Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3

. 2022 Oct 18 ; 27 (20) : . [epub] 20221018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36296621

Grantová podpora
The reported study was funded by the Russian Science Foundation, Project No. 22-73-10091 in part of nanoparticle fabrication and characterization (SEM, EDS, Optical), by RFBR, project number 20-08-00242A in part of nanoparticle characterization (XRD, and Russian Science Foundation

This paper presents the results of the synthesis of samarium-doped bismuth ferrite (BFO) nanoparticles by the solution combustion method. The dependence of BFO properties on the amount of the samarium (Sm) in the composition was studied. The synthesized nanocomposites were characterized by scanning electron microscopy SEM), X-ray diffractometry (XRD), Raman, Electron Diffuse Reflectance Spectroscopy (EDRS) and Electron Magnetic Resonance (EMR). The photocatalytic (PC) measurements showed the absence of a strict correlation between the PC activity and the crystallite size and band gap. An increase in the PC activity of BFO samples with 10 and 15% doping was observed and it was concluded that in controlling the PC properties in doped BFO, the processes of interfacial polarization at the boundaries of the morphotropic phase transition are of decisive importance. It was supposed that the internal electric field formed at these boundaries contributes to the efficient separation of photogenerated charge carriers.

Zobrazit více v PubMed

Kumar A., Kumar A., Krishnan V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal. 2020;10:10253–10315. doi: 10.1021/acscatal.0c02947. DOI

Wang W., Tadé M.O., Shao Z. Research Progress of Perovskite Materials in Photocatalysis- and Photovoltaics-Related Energy Conversion and Environmental Treatment. Chem. Soc. Rev. 2015;44:5371–5408. doi: 10.1039/C5CS00113G. PubMed DOI

Irshad M., tul Ain Q., Zaman M., Aslam M.Z., Kousar N., Asim M., Rafique M., Siraj K., Tabish A.N., Usman M., et al. Photocatalysis and Perovskite Oxide-Based Materials: A Remedy for a Clean and Sustainable Future. RSC Adv. 2022;12:7009–7039. doi: 10.1039/D1RA08185C. PubMed DOI PMC

Dandia A., Saini P., Sharma R., Parewa V. Visible Light Driven Perovskite-Based Photocatalysts: A New Candidate for Green Organic Synthesis by Photochemical Protocol. Curr. Res. Green Sustain. Chem. 2020;3:100031. doi: 10.1016/j.crgsc.2020.100031. DOI

Casbeer E., Sharma V.K., Li X.Z. Synthesis and Photocatalytic Activity of Ferrites under Visible Light: A Review. Sep. Purif. Technol. 2012;87:1–14. doi: 10.1016/j.seppur.2011.11.034. DOI

Tikhanova S.M., Lebedev L.A., Martinson K.D., Chebanenko M.I., Buryanenko I.V., Semenov V.G., Nevedomskiy V.N., Popkov V.I. The Synthesis of Novel Heterojunction H-YbFeO3/o-YbFeO3 Photocatalyst with Enhanced Fenton-like Activity under Visible-Light. New J. Chem. 2021;45:1541–1550. doi: 10.1039/D0NJ04895J. DOI

Zhang K., Li D., Tian Q., Cao H., Orudzhev F., Zvereva I.A., Xu J., Wang C. Recyclable 0D/2D ZnFe2O4/Bi5FeTi3O15 S-Scheme Heterojunction with Bismuth Decoration for Enhanced Visible-Light-Driven Tetracycline Photodegradation. Ceram. Int. 2021;47:17109–17119. doi: 10.1016/j.ceramint.2021.03.020. DOI

Alikhanov N.M.R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-Dependent Structural Parameters, Optical, and Magnetic Properties of Facile Synthesized Pure-Phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021;32:13323–13335. doi: 10.1007/s10854-021-05911-9. DOI

Orudzhev F.F., Aliev Z.M., Gasanova F.G., Isaev A.B., Shabanov N.S. Photoelectrocatalytic Oxidation of Phenol on TiO2 Nanotubes under Oxygen Pressure. Russ. J. Electrochem. 2015;51:1108–1114. doi: 10.1134/S1023193515110130. DOI

Magdalane C.M., Priyadharsini G.M.A., Kaviyarasu K., Jothi A.I., Simiyon G.G. Synthesis and Characterization of TiO2 Doped Cobalt Ferrite Nanoparticles via Microwave Method: Investigation of Photocatalytic Performance of Congo Red Degradation Dye. Surf. Interfaces. 2021;25:101296. doi: 10.1016/j.surfin.2021.101296. DOI

Zargazi M., Entezari M.H. A Novel Synthesis of Forest like BiFeO3 Thin Film: Photo-Electrochemical Studies and Its Application as a Photocatalyst for Phenol Degradation. Appl. Surf. Sci. 2019;483:793–802. doi: 10.1016/j.apsusc.2019.03.347. DOI

Zargazi M., Entezari M.H. BFO Thin Film on the Stainless Steel Mesh by Anodic EPD: A Visible Light Photocatalyst for Degradation of Rhodamin B. J. Photochem. Photobiol. A Chem. 2018;365:185–198. doi: 10.1016/j.jphotochem.2018.07.042. DOI

Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special Features of Formation of Nanocrystalline BiFeO3 via the Glycine-Nitrate Combustion Method. Russ. J. Gen. Chem. 2016;86:2256–2262. doi: 10.1134/S1070363216100030. DOI

Lomanova N.A., Tomkovich M.V., Sokolov V.V., Ugolkov V.L., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Thermal and Magnetic Behavior of BiFeO3 Nanoparticles Prepared by Glycine-Nitrate Combustion. J. Nanoparticle Res. 2018;20:17. doi: 10.1007/s11051-018-4125-6. DOI

Zaboeva E.A., Izotova S.G., Popkov V.I. Glycine-Nitrate Combustion Synthesis of CeFeO3-Based Nanocrystalline Powders. Russ. J. Appl. Chem. 2016;89:1228–1236. doi: 10.1134/S1070427216080036. DOI

Martinson K.D., Kondrashkova I.S., Popkov V.I. Synthesis of EuFeO3 Nanocrystals by Glycine-Nitrate Combustion Method. Russ. J. Appl. Chem. 2017;90:1214–1218. doi: 10.1134/S1070427217080031. DOI

Orudzhev F., Alikhanov N., Rabadanov M., Ramazanov S., Isaev A., Gadzhimagomedov S., Aliyev A., Abdullaev V. Synthesis and study of the properties of magnetically separable nanophotocatalyst BiFeO3. Chem. Probl. 2018;4:484–495. doi: 10.32737/2221-8688-2018-4-484-495. DOI

Larosa C., Stura E., Eggenhöffner R., Nicolini C. Optimization of Optical Properties of Polycarbonate Film with Thiol Gold-Nanoparticles. Materials. 2009;2:1193–1204. doi: 10.3390/ma2031193. DOI

Guo R., Fang L., Dong W., Zheng F., Shen M. Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO3 Nanoparticles. J. Phys. Chem. C. 2010;114:21390–21396. doi: 10.1021/jp104660a. DOI

Wu C., Wei J., Kong F. Effect of Rare Earth Dopants on the Morphologies and Photocatalytic Activities of BiFeO3 Microcrystallites. J. Mater. Sci. Mater. Electron. 2012;24:1530–1535. doi: 10.1007/s10854-012-0966-4. DOI

Kaur M., Yadav K.L., Uniyal P. Investigations on Multiferroic, Optical and Photocatalytic Properties of Lanthanum Doped Bismuth Ferrite Nanoparticles. Adv. Mater. Lett. 2015;6:895–901. doi: 10.5185/amlett.2015.5861. DOI

Wei J., Liu Y., Bai X., Li C., Liu Y., Xu Z., Gemeiner P., Haumont R., Infante I.C., Dkhil B. Crystal Structure, Leakage Conduction Mechanism Evolution and Enhanced Multiferroic Properties in Y-Doped BiFeO3 Ceramics. Ceram. Int. 2016;42:13395–13403. doi: 10.1016/j.ceramint.2016.05.106. DOI

Xu B., Wang D., Íñiguez J., Bellaiche L. Finite-Temperature Properties of Rare-Earth-Substituted BiFeO3 Multiferroic Solid Solutions. Adv. Funct. Mater. 2015;25:552–558. doi: 10.1002/adfm.201403811. DOI

Singh H., Yadav K.L. Structural, Dielectric, Vibrational and Magnetic Properties of Sm Doped BiFeO3 Multiferroic Ceramics Prepared by a Rapid Liquid Phase Sintering Method. Ceram. Int. 2015;41:9285–9295. doi: 10.1016/j.ceramint.2015.03.212. DOI

Xu X., Guoqiang T., Huijun R., Ao X. Structural, Electric and Multiferroic Properties of Sm-Doped BiFeO3 Thin Films Prepared by the Sol–Gelprocess. Ceram. Int. 2013;39:6223–6228. doi: 10.1016/j.ceramint.2013.01.042. DOI

Fujino S., Murakami M., Anbusathaiah V., Lim S.H., Nagarajan V., Fennie C.J., Wuttig M., Salamanca-Riba L., Takeuchi I. Combinatorial Discovery of a Lead-Free Morphotropic Phase Boundary in a Thin-Film Piezoelectric Perovskite. Appl. Phys. Lett. 2008;92:202904. doi: 10.1063/1.2931706. DOI

Catalan G., Scott J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009;21:2463–2485. doi: 10.1002/adma.200802849. DOI

Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and Magnetoelectric Materials. Nature. 2006;442:759–765. doi: 10.1038/nature05023. PubMed DOI

Ramesh R., Spaldin N.A. Multiferroics: Progress and Prospects in Thin Films. Nat. Mater. 2007;6:21–29. doi: 10.1038/nmat1805. PubMed DOI

Wu J., Fan Z., Xiao D., Zhu J., Wang J. Multiferroic Bismuth Ferrite-Based Materials for Multifunctional Applications: Ceramic Bulks, Thin Films and Nanostructures. Prog. Mater. Sci. 2016;84:335–402. doi: 10.1016/j.pmatsci.2016.09.001. DOI

Pattanayak S., Choudhary R.N.P., Das P.R. Effect of Sm-Substitution on Structural, Electrical and Magnetic Properties of BiFeO3. Electron. Mater. Lett. 2014;10:165–172. doi: 10.1007/s13391-013-3050-1. DOI

Kakekhani A., Ismail-Beigi S., Altman E.I. Ferroelectrics: A Pathway to Switchable Surface Chemistry and Catalysis. Surf. Sci. 2016;650:302–316. doi: 10.1016/j.susc.2015.10.055. DOI

Georgescu A.B., Ismail-Beigi S. Surface Piezoelectricity of (0001) Sapphire. Phys. Rev. Appl. 2019;11:64065. doi: 10.1103/PhysRevApplied.11.064065. DOI

Safi R., Shokrollahi H. Physics, Chemistry and Synthesis Methods of Nanostructured Bismuth Ferrite (BiFeO3) as a Ferroelectro-Magnetic Material. Prog. Solid State Chem. 2012;40:6–15. doi: 10.1016/j.progsolidstchem.2012.03.001. DOI

Morozov M.I., Lomanova N.A., Gusarov V.V. Specific Features of BiFeO3 Formation in a Mixture of Bismuth(III) and Iron(III) Oxides. Russ. J. Gen. Chem. 2003;73:1676–1680. doi: 10.1023/B:RUGC.0000018640.30953.70. DOI

Matjaz V., Anna-Karin A., Neil A. Peculiarities of a Solid-State Synthesis of Multiferroic Polycrystalline BiFeO3. Chem. Mater. 2007;19:5431–5436. doi: 10.1021/cm071730+. DOI

Khomchenko V.A., Paixão J.A., Shvartsman V.V., Borisov P., Kleemann W., Karpinsky D.V., Kholkin A.L. Effect of Sm Substitution on Ferroelectric and Magnetic Properties of BiFeO3. Scr. Mater. 2010;62:238–241. doi: 10.1016/j.scriptamat.2009.11.005. DOI

