Combination NIPS/TIPS Synthesis of α-Fe2O3 and α/γ-Fe2O3 Doped PVDF Composite for Efficient Piezocatalytic Degradation of Rhodamine B

. 2023 Oct 04 ; 28 (19) : . [epub] 20231004

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37836776

Grantová podpora
Project No. 22-73-10091 Russian Science Foundation

Highly porous membranes based on polyvinylidene fluoride (PVDF) with the addition of nanoscale particles of non-magnetic and magnetic iron oxides were synthesized using a combined method of non-solvent induced phase separation (NIPS) and thermo-induced phase separation (TIPS) based on the technique developed by Dr. Blade. The obtained membranes were characterized using SEM, EDS, XRD, IR, diffuse reflectance spectroscopy, and fluorescent microscopy. It was shown that the membranes possessed a high fraction of electroactive phase, which increased up to a maximum of 96% with the addition of 2 wt% of α-Fe2O3 and α/γ-Fe2O3 nanoparticles. It was demonstrated that doping PVDF with nanoparticles contributed to the reduction of pore size in the membrane. All membranes exhibited piezocatalytic activity in the degradation of Rhodamine B. The degree of degradation increased from 69% when using pure PVDF membrane to 90% when using the composite membrane. The nature of the additive did not affect the piezocatalytic activity. It was determined that the main reactive species responsible for the degradation of Rhodamine B were •OH and •O2-. It was also shown that under piezocatalytic conditions, composite membranes generated a piezopotential of approximately 2.5 V.

Zobrazit více v PubMed

Sui S., Quan H., Hu Y., Hou M., Guo S. A Strategy of Heterogeneous Polyurethane-Based Sponge for Water Purification: Combination of Superhydrophobicity and Photocatalysis to Conduct Oil/Water Separation and Dyes Degradation. J. Colloid Interface Sci. 2021;589:275–285. doi: 10.1016/j.jcis.2020.12.122. PubMed DOI

Youssef Z., Colombeau L., Yesmurzayeva N., Baros F., Vanderesse R., Hamieh T., Toufaily J., Frochot C., Roques-Carmes T. Dye-Sensitized Nanoparticles for Heterogeneous Photocatalysis: Cases Studies with TiO2, ZnO, Fullerene and Graphene for Water Purification. Dye. Pigment. 2018;159:49–71. doi: 10.1016/j.dyepig.2018.06.002. DOI

Magomedova A., Isaev A., Orudzhev F., Alikhanov N., Emirov R., Rabadanov M., Mingshan Z. Electrochemical Synthesis of Superparamagnetic Fe3O4 Nanoparticles for the Photo-Fenton Oxidation of Rhodamine B. ChemistrySelect. 2023;8:e202301694. doi: 10.1002/slct.202301694. DOI

Mondal D., Roy S., Bardhan S., Roy J., Kanungo I., Basu R., Das S. Recent Advances in Piezocatalytic Polymer Nanocomposites for Wastewater Remediation. Dalton Trans. 2022;51:451–462. doi: 10.1039/D1DT02653D. PubMed DOI

Wu J., Qin N., Bao D. Effective Enhancement of Piezocatalytic Activity of BaTiO3 Nanowires under Ultrasonic Vibration. Nano Energy. 2018;45:44–51. doi: 10.1016/j.nanoen.2017.12.034. DOI

Kumar P., Vaish R., Sung H., Hwang W., Kwang H., Park B., Kumar A., Kebaili I., Boukhris I., Kumar P., et al. Effect of Poling on Photocatalysis, Piezocatalysis, and Photo–Piezo Catalysis Performance of BaBi4Ti4O15 Ceramics. Glob. Chall. 2023;7:2200142. doi: 10.1002/gch2.202200142. PubMed DOI PMC

Liu Z., Zheng Y., Zhang S., Fu J., Li Y., Zhang Y., Ye W. (1 − x)Bi0.5Na0.5TiO3–XBiFeO3 Solid Solutions with Enhanced Piezocatalytic Dye Degradation. Sep. Purif. Technol. 2022;290:120831. doi: 10.1016/j.seppur.2022.120831. DOI

Hu C., Huang H., Chen F., Zhang Y., Yu H., Ma T. Coupling Piezocatalysis and Photocatalysis in Bi4NbO8X (X = Cl, Br) Polar Single Crystals. Adv. Funct. Mater. 2020;30:1908168. doi: 10.1002/adfm.201908168. DOI

Wu L., Jin Z., Liu Y., Ning H., Liu X., Alamusi, Hu N. Recent Advances in the Preparation of PVDF-Based Piezoelectric Materials. Nanotechnol. Rev. 2022;11:1386–1407. doi: 10.1515/ntrev-2022-0082. DOI

Lu L., Ding W., Liu J., Yang B. Flexible PVDF Based Piezoelectric Nanogenerators. Nano Energy. 2020;78:105251. doi: 10.1016/j.nanoen.2020.105251. DOI

Zhu G.D., Zeng Z.G., Zhang L., Yan X.J. Piezoelectricity in β-Phase PVDF Crystals: A Molecular Simulation Study. Comput. Mater. Sci. 2008;44:224–229. doi: 10.1016/j.commatsci.2008.03.016. DOI

Salimi A., Yousefi A.A. Analysis Method: FTIR Studies of β-Phase Crystal Formation in Stretched PVDF Films. Polym. Test. 2003;22:699–704. doi: 10.1016/S0142-9418(03)00003-5. DOI

Orudzhev F., Sobola D., Ramazanov S., Částková K., Papež N., Selimov D.A., Abdurakhmanov M., Shuaibov A., Rabadanova A., Gulakhmedov R., et al. Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane. Polymers. 2023;15:246. doi: 10.3390/polym15010246. PubMed DOI PMC

Orudzhev F.F., Sobola D.S., Ramazanov S.M., Častková K., Selimov D.A., Rabadanova A.A., Shuaibov A.O., Gulakhmedov R.R., Abdurakhmanov M.G., Giraev K.M. Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers. Polymers. 2023;15:3252. doi: 10.3390/polym15153252. PubMed DOI PMC

Pan H., Na B., Lv R., Li C., Zhu J., Yu Z. Polar Phase Formation in Poly(Vinylidene Fluoride) Induced by Melt Annealing. J. Polym. Sci. B Polym. Phys. 2012;50:1433–1437. doi: 10.1002/polb.23146. DOI

Orudzhev F., Alikhanov N., Amirov A., Rabadanova A., Selimov D., Shuaibov A., Gulakhmedov R., Abdurakhmanov M., Magomedova A., Ramazanov S., et al. Porous Hybrid PVDF/BiFeO3 Smart Composite with Magnetic, Piezophotocatalytic, and Light-Emission Properties. Catalysts. 2023;13:874. doi: 10.3390/catal13050874. DOI

Jung J.T., Kim J.F., Wang H.H., di Nicolo E., Drioli E., Lee Y.M. Understanding the Non-Solvent Induced Phase Separation (NIPS) Effect during the Fabrication of Microporous PVDF Membranes via Thermally Induced Phase Separation (TIPS) J. Memb. Sci. 2016;514:250–263. doi: 10.1016/j.memsci.2016.04.069. DOI

Yeow M.L., Liu Y.T., Li K. Morphological Study of Poly(Vinylidene Fluoride) Asymmetric Membranes: Effects of the Solvent, Additive, and Dope Temperature. J. Appl. Polym. Sci. 2004;92:1782–1789. doi: 10.1002/app.20141. DOI

Yu H., Shangguan S., Yang H., Rong H., Qu F. Chemical Cleaning and Membrane Aging of Poly(Vinylidene Fluoride) (PVDF) Membranes Fabricated via Non-Solvent Induced Phase Separation (NIPS) and Thermally Induced Phase Separation (TIPS) Sep. Purif. Technol. 2023;313:123488. doi: 10.1016/j.seppur.2023.123488. DOI

