Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008446
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_026/0008446
Ministerstvo Školství, Mládeže a Tělovýchovy
19-05200S
Grantová Agentura České Republiky
19-05200S
Grantová Agentura České Republiky
PubMed
37142980
PubMed Central
PMC10158150
DOI
10.1186/s12864-023-09316-2
PII: 10.1186/s12864-023-09316-2
Knihovny.cz E-zdroje
- Klíčová slova
- Brassica napus, Embryo, Ovule, Seed, Thermomorphogenesis, Transcriptomics,
- MeSH
- Brassica napus * metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- semena rostlinná metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- vajíčko rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
BACKGROUND: Plant sexual reproduction is highly sensitive to elevated ambient temperatures, impacting seed development and production. We previously phenotyped this effect on three rapeseed cultivars (DH12075, Topas DH4079, and Westar). This work describes the transcriptional response associated with the phenotypic changes induced by heat stress during early seed development in Brassica napus. RESULTS: We compared the differential transcriptional response in unfertilized ovules and seeds bearing embryos at 8-cell and globular developmental stages of the three cultivars exposed to high temperatures. We identified that all tissues and cultivars shared a common transcriptional response with the upregulation of genes linked to heat stress, protein folding and binding to heat shock proteins, and the downregulation of cell metabolism. The comparative analysis identified an enrichment for a response to reactive oxygen species (ROS) in the heat-tolerant cultivar Topas, correlating with the phenotypic changes. The highest heat-induced transcriptional response in Topas seeds was detected for genes encoding various peroxidases, temperature-induced lipocalin (TIL1), or protein SAG21/LEA5. On the contrary, the transcriptional response in the two heat-sensitive cultivars, DH12075 and Westar, was characterized by heat-induced cellular damages with the upregulation of genes involved in the photosynthesis and plant hormone signaling pathways. Particularly, the TIFY/JAZ genes involved in jasmonate signaling were induced by stress, specifically in ovules of heat-sensitive cultivars. Using a weighted gene co-expression network analysis (WGCNA), we identified key modules and hub genes involved in the heat stress response in studied tissues of either heat-tolerant or sensitive cultivars. CONCLUSIONS: Our transcriptional analysis complements a previous phenotyping analysis by characterizing the growth response to elevated temperatures during early seed development and reveals the molecular mechanisms underlying the phenotypic response. The results demonstrated that response to ROS, seed photosynthesis, and hormonal regulation might be the critical factors for stress tolerance in oilseed rape.
Zobrazit více v PubMed
Luo Q. Temperature thresholds and crop production: a review. Clim Change. 2011;109:583–598. doi: 10.1007/s10584-011-0028-6. DOI
Chaturvedi P, Wiese AJ, Ghatak A, Drábková LZ, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. New Phytol. 2021;231:571–585. doi: 10.1111/nph.17380. PubMed DOI PMC
Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice. 2018;11:14. doi: 10.1186/s12284-018-0206-5. PubMed DOI PMC
Mesihovic A, Iannacone R, Firon N, Fragkostefanakis S. Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reprod. 2016;29:93–105. doi: 10.1007/s00497-016-0281-y. PubMed DOI
Young LW, Wilen RW, Bonham-Smith PC. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot. 2004;55:485–495. doi: 10.1093/jxb/erh038. PubMed DOI
Hedhly A. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ Exp Bot. 2011;74:9–16. doi: 10.1016/j.envexpbot.2011.03.016. DOI
Ambastha V, Leshem Y. Differential cell persistence is observed in the Arabidopsis female gametophyte during heat stress. Plant Reprod. 2020;33:111–116. doi: 10.1007/s00497-020-00390-0. PubMed DOI
Lohani N, Singh MB, Bhalla PL. High temperature susceptibility of sexual reproduction in crop plants. J Exp Bot. 2020;71:555–568. doi: 10.1093/jxb/erz426. PubMed DOI
Mácová K, Prabhullachandran U, Štefková M, Spyroglou I, Pěnčík A, Endlová L, et al. Long-term high-temperature stress impacts on embryo and seed development in brassica napus. Front Plant Sci. 2021;13:844292. doi: 10.3389/fpls.2022.844292. PubMed DOI PMC
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Huang R, Liu Z, Xing M, Yang Y, Wu X, Liu H, et al. Heat stress suppresses Brassica napus seed oil accumulation by inhibition of Photosynthesis and BnWRI1 pathway. Plant Cell Physiol. 2019;60:1457–1470. doi: 10.1093/pcp/pcz052. PubMed DOI
Luhua S, Ciftci-Yilmaz S, Harper J, Cushman J, Mittler R. Enhanced tolerance to oxidative stress in transgenic arabidopsis plants expressing proteins of unknown function. Plant Physiol. 2008;148:280–292. doi: 10.1104/pp.108.124875. PubMed DOI PMC
Karpinska B, Razak N, Shaw DS, Plumb W, Slijke EVD, Stephens J, et al. Late embryogenesis abundant (LEA)5 regulates translation in mitochondria and chloroplasts to enhance growth and stress tolerance. Front Plant Sci. 2022;13:875799. doi: 10.3389/fpls.2022.875799. PubMed DOI PMC
Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, et al. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J. 2006;48:743–756. doi: 10.1111/j.1365-313X.2006.02911.x. PubMed DOI
Jedličková V, Ebrahimi-Naghani S, Robert HS. On the trail of auxin: reporters and sensors. Plant Cell. 2022;34:3200. doi: 10.1093/plcell/koac179. PubMed DOI PMC
Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell. 2015;27:3143–3159. doi: 10.1105/tpc.15.00562. PubMed DOI PMC
Villaécija-Aguilar JA, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmidt C, Dawid C, et al. SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. Plos Genet. 2019;15:e1008327. doi: 10.1371/journal.pgen.1008327. PubMed DOI PMC
Hamon-Josse M, Villaécija-Aguilar JA, Ljung K, Leyser O, Gutjahr C, Bennett T. KAI2 regulates seedling development by mediating light-induced remodelling of auxin transport. New Phytol. 2022;235:126–140. doi: 10.1111/nph.18110. PubMed DOI PMC
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot. 2007;2013(111):1021–1058. PubMed PMC
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC
Kourani M, Mohareb F, Rezwan FI, Anastasiadi M, Hammond JP. Genetic and physiological responses to heat stress in Brassica napus. Front Plant Sci. 2022;13:832147. doi: 10.3389/fpls.2022.832147. PubMed DOI PMC
Venglat P, Xiang D, Yang H, Wan L, Tibiche C, Ross A, et al. Gene expression profiles during embryo development in Brassica napus. Plant Breeding. 2013;132:514–522.
Ziegler DJ, Khan D, Kalichuk JL, Becker MG, Belmonte MF. Transcriptome landscape of the early Brassica napusseed. J Integr Plant Biol. 2019;61:639–650. doi: 10.1111/jipb.12812. PubMed DOI
Khan D, Ziegler DJ, Kalichuk JL, Hoi V, Huynh N, Hajihassani A, et al. Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development. Plant J. 2022;109:477–489. doi: 10.1111/tpj.15587. PubMed DOI
Bourgine B, Guihur A. Heat shock signaling in land plants: from plasma membrane sensing to the transcription of small heat shock proteins. Front Plant Sci. 2021;12:710801. doi: 10.3389/fpls.2021.710801. PubMed DOI PMC
Yu E, Fan C, Yang Q, Li X, Wan B, Dong Y, et al. Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PLoS ONE. 2013;9:e101914. doi: 10.1371/journal.pone.0101914. PubMed DOI PMC
Lee JS, Adams KL. Global insights into duplicated gene expression and alternative splicing in polyploid Brassica napus under heat, cold, and drought stress. Plant Genome. 2020;13:e20057. doi: 10.1002/tpg2.20057. PubMed DOI
Lohani N, Singh MB, Bhalla PL. RNA-Seq highlights molecular events associated with impaired pollen-pistil interactions following short-term heat stress in Brassica napus. Front Plant Sci. 2021;11:622748. doi: 10.3389/fpls.2020.622748. PubMed DOI PMC
Boter M, Pozas J, Jarillo JA, Piñeiro M, Pernas M. Brassica napus roots use different strategies to respond to warm temperatures. Int J Mol Sci. 2023;24:1143. doi: 10.3390/ijms24021143. PubMed DOI PMC
Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 2000;122:1099–1108. doi: 10.1104/pp.122.4.1099. PubMed DOI PMC
Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ. BOBBER1 is a Noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol. 2009;151:241–252. doi: 10.1104/pp.109.142125. PubMed DOI PMC
Jurkuta RJ, Kaplinsky NJ, Spindel JE, Barton MK. Partitioning the apical domain of the Arabidopsis embryo requires the BOBBER1 NudC domain protein. Plant Cell. 2009;21:1957–1971. doi: 10.1105/tpc.108.065284. PubMed DOI PMC
Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN. A comprehensive review on function and application of plant Peroxidases. Biochem Anal Biochem. 2017;6:308. doi: 10.4172/2161-1009.1000308. DOI
Sofo A, Scopa A, Nuzzaci M, Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci. 2015;16:13561–13578. doi: 10.3390/ijms160613561. PubMed DOI PMC
Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol. 2017;95:157–168. doi: 10.1007/s11103-017-0644-2. PubMed DOI
Gulen H, Eris A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 2004;166:739–744. doi: 10.1016/j.plantsci.2003.11.014. DOI
Charron J-BF, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F. Identification, expression, and evolutionary analyses of plant Lipocalins. Plant Physiol. 2005;139:2017–2028. doi: 10.1104/pp.105.070466. PubMed DOI PMC
Chi W, Fung RWM, Liu H, Hsu C, Charng Y. Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant Cell Environ. 2009;32:917–927. doi: 10.1111/j.1365-3040.2009.01972.x. PubMed DOI
Boca S, Koestler F, Ksas B, Chevalier A, Leymarie J, Fekete A, et al. Arabidopsis lipocalins. Plant Cell Environ. 2014;37:368–381. doi: 10.1111/pce.12159. PubMed DOI
He X, Sambe MAN, Zhuo C, Tu Q, Guo Z. A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress. Plant Mol Biol. 2015;87:645–654. doi: 10.1007/s11103-015-0304-3. PubMed DOI
Berterame NM, Bertagnoli S, Codazzi V, Porro D, Branduardi P, Temperature-induced lipocalin (TIL): a shield against stress-inducing environmental shocks in Saccharomyces cerevisiae. FEMS Yeast Res. 2017;17:fox056. 10.1093/femsyr/fox056. PubMed
Abo-Ogiala A, Carsjens C, Diekmann H, Fayyaz P, Herrfurth C, Feussner I, et al. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J Plant Physiol. 2014;171:250–259. doi: 10.1016/j.jplph.2013.08.003. PubMed DOI
Mertens J, Aliyu H, Cowan DA. LEA proteins and the evolution of the why domain. Appl Environ Microb. 2018;84:e00539. doi: 10.1128/AEM.00539-18. PubMed DOI PMC
Ruuska SA, Schwender J, Ohlrogge JB. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 2004;136:2700–2709. doi: 10.1104/pp.104.047977. PubMed DOI PMC
Goffman FD, Alonso AP, Schwender J, Shachar-Hill Y, Ohlrogge JB. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol. 2005;138:2269–2279. doi: 10.1104/pp.105.063628. PubMed DOI PMC
Wu X, Liu Z, Hu Z, Huang R. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol. 2014;56:582–593. doi: 10.1111/jipb.12158. PubMed DOI
Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, et al. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol. 2019;181:1668–1682. doi: 10.1104/pp.19.00956. PubMed DOI PMC
Devireddy AR, Tschaplinski TJ, Tuskan GA, Muchero W, Chen J-G. Role of reactive oxygen species and hormones in plant responses to temperature changes. Int J Mol Sci. 2021;22:8843. doi: 10.3390/ijms22168843. PubMed DOI PMC
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. Plants. 2020;9:91. doi: 10.3390/plants9010091. PubMed DOI PMC
Kale RS, Seep JL, Sallans L, Frankel LK, Bricker TM. Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes. Photosynth Res. 2022;152:261–274. doi: 10.1007/s11120-022-00902-1. PubMed DOI
Hu S, Ding Y, Zhu C. Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci. 2020;11:375. doi: 10.3389/fpls.2020.00375. PubMed DOI PMC
Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 2009;182:175–187. doi: 10.1111/j.1469-8137.2008.02735.x. PubMed DOI
Kazan K, Manners JM. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 2012;17:22–31. doi: 10.1016/j.tplants.2011.10.006. PubMed DOI
Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD, et al. Regulation and function of arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol. 2008;146:952–964. doi: 10.1104/pp.107.115691. PubMed DOI PMC
Balfagón D, Zandalinas SI, Mittler R, Gómez-Cadenas A. High temperatures modify plant responses to abiotic stress conditions. Physiol Plantarum. 2020;170:335–344. doi: 10.1111/ppl.13151. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45–e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC