Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
The reported study was funded by the Russian Science Foundation, Project No. 22-73-10091 in part of nanoparticle fabrication and characterization (SEM, EDS, Optical), by RFBR, project number 20-08-00242A in part of nanoparticle characterization (XRD, and
Russian Science Foundation
PubMed
36296621
PubMed Central
PMC9609825
DOI
10.3390/molecules27207029
PII: molecules27207029
Knihovny.cz E-zdroje
- Klíčová slova
- BFO, Sm, bismuth ferrite, morphotropic phase boundary, nanocomposite, photocatalysis, polarization,
- Publikační typ
- časopisecké články MeSH
This paper presents the results of the synthesis of samarium-doped bismuth ferrite (BFO) nanoparticles by the solution combustion method. The dependence of BFO properties on the amount of the samarium (Sm) in the composition was studied. The synthesized nanocomposites were characterized by scanning electron microscopy SEM), X-ray diffractometry (XRD), Raman, Electron Diffuse Reflectance Spectroscopy (EDRS) and Electron Magnetic Resonance (EMR). The photocatalytic (PC) measurements showed the absence of a strict correlation between the PC activity and the crystallite size and band gap. An increase in the PC activity of BFO samples with 10 and 15% doping was observed and it was concluded that in controlling the PC properties in doped BFO, the processes of interfacial polarization at the boundaries of the morphotropic phase transition are of decisive importance. It was supposed that the internal electric field formed at these boundaries contributes to the efficient separation of photogenerated charge carriers.
Zobrazit více v PubMed
Kumar A., Kumar A., Krishnan V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal. 2020;10:10253–10315. doi: 10.1021/acscatal.0c02947. DOI
Wang W., Tadé M.O., Shao Z. Research Progress of Perovskite Materials in Photocatalysis- and Photovoltaics-Related Energy Conversion and Environmental Treatment. Chem. Soc. Rev. 2015;44:5371–5408. doi: 10.1039/C5CS00113G. PubMed DOI
Irshad M., tul Ain Q., Zaman M., Aslam M.Z., Kousar N., Asim M., Rafique M., Siraj K., Tabish A.N., Usman M., et al. Photocatalysis and Perovskite Oxide-Based Materials: A Remedy for a Clean and Sustainable Future. RSC Adv. 2022;12:7009–7039. doi: 10.1039/D1RA08185C. PubMed DOI PMC
Dandia A., Saini P., Sharma R., Parewa V. Visible Light Driven Perovskite-Based Photocatalysts: A New Candidate for Green Organic Synthesis by Photochemical Protocol. Curr. Res. Green Sustain. Chem. 2020;3:100031. doi: 10.1016/j.crgsc.2020.100031. DOI
Casbeer E., Sharma V.K., Li X.Z. Synthesis and Photocatalytic Activity of Ferrites under Visible Light: A Review. Sep. Purif. Technol. 2012;87:1–14. doi: 10.1016/j.seppur.2011.11.034. DOI
Tikhanova S.M., Lebedev L.A., Martinson K.D., Chebanenko M.I., Buryanenko I.V., Semenov V.G., Nevedomskiy V.N., Popkov V.I. The Synthesis of Novel Heterojunction H-YbFeO3/o-YbFeO3 Photocatalyst with Enhanced Fenton-like Activity under Visible-Light. New J. Chem. 2021;45:1541–1550. doi: 10.1039/D0NJ04895J. DOI