Liu C., Xu H., Huo B., Wang J., Wang Z., Chen X., Meng F., Sun C., Wang Y. Research Progress of PVDF Based Piezoelectric Polymer Composites in Water Pollution Remediation. J. Water Process Eng. 2023;55:104181. doi: 10.1016/j.jwpe.2023.104181. DOI

Liu Y., Tong W., Song W., Cao T., Liu Y., Wang L., Wang Z., Zhang Y. Piezocatalytic Performance Enhancement Using the Sandwich Structure of a PVDF-HFP/Graphene Film. J. Mater. Chem. A Mater. 2023;11:4280–4291. doi: 10.1039/D2TA08651D. DOI

Wan L., Tian W., Li N., Chen D., Xu Q., Li H., He J., Lu J. Hydrophilic Porous PVDF Membrane Embedded with BaTiO3 Featuring Controlled Oxygen Vacancies for Piezocatalytic Water Cleaning. Nano Energy. 2022;94:106930. doi: 10.1016/j.nanoen.2022.106930. DOI

Bagchi B., Hoque N.A., Janowicz N., Das S., Tiwari M.K. Re-Usable Self-Poled Piezoelectric/Piezocatalytic Films with Exceptional Energy Harvesting and Water Remediation Capability. Nano Energy. 2020;78:105339. doi: 10.1016/j.nanoen.2020.105339. PubMed DOI PMC

Liao X., Chen X., Tang Y., Zhu M., Xie H., Xin Y., Lin Y., Fan X. Enhanced Piezocatalytic Reactive Oxygen Species Production Activity and Recyclability of the Dual Piezoelectric Cu3B2O6/PVDF Composite Membrane. ACS Appl. Mater. Interfaces. 2022;15:1286–1295. doi: 10.1021/acsami.2c19083. PubMed DOI

Huang Z.H., Zhang X., Wang Y.X., Sun J.Y., Zhang H., Liu W.L., Li M.P., Ma X.H., Xu Z.L. Fe3O4/PVDF Catalytic Membrane Treatment Organic Wastewater with Simultaneously Improved Permeability, Catalytic Property and Anti-Fouling. Environ. Res. 2020;187:109617. doi: 10.1016/j.envres.2020.109617. PubMed DOI

Pang Y.L., Lim S., Ong H.C., Chong W.T. Synthesis, Characteristics and Sonocatalytic Activities of Calcined γ-Fe2O3 and TiO2 Nanotubes/γ-Fe2O3 Magnetic Catalysts in the Degradation of Orange G. Ultrason. Sonochem. 2016;29:317–327. doi: 10.1016/j.ultsonch.2015.10.003. PubMed DOI

Alikhanov N.M.R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-Dependent Structural Parameters, Optical, and Magnetic Properties of Facile Synthesized Pure-Phase BiFeO3. J. Mater.Sci. Mater. Electron. 2021;32:13323–13335. doi: 10.1007/s10854-021-05911-9. DOI

Orudzhev F.F., Alikhanov N.M.R., Ramazanov S.M., Sobola D.S., Murtazali R.K., Ismailov E.H., Gasimov R.D., Aliev A.S., Ţălu Ş. Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3. Molecules. 2022;27:7029. doi: 10.3390/molecules27207029. PubMed DOI PMC

Magomedova A., Isaev A., Orudzhev F., Sobola D., Murtazali R., Rabadanova A., Shabanov N.S., Zhu M., Emirov R., Gadzhimagomedov S., et al. Magnetically Separable Mixed-Phase α/γ-Fe2O3 Catalyst for Photo-Fenton-like Oxidation of Rhodamine B. Catalysts. 2023;13:872. doi: 10.3390/catal13050872. DOI

Bui V.T., Nguyen V.T., Nguyen N.A., Umapathi R., Larina L.L., Kim J.H., Kim H.S., Choi H.S. Multilayered Pvdf-Hfp Porous Separator via Phase Separation and Selective Solvent Etching for High Voltage Lithium-Ion Batteries. Membranes. 2021;11:41. doi: 10.3390/membranes11010041. PubMed DOI PMC

Ma W., Yao B., Zhang W., He Y., Yu Y., Niu J. Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets. Chem. Eng. J. 2021;415:129000. doi: 10.1016/j.cej.2021.129000. DOI

Singh G., Sharma M., Vaish R. Flexible Ag@ LiNbO3/PVDF composite film for piezocatalytic dye/pharmaceutical degradation and bacterial disinfection. ACS Appl. Mater. Interfaces. 2021;13:22914–22925. doi: 10.1021/acsami.1c01314. PubMed DOI

Veeralingam S., Badhulika S. Rapid Degradation of Organic Dyes via Ultrasound Triggered Piezo-Catalysis Using PVDF/ZnSnO3/MoS2 Nanocomposite. ACS Appl. Nano Mater. 2023 doi: 10.1021/acsanm.3c02070. DOI

Qian W., Zhao K., Zhang D., Bowen C.R., Wang Y., Yang Y. Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. ACS Appl. Mater. Interfaces. 2019;11:27862–27869. doi: 10.1021/acsami.9b07857. PubMed DOI

Porwal C., Verma S., Chauhan V.S., Vaish R. Bismuth zinc borate-Polyacrylonitrile nanofibers for photo-piezocatalysis. J. Ind. Eng. Chem. 2023;124:358–367. doi: 10.1016/j.jiec.2023.04.030. DOI

Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive Phases of Poly(Vinylidene Fluoride): Determination, Processing and Applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI

Kanik M., Aktas O., Sen H.S., Durgun E., Bayindir M. Spontaneous High Piezoelectricity in Poly(Vinylidene Fluoride) Nanoribbons Produced by Iterative Thermal Size Reduction Technique. ACS Nano. 2014;8:9311–9323. doi: 10.1021/nn503269b. PubMed DOI

Cai X., Lei T., Sun D., Lin L. A Critical Analysis of the α, β and γ Phases in Poly(Vinylidene Fluoride) Using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI

Chipara D., Kuncser V., Lozano K., Alcoutlabi M., Ibrahim E., Chipara M. Spectroscopic Investigations on PVDF-Fe2O3 Nanocomposites. J. Appl. Polym. Sci. 2020;137:48907. doi: 10.1002/app.48907. DOI

Tewatia K., Sharma A., Kumar A., Kumar K., Sowjanya Pali L., Lal S. Enhanced Optical Properties of Recycled Fe2O3 Reinforced in PVDF Nanocomposite Thin Films for Energy Harvesting. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.05.371. DOI

Tamang A., Ghosh S.K., Garain S., Alam M.M., Haeberle J., Henkel K., Schmeisser D., Mandal D. DNA-Assisted β-Phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices. ACS Appl. Mater. Interfaces. 2015;7:16143–16147. doi: 10.1021/acsami.5b04161. PubMed DOI

Yi C., Lu Q., Wang Y., Wang Y., Yang B. Degradation of Organic Wastewater by Hydrodynamic Cavitation Combined with Acoustic Cavitation. Ultrason. Sonochem. 2018;43:156–165. doi: 10.1016/j.ultsonch.2018.01.013. PubMed DOI

Pang Y.L., Abdullah A.Z., Bhatia S. Review on Sonochemical Methods in the Presence of Catalysts and Chemical Additives for Treatment of Organic Pollutants in Wastewater. Desalination. 2011;277:1–14. doi: 10.1016/j.desal.2011.04.049. DOI

Abdurahman M.H., Abdullah A.Z. Mechanism and Reaction Kinetic of Hybrid Ozonation-Ultrasonication Treatment for Intensified Degradation of Emerging Organic Contaminants in Water: A Critical Review. Chem. Eng. Process.-Process Intensif. 2020;154:108047. doi: 10.1016/j.cep.2020.108047. DOI

Kumar Y., Kumar R., Raizada P., Khan A.A.P., Singh A., Van Le Q., Nguyen V.H., Selvasembian R., Thakur S., Singh P. Current Status of Hematite (α-Fe2O3) Based Z-Scheme Photocatalytic Systems for Environmental and Energy Applications. J. Environ. Chem. Eng. 2022;10:107427. doi: 10.1016/j.jece.2022.107427. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...