Stojadinović B., Dohčević-Mitrović Z., Paunović N., Ilić N., Tasić N., Petronijević I., Popović D., Stojanović B. Comparative Study of Structural and Electrical Properties of Pr and Ce Doped BiFeO3 Ceramics Synthesized by Auto-Combustion Method. J. Alloys Compd. 2016;657:866–872. doi: 10.1016/j.jallcom.2015.09.235. DOI

Hussain A., Xu X., Yuan G., Wang Y., Yang Y., Yin J., Liu J., Liu Z. The Development of BiFeO3-Based Ceramics. Chin. Sci. Bull. 2014;59:5161–5169. doi: 10.1007/s11434-014-0648-0. DOI

Deka B., Ravi S., Pamu D. Evolution of Structural Transition, Grain Growth Inhibition and Collinear Antiferromagnetism in (Bi1−õSmx)FeO3 (x = 0 to 0.3) and Their Effects on Dielectric and Magnetic Properties. Ceram. Int. 2017;43:16580–16592. doi: 10.1016/j.ceramint.2017.09.046. DOI

Godara P., Agarwal A., Ahlawat N., Sanghi S. Crystal Structure Refinement, Dielectric and Magnetic Properties of Sm Modified BiFeO3 Multiferroic. J. Mol. Struct. 2015;1097:207–213. doi: 10.1016/j.molstruc.2015.05.022. DOI

Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A. 1976;32:751–767. doi: 10.1107/S0567739476001551. DOI

Bielecki J., Svedlindh P., Tibebu D.T., Cai S., Eriksson S.G., Börjesson L., Knee C.S. Structural and Magnetic Properties of Isovalently Substituted Multiferroic BiFeO3: Insights from Raman Spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2012;86:184422. doi: 10.1103/PhysRevB.86.184422. DOI

Fukumura H., Harima H., Kisoda K., Tamada M., Noguchi Y., Miyayama M. Raman Scattering Study of Multiferroic BiFeO3 Single Crystal. J. Magn. Magn. Mater. 2007;310:367–369. doi: 10.1016/j.jmmm.2006.10.282. PubMed DOI

Chaturvedi S., Shyam P., Apte A., Kumar J., Bhattacharyya A., Awasthi A.M., Kulkarni S. Dynamics of Electron Density, Spin-Phonon Coupling, and Dielectric Properties of SmFeO3 Nanoparticles at the Spin-Reorientation Temperature: Role of Exchange Striction. Phys. Rev. B. 2016;93:174117. doi: 10.1103/PhysRevB.93.174117. DOI

Wang J., Wei Y., Zhang J., Ji L., Huang Y., Chen Z. Synthesis of Pure-Phase BiFeO3 Nanopowder by Nitric Acid-Assisted Gel. Mater. Lett. 2014;124:242–244. doi: 10.1016/j.matlet.2014.03.105. DOI

Xu X.S., Brinzari T.V., Lee S., Chu Y.H., Martin L.W., Kumar A., McGill S., Rai R.C., Ramesh R., Gopalan V., et al. Optical Properties and Magnetochromism in Multiferroic BiFeO3. Phys. Rev. B Condens. Matter Mater. Phys. 2009;79:134425. doi: 10.1103/PhysRevB.79.134425. DOI

Ramirez M.O., Kumar A., Denev S.A., Podraza N.J., Xu X.S., Rai R.C., Chu Y.H., Seidel J., Martin L.W., Yang S.Y., et al. Magnon Sidebands and Spin-Charge Coupling in Bismuth Ferrite Probed by Nonlinear Optical Spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2009;79:224106. doi: 10.1103/PhysRevB.79.224106. DOI

Pisarev R.V., Moskvin A.S., Kalashnikova A.M., Rasing T. Charge Transfer Transitions in Multiferroic BiFeO3 and Related Ferrite Insulators. Phys. Rev. B Condens. Matter Mater. Phys. 2009;79:235128. doi: 10.1103/PhysRevB.79.235128. DOI

Dionne G.F. Magnetic Oxides. Springer; Berlin/Heidelberg, Germany: 2009. pp. 1–466. DOI

Kumar A., Rai R.C., Podraza N.J., Denev S., Ramirez M., Chu Y.H., Martin L.W., Ihlefeld J., Heeg T., Schubert J., et al. Linear and Nonlinear Optical Properties of BiFeO3. Appl. Phys. Lett. 2008;92:121915. doi: 10.1063/1.2901168. DOI

Jubu P.R., Yam F.K., Igba V.M., Beh K.P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data—A Case Study of β-Ga2O3. J. Solid State Chem. 2020;290:121576. doi: 10.1016/j.jssc.2020.121576. DOI

Arora M., Kumar M. Structural, Magnetic and Optical Properties of Ce Substituted BiFeO3 Nanoparticles. Ceram. Int. 2015;4:5705–5712. doi: 10.1016/j.ceramint.2014.12.155. DOI

Eichel R.A. Characterization of Defect Structure in Acceptor-Modified Piezoelectric Ceramics by Multifrequency and Multipulse Electron Paramagnetic Resonance Spectroscopy. J. Am. Ceram. Soc. 2008;91:691–701. doi: 10.1111/j.1551-2916.2008.02303.x. DOI

Paul Blessington Selvadurai A., Pazhanivelu V., Jagadeeshwaran C., Murugaraj R., Mohammed Gazzali P.M., Chandrasekaran G. An Analysis on Structural and Magnetic Properties of La1−xRExFeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) Nanoparticles. Appl. Phys. A. 2016;123:13. doi: 10.1007/s00339-016-0651-1. DOI

Krishna Reddy J., Srinivas B., Durga Kumari V., Subrahmanyam M. Sm3+-Doped Bi2O3 Photocatalyst Prepared by Hydrothermal Synthesis. ChemCatChem. 2009;1:492–496. doi: 10.1002/cctc.200900189. DOI

Choi W., Termin A., Hoffmann M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994;98:13669–13679. doi: 10.1021/j100102a038. DOI

Damjanovic D. A Morphotropic Phase Boundary System Based on Polarization Rotation and Polarization Extension. Appl. Phys. Lett. 2010;97:62906. doi: 10.1063/1.3479479. DOI

Hu Z., Chen D., Wang S., Zhang N., Qin L., Huang Y. Facile Synthesis of Sm-Doped BiFeO3 Nanoparticles for Enhanced Visible Light Photocatalytic Performance. Mater. Sci. Eng. B. 2017;220:1–12. doi: 10.1016/j.mseb.2017.03.005. DOI

Zilabi S., Habibzadeh S., Gheytanzadeh M., Rahmani M. Direct Sunlight Catalytic Decomposition of Organic Pollutants via Sm- and Ce-Doped BiFeO3 Nanopowder Synthesized by a Rapid Combustion Technique. Catal. Lett. 2021;151:3462–3476. doi: 10.1007/s10562-021-03586-9. DOI

Gu Y., Zhou Y., Zhang W., Guo C., Zhang X., Zhao J., Zhang Y., Zheng H. Optical and Magnetic Properties of Sm-Doped BiFeO3 Nanoparticles around the Morphotropic Phase Boundary Region. AIP Adv. 2021;11:45223. doi: 10.1063/5.0042485. DOI

Wang S., Chen D., Niu F., Zhang N., Qin L., Huang Y. Pd Cocatalyst on Sm-Doped BiFeO3 Nanoparticles: Synergetic Effect of a Pd Cocatalyst and Samarium Doping on Photocatalysis. RSC Adv. 2016;6:34574–34587. doi: 10.1039/C6RA01140C. DOI

Zhang N., Chen D., Niu F., Wang S., Qin L., Huang Y. Enhanced Visible Light Photocatalytic Activity of Gd-Doped BiFeO3 Nanoparticles and Mechanism Insight. Sci. Rep. 2016;6:26467. doi: 10.1038/srep26467. PubMed DOI PMC

Patil K.C., Hegde M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials. World Scientific; Singapore: 2008. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...