Zhang K., Li D., Tian Q., Cao H., Orudzhev F., Zvereva I.A., Xu J., Wang C. Recyclable 0D/2D ZnFe2O4/Bi5FeTi3O15 S-Scheme Heterojunction with Bismuth Decoration for Enhanced Visible-Light-Driven Tetracycline Photodegradation. Ceram. Int. 2021;47:17109–17119. doi: 10.1016/j.ceramint.2021.03.020. DOI
Alikhanov N.M.R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-Dependent Structural Parameters, Optical, and Magnetic Properties of Facile Synthesized Pure-Phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021;32:13323–13335. doi: 10.1007/s10854-021-05911-9. DOI
Orudzhev F.F., Aliev Z.M., Gasanova F.G., Isaev A.B., Shabanov N.S. Photoelectrocatalytic Oxidation of Phenol on TiO2 Nanotubes under Oxygen Pressure. Russ. J. Electrochem. 2015;51:1108–1114. doi: 10.1134/S1023193515110130. DOI
Magdalane C.M., Priyadharsini G.M.A., Kaviyarasu K., Jothi A.I., Simiyon G.G. Synthesis and Characterization of TiO2 Doped Cobalt Ferrite Nanoparticles via Microwave Method: Investigation of Photocatalytic Performance of Congo Red Degradation Dye. Surf. Interfaces. 2021;25:101296. doi: 10.1016/j.surfin.2021.101296. DOI
Zargazi M., Entezari M.H. A Novel Synthesis of Forest like BiFeO3 Thin Film: Photo-Electrochemical Studies and Its Application as a Photocatalyst for Phenol Degradation. Appl. Surf. Sci. 2019;483:793–802. doi: 10.1016/j.apsusc.2019.03.347. DOI
Zargazi M., Entezari M.H. BFO Thin Film on the Stainless Steel Mesh by Anodic EPD: A Visible Light Photocatalyst for Degradation of Rhodamin B. J. Photochem. Photobiol. A Chem. 2018;365:185–198. doi: 10.1016/j.jphotochem.2018.07.042. DOI
Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special Features of Formation of Nanocrystalline BiFeO3 via the Glycine-Nitrate Combustion Method. Russ. J. Gen. Chem. 2016;86:2256–2262. doi: 10.1134/S1070363216100030. DOI
Lomanova N.A., Tomkovich M.V., Sokolov V.V., Ugolkov V.L., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Thermal and Magnetic Behavior of BiFeO3 Nanoparticles Prepared by Glycine-Nitrate Combustion. J. Nanoparticle Res. 2018;20:17. doi: 10.1007/s11051-018-4125-6. DOI
Zaboeva E.A., Izotova S.G., Popkov V.I. Glycine-Nitrate Combustion Synthesis of CeFeO3-Based Nanocrystalline Powders. Russ. J. Appl. Chem. 2016;89:1228–1236. doi: 10.1134/S1070427216080036. DOI
Martinson K.D., Kondrashkova I.S., Popkov V.I. Synthesis of EuFeO3 Nanocrystals by Glycine-Nitrate Combustion Method. Russ. J. Appl. Chem. 2017;90:1214–1218. doi: 10.1134/S1070427217080031. DOI
Orudzhev F., Alikhanov N., Rabadanov M., Ramazanov S., Isaev A., Gadzhimagomedov S., Aliyev A., Abdullaev V. Synthesis and study of the properties of magnetically separable nanophotocatalyst BiFeO3. Chem. Probl. 2018;4:484–495. doi: 10.32737/2221-8688-2018-4-484-495. DOI
Larosa C., Stura E., Eggenhöffner R., Nicolini C. Optimization of Optical Properties of Polycarbonate Film with Thiol Gold-Nanoparticles. Materials. 2009;2:1193–1204. doi: 10.3390/ma2031193. DOI
Guo R., Fang L., Dong W., Zheng F., Shen M. Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO3 Nanoparticles. J. Phys. Chem. C. 2010;114:21390–21396. doi: 10.1021/jp104660a. DOI
Wu C., Wei J., Kong F. Effect of Rare Earth Dopants on the Morphologies and Photocatalytic Activities of BiFeO3 Microcrystallites. J. Mater. Sci. Mater. Electron. 2012;24:1530–1535. doi: 10.1007/s10854-012-0966-4. DOI
Kaur M., Yadav K.L., Uniyal P. Investigations on Multiferroic, Optical and Photocatalytic Properties of Lanthanum Doped Bismuth Ferrite Nanoparticles. Adv. Mater. Lett. 2015;6:895–901. doi: 10.5185/amlett.2015.5861. DOI
Wei J., Liu Y., Bai X., Li C., Liu Y., Xu Z., Gemeiner P., Haumont R., Infante I.C., Dkhil B. Crystal Structure, Leakage Conduction Mechanism Evolution and Enhanced Multiferroic Properties in Y-Doped BiFeO3 Ceramics. Ceram. Int. 2016;42:13395–13403. doi: 10.1016/j.ceramint.2016.05.106. DOI
Xu B., Wang D., Íñiguez J., Bellaiche L. Finite-Temperature Properties of Rare-Earth-Substituted BiFeO3 Multiferroic Solid Solutions. Adv. Funct. Mater. 2015;25:552–558. doi: 10.1002/adfm.201403811. DOI
Singh H., Yadav K.L. Structural, Dielectric, Vibrational and Magnetic Properties of Sm Doped BiFeO3 Multiferroic Ceramics Prepared by a Rapid Liquid Phase Sintering Method. Ceram. Int. 2015;41:9285–9295. doi: 10.1016/j.ceramint.2015.03.212. DOI
Xu X., Guoqiang T., Huijun R., Ao X. Structural, Electric and Multiferroic Properties of Sm-Doped BiFeO3 Thin Films Prepared by the Sol–Gelprocess. Ceram. Int. 2013;39:6223–6228. doi: 10.1016/j.ceramint.2013.01.042. DOI
Fujino S., Murakami M., Anbusathaiah V., Lim S.H., Nagarajan V., Fennie C.J., Wuttig M., Salamanca-Riba L., Takeuchi I. Combinatorial Discovery of a Lead-Free Morphotropic Phase Boundary in a Thin-Film Piezoelectric Perovskite. Appl. Phys. Lett. 2008;92:202904. doi: 10.1063/1.2931706. DOI
Catalan G., Scott J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009;21:2463–2485. doi: 10.1002/adma.200802849. DOI
Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and Magnetoelectric Materials. Nature. 2006;442:759–765. doi: 10.1038/nature05023. PubMed DOI
Ramesh R., Spaldin N.A. Multiferroics: Progress and Prospects in Thin Films. Nat. Mater. 2007;6:21–29. doi: 10.1038/nmat1805. PubMed DOI
Wu J., Fan Z., Xiao D., Zhu J., Wang J. Multiferroic Bismuth Ferrite-Based Materials for Multifunctional Applications: Ceramic Bulks, Thin Films and Nanostructures. Prog. Mater. Sci. 2016;84:335–402. doi: 10.1016/j.pmatsci.2016.09.001. DOI
Pattanayak S., Choudhary R.N.P., Das P.R. Effect of Sm-Substitution on Structural, Electrical and Magnetic Properties of BiFeO3. Electron. Mater. Lett. 2014;10:165–172. doi: 10.1007/s13391-013-3050-1. DOI
Kakekhani A., Ismail-Beigi S., Altman E.I. Ferroelectrics: A Pathway to Switchable Surface Chemistry and Catalysis. Surf. Sci. 2016;650:302–316. doi: 10.1016/j.susc.2015.10.055. DOI
Georgescu A.B., Ismail-Beigi S. Surface Piezoelectricity of (0001) Sapphire. Phys. Rev. Appl. 2019;11:64065. doi: 10.1103/PhysRevApplied.11.064065. DOI
Safi R., Shokrollahi H. Physics, Chemistry and Synthesis Methods of Nanostructured Bismuth Ferrite (BiFeO3) as a Ferroelectro-Magnetic Material. Prog. Solid State Chem. 2012;40:6–15. doi: 10.1016/j.progsolidstchem.2012.03.001. DOI
Morozov M.I., Lomanova N.A., Gusarov V.V. Specific Features of BiFeO3 Formation in a Mixture of Bismuth(III) and Iron(III) Oxides. Russ. J. Gen. Chem. 2003;73:1676–1680. doi: 10.1023/B:RUGC.0000018640.30953.70. DOI
Matjaz V., Anna-Karin A., Neil A. Peculiarities of a Solid-State Synthesis of Multiferroic Polycrystalline BiFeO3. Chem. Mater. 2007;19:5431–5436. doi: 10.1021/cm071730+. DOI
Khomchenko V.A., Paixão J.A., Shvartsman V.V., Borisov P., Kleemann W., Karpinsky D.V., Kholkin A.L. Effect of Sm Substitution on Ferroelectric and Magnetic Properties of BiFeO3. Scr. Mater. 2010;62:238–241. doi: 10.1016/j.scriptamat.2009.11.005. DOI
Stojadinović B., Dohčević-Mitrović Z., Paunović N., Ilić N., Tasić N., Petronijević I., Popović D., Stojanović B. Comparative Study of Structural and Electrical Properties of Pr and Ce Doped BiFeO3 Ceramics Synthesized by Auto-Combustion Method. J. Alloys Compd. 2016;657:866–872. doi: 10.1016/j.jallcom.2015.09.235. DOI
Hussain A., Xu X., Yuan G., Wang Y., Yang Y., Yin J., Liu J., Liu Z. The Development of BiFeO3-Based Ceramics. Chin. Sci. Bull. 2014;59:5161–5169. doi: 10.1007/s11434-014-0648-0. DOI
Deka B., Ravi S., Pamu D. Evolution of Structural Transition, Grain Growth Inhibition and Collinear Antiferromagnetism in (Bi1−õSmx)FeO3 (x = 0 to 0.3) and Their Effects on Dielectric and Magnetic Properties. Ceram. Int. 2017;43:16580–16592. doi: 10.1016/j.ceramint.2017.09.046. DOI
Godara P., Agarwal A., Ahlawat N., Sanghi S. Crystal Structure Refinement, Dielectric and Magnetic Properties of Sm Modified BiFeO3 Multiferroic. J. Mol. Struct. 2015;1097:207–213. doi: 10.1016/j.molstruc.2015.05.022. DOI
Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A. 1976;32:751–767. doi: 10.1107/S0567739476001551. DOI
Bielecki J., Svedlindh P., Tibebu D.T., Cai S., Eriksson S.G., Börjesson L., Knee C.S. Structural and Magnetic Properties of Isovalently Substituted Multiferroic BiFeO3: Insights from Raman Spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2012;86:184422. doi: 10.1103/PhysRevB.86.184422. DOI
Fukumura H., Harima H., Kisoda K., Tamada M., Noguchi Y., Miyayama M. Raman Scattering Study of Multiferroic BiFeO3 Single Crystal. J. Magn. Magn. Mater. 2007;310:367–369. doi: 10.1016/j.jmmm.2006.10.282. PubMed DOI
Chaturvedi S., Shyam P., Apte A., Kumar J., Bhattacharyya A., Awasthi A.M., Kulkarni S. Dynamics of Electron Density, Spin-Phonon Coupling, and Dielectric Properties of SmFeO3 Nanoparticles at the Spin-Reorientation Temperature: Role of Exchange Striction. Phys. Rev. B. 2016;93:174117. doi: 10.1103/PhysRevB.93.174117. DOI
Wang J., Wei Y., Zhang J., Ji L., Huang Y., Chen Z. Synthesis of Pure-Phase BiFeO3 Nanopowder by Nitric Acid-Assisted Gel. Mater. Lett. 2014;124:242–244. doi: 10.1016/j.matlet.2014.03.105. DOI
Xu X.S., Brinzari T.V., Lee S., Chu Y.H., Martin L.W., Kumar A., McGill S., Rai R.C., Ramesh R., Gopalan V., et al. Optical Properties and Magnetochromism in Multiferroic BiFeO3. Phys. Rev. B Condens. Matter Mater. Phys. 2009;79:134425. doi: 10.1103/PhysRevB.79.134425. DOI
Ramirez M.O., Kumar A., Denev S.A., Podraza N.J., Xu X.S., Rai R.C., Chu Y.H., Seidel J., Martin L.W., Yang S.Y., et al. Magnon Sidebands and Spin-Charge Coupling in Bismuth Ferrite Probed by Nonlinear Optical Spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2009;79:224106. doi: 10.1103/PhysRevB.79.224106. DOI
Pisarev R.V., Moskvin A.S., Kalashnikova A.M., Rasing T. Charge Transfer Transitions in Multiferroic BiFeO3 and Related Ferrite Insulators. Phys. Rev. B Condens. Matter Mater. Phys. 2009;79:235128. doi: 10.1103/PhysRevB.79.235128. DOI
Dionne G.F. Magnetic Oxides. Springer; Berlin/Heidelberg, Germany: 2009. pp. 1–466. DOI
Kumar A., Rai R.C., Podraza N.J., Denev S., Ramirez M., Chu Y.H., Martin L.W., Ihlefeld J., Heeg T., Schubert J., et al. Linear and Nonlinear Optical Properties of BiFeO3. Appl. Phys. Lett. 2008;92:121915. doi: 10.1063/1.2901168. DOI
Jubu P.R., Yam F.K., Igba V.M., Beh K.P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data—A Case Study of β-Ga2O3. J. Solid State Chem. 2020;290:121576. doi: 10.1016/j.jssc.2020.121576. DOI
Arora M., Kumar M. Structural, Magnetic and Optical Properties of Ce Substituted BiFeO3 Nanoparticles. Ceram. Int. 2015;4:5705–5712. doi: 10.1016/j.ceramint.2014.12.155. DOI
Eichel R.A. Characterization of Defect Structure in Acceptor-Modified Piezoelectric Ceramics by Multifrequency and Multipulse Electron Paramagnetic Resonance Spectroscopy. J. Am. Ceram. Soc. 2008;91:691–701. doi: 10.1111/j.1551-2916.2008.02303.x. DOI
Paul Blessington Selvadurai A., Pazhanivelu V., Jagadeeshwaran C., Murugaraj R., Mohammed Gazzali P.M., Chandrasekaran G. An Analysis on Structural and Magnetic Properties of La1−xRExFeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) Nanoparticles. Appl. Phys. A. 2016;123:13. doi: 10.1007/s00339-016-0651-1. DOI
Krishna Reddy J., Srinivas B., Durga Kumari V., Subrahmanyam M. Sm3+-Doped Bi2O3 Photocatalyst Prepared by Hydrothermal Synthesis. ChemCatChem. 2009;1:492–496. doi: 10.1002/cctc.200900189. DOI
Choi W., Termin A., Hoffmann M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994;98:13669–13679. doi: 10.1021/j100102a038. DOI
Damjanovic D. A Morphotropic Phase Boundary System Based on Polarization Rotation and Polarization Extension. Appl. Phys. Lett. 2010;97:62906. doi: 10.1063/1.3479479. DOI
Hu Z., Chen D., Wang S., Zhang N., Qin L., Huang Y. Facile Synthesis of Sm-Doped BiFeO3 Nanoparticles for Enhanced Visible Light Photocatalytic Performance. Mater. Sci. Eng. B. 2017;220:1–12. doi: 10.1016/j.mseb.2017.03.005. DOI
Zilabi S., Habibzadeh S., Gheytanzadeh M., Rahmani M. Direct Sunlight Catalytic Decomposition of Organic Pollutants via Sm- and Ce-Doped BiFeO3 Nanopowder Synthesized by a Rapid Combustion Technique. Catal. Lett. 2021;151:3462–3476. doi: 10.1007/s10562-021-03586-9. DOI
Gu Y., Zhou Y., Zhang W., Guo C., Zhang X., Zhao J., Zhang Y., Zheng H. Optical and Magnetic Properties of Sm-Doped BiFeO3 Nanoparticles around the Morphotropic Phase Boundary Region. AIP Adv. 2021;11:45223. doi: 10.1063/5.0042485. DOI
Wang S., Chen D., Niu F., Zhang N., Qin L., Huang Y. Pd Cocatalyst on Sm-Doped BiFeO3 Nanoparticles: Synergetic Effect of a Pd Cocatalyst and Samarium Doping on Photocatalysis. RSC Adv. 2016;6:34574–34587. doi: 10.1039/C6RA01140C. DOI
Zhang N., Chen D., Niu F., Wang S., Qin L., Huang Y. Enhanced Visible Light Photocatalytic Activity of Gd-Doped BiFeO3 Nanoparticles and Mechanism Insight. Sci. Rep. 2016;6:26467. doi: 10.1038/srep26467. PubMed DOI PMC
Patil K.C., Hegde M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials. World Scientific; Singapore: 2008. DOI
Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane