Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus

. 2023 May 04 ; 24 (1) : 236. [epub] 20230504

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37142980

Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008446 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_026/0008446 Ministerstvo Školství, Mládeže a Tělovýchovy
19-05200S Grantová Agentura České Republiky
19-05200S Grantová Agentura České Republiky

Odkazy

PubMed 37142980
PubMed Central PMC10158150
DOI 10.1186/s12864-023-09316-2
PII: 10.1186/s12864-023-09316-2
Knihovny.cz E-zdroje

BACKGROUND: Plant sexual reproduction is highly sensitive to elevated ambient temperatures, impacting seed development and production. We previously phenotyped this effect on three rapeseed cultivars (DH12075, Topas DH4079, and Westar). This work describes the transcriptional response associated with the phenotypic changes induced by heat stress during early seed development in Brassica napus. RESULTS: We compared the differential transcriptional response in unfertilized ovules and seeds bearing embryos at 8-cell and globular developmental stages of the three cultivars exposed to high temperatures. We identified that all tissues and cultivars shared a common transcriptional response with the upregulation of genes linked to heat stress, protein folding and binding to heat shock proteins, and the downregulation of cell metabolism. The comparative analysis identified an enrichment for a response to reactive oxygen species (ROS) in the heat-tolerant cultivar Topas, correlating with the phenotypic changes. The highest heat-induced transcriptional response in Topas seeds was detected for genes encoding various peroxidases, temperature-induced lipocalin (TIL1), or protein SAG21/LEA5. On the contrary, the transcriptional response in the two heat-sensitive cultivars, DH12075 and Westar, was characterized by heat-induced cellular damages with the upregulation of genes involved in the photosynthesis and plant hormone signaling pathways. Particularly, the TIFY/JAZ genes involved in jasmonate signaling were induced by stress, specifically in ovules of heat-sensitive cultivars. Using a weighted gene co-expression network analysis (WGCNA), we identified key modules and hub genes involved in the heat stress response in studied tissues of either heat-tolerant or sensitive cultivars. CONCLUSIONS: Our transcriptional analysis complements a previous phenotyping analysis by characterizing the growth response to elevated temperatures during early seed development and reveals the molecular mechanisms underlying the phenotypic response. The results demonstrated that response to ROS, seed photosynthesis, and hormonal regulation might be the critical factors for stress tolerance in oilseed rape.

Zobrazit více v PubMed

Luo Q. Temperature thresholds and crop production: a review. Clim Change. 2011;109:583–598. doi: 10.1007/s10584-011-0028-6. DOI

Chaturvedi P, Wiese AJ, Ghatak A, Drábková LZ, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. New Phytol. 2021;231:571–585. doi: 10.1111/nph.17380. PubMed DOI PMC

Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice. 2018;11:14. doi: 10.1186/s12284-018-0206-5. PubMed DOI PMC

Mesihovic A, Iannacone R, Firon N, Fragkostefanakis S. Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reprod. 2016;29:93–105. doi: 10.1007/s00497-016-0281-y. PubMed DOI

Young LW, Wilen RW, Bonham-Smith PC. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot. 2004;55:485–495. doi: 10.1093/jxb/erh038. PubMed DOI

Hedhly A. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ Exp Bot. 2011;74:9–16. doi: 10.1016/j.envexpbot.2011.03.016. DOI

Ambastha V, Leshem Y. Differential cell persistence is observed in the Arabidopsis female gametophyte during heat stress. Plant Reprod. 2020;33:111–116. doi: 10.1007/s00497-020-00390-0. PubMed DOI

Lohani N, Singh MB, Bhalla PL. High temperature susceptibility of sexual reproduction in crop plants. J Exp Bot. 2020;71:555–568. doi: 10.1093/jxb/erz426. PubMed DOI

Mácová K, Prabhullachandran U, Štefková M, Spyroglou I, Pěnčík A, Endlová L, et al. Long-term high-temperature stress impacts on embryo and seed development in brassica napus. Front Plant Sci. 2021;13:844292. doi: 10.3389/fpls.2022.844292. PubMed DOI PMC

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC

Huang R, Liu Z, Xing M, Yang Y, Wu X, Liu H, et al. Heat stress suppresses Brassica napus seed oil accumulation by inhibition of Photosynthesis and BnWRI1 pathway. Plant Cell Physiol. 2019;60:1457–1470. doi: 10.1093/pcp/pcz052. PubMed DOI

Luhua S, Ciftci-Yilmaz S, Harper J, Cushman J, Mittler R. Enhanced tolerance to oxidative stress in transgenic arabidopsis plants expressing proteins of unknown function. Plant Physiol. 2008;148:280–292. doi: 10.1104/pp.108.124875. PubMed DOI PMC

Karpinska B, Razak N, Shaw DS, Plumb W, Slijke EVD, Stephens J, et al. Late embryogenesis abundant (LEA)5 regulates translation in mitochondria and chloroplasts to enhance growth and stress tolerance. Front Plant Sci. 2022;13:875799. doi: 10.3389/fpls.2022.875799. PubMed DOI PMC

Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, et al. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J. 2006;48:743–756. doi: 10.1111/j.1365-313X.2006.02911.x. PubMed DOI

Jedličková V, Ebrahimi-Naghani S, Robert HS. On the trail of auxin: reporters and sensors. Plant Cell. 2022;34:3200. doi: 10.1093/plcell/koac179. PubMed DOI PMC

Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell. 2015;27:3143–3159. doi: 10.1105/tpc.15.00562. PubMed DOI PMC

Villaécija-Aguilar JA, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmidt C, Dawid C, et al. SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. Plos Genet. 2019;15:e1008327. doi: 10.1371/journal.pgen.1008327. PubMed DOI PMC

Hamon-Josse M, Villaécija-Aguilar JA, Ljung K, Leyser O, Gutjahr C, Bennett T. KAI2 regulates seedling development by mediating light-induced remodelling of auxin transport. New Phytol. 2022;235:126–140. doi: 10.1111/nph.18110. PubMed DOI PMC

Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot. 2007;2013(111):1021–1058. PubMed PMC

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC

Kourani M, Mohareb F, Rezwan FI, Anastasiadi M, Hammond JP. Genetic and physiological responses to heat stress in Brassica napus. Front Plant Sci. 2022;13:832147. doi: 10.3389/fpls.2022.832147. PubMed DOI PMC

Venglat P, Xiang D, Yang H, Wan L, Tibiche C, Ross A, et al. Gene expression profiles during embryo development in Brassica napus. Plant Breeding. 2013;132:514–522.

Ziegler DJ, Khan D, Kalichuk JL, Becker MG, Belmonte MF. Transcriptome landscape of the early Brassica napusseed. J Integr Plant Biol. 2019;61:639–650. doi: 10.1111/jipb.12812. PubMed DOI

Khan D, Ziegler DJ, Kalichuk JL, Hoi V, Huynh N, Hajihassani A, et al. Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development. Plant J. 2022;109:477–489. doi: 10.1111/tpj.15587. PubMed DOI

Bourgine B, Guihur A. Heat shock signaling in land plants: from plasma membrane sensing to the transcription of small heat shock proteins. Front Plant Sci. 2021;12:710801. doi: 10.3389/fpls.2021.710801. PubMed DOI PMC

Yu E, Fan C, Yang Q, Li X, Wan B, Dong Y, et al. Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PLoS ONE. 2013;9:e101914. doi: 10.1371/journal.pone.0101914. PubMed DOI PMC

Lee JS, Adams KL. Global insights into duplicated gene expression and alternative splicing in polyploid Brassica napus under heat, cold, and drought stress. Plant Genome. 2020;13:e20057. doi: 10.1002/tpg2.20057. PubMed DOI

Lohani N, Singh MB, Bhalla PL. RNA-Seq highlights molecular events associated with impaired pollen-pistil interactions following short-term heat stress in Brassica napus. Front Plant Sci. 2021;11:622748. doi: 10.3389/fpls.2020.622748. PubMed DOI PMC

Boter M, Pozas J, Jarillo JA, Piñeiro M, Pernas M. Brassica napus roots use different strategies to respond to warm temperatures. Int J Mol Sci. 2023;24:1143. doi: 10.3390/ijms24021143. PubMed DOI PMC

Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 2000;122:1099–1108. doi: 10.1104/pp.122.4.1099. PubMed DOI PMC

Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ. BOBBER1 is a Noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol. 2009;151:241–252. doi: 10.1104/pp.109.142125. PubMed DOI PMC

Jurkuta RJ, Kaplinsky NJ, Spindel JE, Barton MK. Partitioning the apical domain of the Arabidopsis embryo requires the BOBBER1 NudC domain protein. Plant Cell. 2009;21:1957–1971. doi: 10.1105/tpc.108.065284. PubMed DOI PMC

Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN. A comprehensive review on function and application of plant Peroxidases. Biochem Anal Biochem. 2017;6:308. doi: 10.4172/2161-1009.1000308. DOI

Sofo A, Scopa A, Nuzzaci M, Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci. 2015;16:13561–13578. doi: 10.3390/ijms160613561. PubMed DOI PMC

Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol. 2017;95:157–168. doi: 10.1007/s11103-017-0644-2. PubMed DOI

Gulen H, Eris A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 2004;166:739–744. doi: 10.1016/j.plantsci.2003.11.014. DOI

Charron J-BF, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F. Identification, expression, and evolutionary analyses of plant Lipocalins. Plant Physiol. 2005;139:2017–2028. doi: 10.1104/pp.105.070466. PubMed DOI PMC

Chi W, Fung RWM, Liu H, Hsu C, Charng Y. Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant Cell Environ. 2009;32:917–927. doi: 10.1111/j.1365-3040.2009.01972.x. PubMed DOI

Boca S, Koestler F, Ksas B, Chevalier A, Leymarie J, Fekete A, et al. Arabidopsis lipocalins. Plant Cell Environ. 2014;37:368–381. doi: 10.1111/pce.12159. PubMed DOI

He X, Sambe MAN, Zhuo C, Tu Q, Guo Z. A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress. Plant Mol Biol. 2015;87:645–654. doi: 10.1007/s11103-015-0304-3. PubMed DOI

Berterame NM, Bertagnoli S, Codazzi V, Porro D, Branduardi P, Temperature-induced lipocalin (TIL): a shield against stress-inducing environmental shocks in Saccharomyces cerevisiae. FEMS Yeast Res. 2017;17:fox056. 10.1093/femsyr/fox056. PubMed

Abo-Ogiala A, Carsjens C, Diekmann H, Fayyaz P, Herrfurth C, Feussner I, et al. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J Plant Physiol. 2014;171:250–259. doi: 10.1016/j.jplph.2013.08.003. PubMed DOI

Mertens J, Aliyu H, Cowan DA. LEA proteins and the evolution of the why domain. Appl Environ Microb. 2018;84:e00539. doi: 10.1128/AEM.00539-18. PubMed DOI PMC

Ruuska SA, Schwender J, Ohlrogge JB. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 2004;136:2700–2709. doi: 10.1104/pp.104.047977. PubMed DOI PMC

Goffman FD, Alonso AP, Schwender J, Shachar-Hill Y, Ohlrogge JB. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol. 2005;138:2269–2279. doi: 10.1104/pp.105.063628. PubMed DOI PMC

Wu X, Liu Z, Hu Z, Huang R. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol. 2014;56:582–593. doi: 10.1111/jipb.12158. PubMed DOI

Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, et al. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol. 2019;181:1668–1682. doi: 10.1104/pp.19.00956. PubMed DOI PMC

Devireddy AR, Tschaplinski TJ, Tuskan GA, Muchero W, Chen J-G. Role of reactive oxygen species and hormones in plant responses to temperature changes. Int J Mol Sci. 2021;22:8843. doi: 10.3390/ijms22168843. PubMed DOI PMC

Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. Plants. 2020;9:91. doi: 10.3390/plants9010091. PubMed DOI PMC

Kale RS, Seep JL, Sallans L, Frankel LK, Bricker TM. Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes. Photosynth Res. 2022;152:261–274. doi: 10.1007/s11120-022-00902-1. PubMed DOI

Hu S, Ding Y, Zhu C. Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci. 2020;11:375. doi: 10.3389/fpls.2020.00375. PubMed DOI PMC

Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 2009;182:175–187. doi: 10.1111/j.1469-8137.2008.02735.x. PubMed DOI

Kazan K, Manners JM. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 2012;17:22–31. doi: 10.1016/j.tplants.2011.10.006. PubMed DOI

Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD, et al. Regulation and function of arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol. 2008;146:952–964. doi: 10.1104/pp.107.115691. PubMed DOI PMC

Balfagón D, Zandalinas SI, Mittler R, Gómez-Cadenas A. High temperatures modify plant responses to abiotic stress conditions. Physiol Plantarum. 2020;170:335–344. doi: 10.1111/ppl.13151. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC

Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559. PubMed DOI PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45–e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...