M, Valsakumar D, Landge AN, Shaji A, et al. 2020. A coherent feed-forward loop drives vascular regeneration in damaged aerial organs of plants growing in a normal developmental context. Development 147: dev185710. 10.1242/dev.185710 PubMed DOI
Radoeva T, Vaddepalli P, Zhang Z, Weijers D. 2019a. Evolution, initiation, and diversity in early plant embryogenesis. Dev Cell 50: 533–543. 10.1016/j.devcel.2019.07.011 PubMed DOI
Radoeva T, Lokerse AS, Llavata-Peris CI, Wendrich JR, Xiang D, Liao CY, Vlaar L, Boekschoten M, Hooiveld G, Datla R, et al. 2019b. A robust auxin response network controls embryo and suspensor development through a basic helix loop helix transcriptional module. Plant Cell 31: 52–67. 10.1105/tpc.18.00518 PubMed DOI PMC
Radoeva T, Albrecht C, Piepers M, De Vries SC, Weijers D. 2020. Suspensor-derived somatic embryogenesis in Arabidopsis. Development 147: dev188912. 10.1242/dev.188912 PubMed DOI
Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, Weijers D, Friml J. 2013. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23: 2506–2512. 10.1016/j.cub.2013.09.039 PubMed DOI
Robert HS, Crhak Khaitova L, Mroue S, Benková E. 2015a. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J Exp Bot 66: 5029–5042. 10.1093/jxb/erv256 PubMed DOI
Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J. 2015b. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142: 702–711. 10.1242/dev.115832 PubMed DOI
Robert HS, Park C, Gutièrrez CL, Wójcikowska B, Pěnčík A, Novák O, Chen J, Grunewald W, Dresselhaus T, Friml J, et al. 2018. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat Plants 4: 548–553. 10.1038/s41477-018-0204-z PubMed DOI PMC
Salehin M, Bagchi R, Estelle M. 2015. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27: 9–19. 10.1105/tpc.114.133744 PubMed DOI PMC
Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D. 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464: 913–916. 10.1038/nature08836 PubMed DOI
Schwartz BW, Yeung EC, Meinke DW. 1994. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120: 3235–3245. PubMed
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, Levitsky V, Sevilem I, Roszak P, Slane D, Jürgens G, et al. 2020. Specification and regulation of vascular tissue identity in the Arabidopsis embryo. Development 147: dev186130. 10.1242/dev.186130 PubMed DOI
Smith ZR, Long JA. 2010. Control of Arabidopsis apical–basal embryo polarity by antagonistic transcription factors. Nature 464: 423–426. 10.1038/nature08843 PubMed DOI PMC
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, Schlereth A, Jürgens G, Alonso JM. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133: 177–191. 10.1016/j.cell.2008.01.047 PubMed DOI
Swarup R, Bhosale R. 2019. Developmental roles of AUX1/LAX auxin influx carriers in plants. Front Plant Sci 10: 1306. 10.3389/fpls.2019.01306 PubMed DOI PMC
Takada S, Hibara K, Ishida T, Tasaka M. 2001. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128: 1127. PubMed
Taylor-Teeples M, Lanctot A, Nemhauser JL. 2016. As above, so below: auxin's role in lateral organ development. Dev Biol 419: 156–164. 10.1016/j.ydbio.2016.03.020 PubMed DOI PMC
Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, Bennett M, Bougourd S. 2010. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot 105: 277–289. 10.1093/aob/mcp287 PubMed DOI PMC
Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M, Bainar P, Heckmann S, Tomancak P, Riha K. 2020. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. eLife 9: e52546. 10.7554/eLife.52546 PubMed DOI PMC
van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287–289. 10.1038/36856 PubMed DOI
Verna C, Ravichandran SJ, Sawchuk MG, Linh NM, Scarpella E. 2019. Coordination of tissue cell polarity by auxin transport and signaling. eLife 8: e51061. 10.7554/eLife.51061 PubMed DOI PMC
Vernon DM, Meinke DW. 1994. Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Dev Biol 165: 566–573. 10.1006/dbio.1994.1276 PubMed DOI
Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, de Vries SC. 2003. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15: 1563–1577. 10.1105/tpc.012203 PubMed DOI PMC
Wasteneys GO. 2002. Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115: 1345–1354. PubMed
Weijers D, Jürgens G. 2005. Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol 8: 32–37. 10.1016/j.pbi.2004.11.001 PubMed DOI
Weijers D, Van Hamburg JP, Van Rijn E, Hooykaas PJ, Offringa R. 2003. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol 133: 1882–1892. 10.1104/pp.103.030692 PubMed DOI PMC
Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G. 2006. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10: 265–270. 10.1016/j.devcel.2005.12.001 PubMed DOI
Wu X, Dabi T, Weigel D. 2005. Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 15: 436–440. 10.1016/j.cub.2004.12.079 PubMed DOI
Wu X, Chory J, Weigel D. 2007. Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Dev Biol 309: 306–316. 10.1016/j.ydbio.2007.07.019 PubMed DOI PMC
Xiong F, Liu HH, Duan CY, Zhang BK, Wei G, Zhang Y, Li S. 2019. Arabidopsis JANUS regulates embryonic pattern formation through Pol II-mediated transcription of WOX2 and PIN7. iScience 19: 1179–1188. 10.1016/j.isci.2019.09.004 PubMed DOI PMC
Yoshida S, de Reuille PB, Lane B, Bassel GW, Prusinkiewicz P, Smith RS, Weijers D. 2014. Genetic control of plant development by overriding a geometric division rule. Dev Cell 29: 75–87. 10.1016/j.devcel.2014.02.002 PubMed DOI
Yoshida S, Van Der Schuren A, Van Dop M, Van Galen L, Saiga S, Adibi M, Möller B, Colette A, Marhavy P, Smith R, et al. 2019. A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis. Nat Plants 5: 160–166. 10.1038/s41477-019-0363-6 PubMed DOI PMC
Zhang J, Nodzyński T, Pěnčík A, Rolčík J, Friml J. 2010. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci 107: 918–922. 10.1073/pnas.0909460107 PubMed DOI PMC
Zhang Z, Tucker E, Hermann M, Laux T. 2017. A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell 40: 264–277.e4. 10.1016/j.devcel.2017.01.002 PubMed DOI
Zhao Y. 2014. Auxin biosynthesis. The Arabidopsis Book 12: e0173–e0173. 10.1199/tab.0173 PubMed DOI PMC
Zhou X, Shi C, Zhao P, Sun M. 2019. Isolation of living apical and basal cell lineages of early proembryos for transcriptome analysis. Plant Reprod 32: 105–111. 10.1007/s00497-018-00353-6 PubMed DOI
Epigenetics and plant hormone dynamics: a functional and methodological perspective
On the trail of auxin: Reporters and sensors
Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus