Piezoelectric Current Generator Based on Bismuth Ferrite Nanoparticles

. 2020 Nov 25 ; 20 (23) : . [epub] 20201125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33255719

Grantová podpora
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
GA 19-17457S Grantová Agentura České Republiky
LM2018110 MEYS ČR

Bismuth ferrite nanoparticles with an average particle diameter of 45 nm and spatial symmetry R3c were obtained by combustion of organic nitrate precursors. BiFeO3-silicone nanocomposites with various concentrations of nanoparticles were obtained by mixing with a solution of M10 silicone. Models of piezoelectric generators were made by applying nanocomposites on a glass substrate and using aluminum foil as contacts. The thickness of the layers was about 230 μm. There was a proportional relationship between the different concentrations of nanoparticles and the detected potential. The output voltages were 0.028, 0.055, and 0.17 V with mass loads of 10, 30, and 50 mass%, respectively.

Zobrazit více v PubMed

Liu Y.Z., Hao Z.W., Yu J.X., Zhou X.R., Lee P.S., Sun Y., Mu Z.C., Zeng F.L. A high-performance soft actuator based on a poly(vinylidene fluoride) piezoelectric bimorph. Smart Mater. Struct. 2019;28:055011. doi: 10.1088/1361-665X/ab0844. DOI

Anton S.R., Sodano H.A. A review of power harvesting using piezoelectric materials (2003–2006) Smart Mater. Struct. 2007;16:R1. doi: 10.1088/0964-1726/16/3/R01. DOI

Kim H.S., Kim J.H., Kim J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011;12:1129–1141. doi: 10.1007/s12541-011-0151-3. DOI

Xu S., Qin Y., Xu C., Wei Y., Yang R., Wang Z.L. Self-powered nanowire devices. Nat. Nanotechnol. 2010;5:366–373. doi: 10.1038/nnano.2010.46. PubMed DOI

Zhu G., Yang R., Wang S., Wang Z.L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010;10:3151–3155. doi: 10.1021/nl101973h. PubMed DOI

Hu Y., Xu C., Zhang Y., Lin L., Snyder R.L., Wang Z.L. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv. Mater. 2011;23:4068–4071. doi: 10.1002/adma.201102067. PubMed DOI

Choi M.Y., Choi D., Jin M.J., Kim I., Kim S.H., Choi J.Y., Lee S.Y., Kim J.M., Kim S.W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 2009;21:2185–2189. doi: 10.1002/adma.200803605. DOI

Hu Y., Zhang Y., Xu C., Lin L., Snyder R.L., Wang Z.L. Self-powered system with wireless data transmission. Nano Lett. 2011;11:2572–2577. doi: 10.1021/nl201505c. PubMed DOI

Kwon J., Seung W., Sharma B.K., Kim S.-W., Ahn J.-H. A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 2012;5:8970. doi: 10.1039/c2ee22251e. DOI

Qi Y., Kim J., Nguyen T.D., Lisko B., Purohit P.K., McAlpine M.C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011;11:1331–1336. doi: 10.1021/nl104412b. PubMed DOI

Park K.-I., Son J.H., Hwang G.T., Jeong C.K., Ryu J., Koo M., Choi I., Lee S.H., Byun M., Wang Z.L., et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014;26:2514–2520. doi: 10.1002/adma.201305659. PubMed DOI

Liu J., Fei P., Song J., Wang X., Lao C., Tummala R., Wang Z.L. Carrier density and schottky barrier on the performance of DC nanogenerator. Nano Lett. 2008;8:328–332. doi: 10.1021/nl0728470. PubMed DOI

Briscoe J., Stewart M., Vopson M., Cain M., Weaver P.M., Dunn S. Nanostructured p-n Junctions for Kinetic-to-Electrical Energy Conversion. Adv. Energy Mater. 2012;2:1261–1268. doi: 10.1002/aenm.201200205. DOI

Xu S., Hansen B.J., Wang Z.L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 2010;1:93. doi: 10.1038/ncomms1098. PubMed DOI

Dagdeviren C., Yang B.D., Su Y., Tran P.L., Joe P., Anderson E., Xia J., Doraiswamy V., Dehdashti B., Feng X., et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA. 2014;111:1927–1932. doi: 10.1073/pnas.1317233111. PubMed DOI PMC

Guillon O., Thiebaud F., Perreux D. Tensile fracture of soft and hard PZT. Int. J. Fract. 2002;117:235–246. doi: 10.1023/A:1022072500963. DOI

Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. Nature. 2006;442:759–765. doi: 10.1038/nature05023. PubMed DOI

Abrahams S.C., Kurtz S.K., Jamieson P.B. Atomic displacement relationship to curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev. 1968;172:551–553. doi: 10.1103/PhysRev.172.551. DOI

Wesselinowa J.M., Apostolova I. Theoretical study of multiferroic BiFeO3 nanoparticles. J. Appl. Phys. 2008;104:084108. doi: 10.1063/1.3006003. DOI

Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Viehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719–1722. doi: 10.1126/science.1080615. PubMed DOI

Lebeugle D., Colson D., Forget A., Viret M., Bonville P., Marucco J.F., Fusil S. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B Condens. Matter Mater. Phys. 2007;76:024116. doi: 10.1103/PhysRevB.76.024116. DOI

Shvartsman V.V., Kleemann W., Haumont R., Kreisel J. Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 2007;90:172115. doi: 10.1063/1.2731312. DOI

Dutta D.P., Mandal B.P., Naik R., Lawes G., Tyagi A.K. Magnetic, Ferroelectric, and Magnetocapacitive Properties of Sonochemically Synthesized Sc-Doped BiFeO3 Nanoparticles. J. Phys. Chem. C. 2013;117:2382–2389. doi: 10.1021/jp310710p. DOI

Jain S.R., Adiga K.C., Pai Verneker V.R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame. 1981;40 doi: 10.1016/0010-2180(81)90111-5. DOI

Orudzhev F.F., Alikhanov N.-R., Rabadanov M.K., Ramazanov S.M., Isaev A.B., Gadzhimagomedov S.K., Aliyev A.S., Abdullaev V.R. Synthesis and study of the properties of magnetically separable nanophotocatalyst BiFeO3. Chem. Probl. 2018;16 doi: 10.32737/2221-8688-2018-4-484-495. DOI

Yang J., Li X., Zhou J., Tang Y., Zhang Y., Li Y. Factors controlling pure-phase magnetic BiFeO3 powders synthesized by solution combustion synthesis. J. Alloys Compd. 2011;509:9271–9277. doi: 10.1016/j.jallcom.2011.07.023. DOI

Chen P., Xu X., Koenigsmann C., Santulli A.C., Wong S.S., Musfeldt J.L. Size-Dependent Infrared Phonon Modes and Ferroelectric Phase Transition in BiFeO3 Nanoparticles. Nano Lett. 2010;10:4526–4532. doi: 10.1021/nl102470f. PubMed DOI

Yang Y., Sun J.Y., Zhu K., Liu Y.L., Chen J., Xing X.R. Raman study of BiFeO3 with different excitation wavelengths. Phys. B Condens. Matter. 2009;404:171–174. doi: 10.1016/j.physb.2008.10.029. DOI

Eitel R., Randall C.A. Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr,Ti)O3. Phys. Rev. B Condens. Matter Mater. Phys. 2007;75:094106. doi: 10.1103/PhysRevB.75.094106. DOI

Freitas V.F., Dias G.S., Protzek O.A., Montanher D.Z., Catellani I.B., Silva D.M., Cótica L.F., dos Santos I.A. Structural phase relations in perovskite-structured BiFeO3-based multiferroic compounds. J. Adv. Ceram. 2013;2:103–111. doi: 10.1007/s40145-013-0052-2. DOI

Sobola D., Ramazanov S., Koneĉnỳ M., Orudzhev F., Kaspar P., Papež N., Knápek A., Potoĉek M. Complementary SEM-AFM of swelling Bi-Fe-O film on HOPG substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC

Kaspar P., Sobola D., Dallaev R., Ramazanov S., Nebojsa A., Rezaee S., Grmela L. Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS. Appl. Surf. Sci. 2019;493:673–678. doi: 10.1016/j.apsusc.2019.07.058. DOI

Li Z., Zhu G., Yang R., Wang A.C., Wang Z.L. Muscle-driven in vivo nanogenerator. Adv. Mater. 2010;22:2534–2537. doi: 10.1002/adma.200904355. PubMed DOI

Wu W., Wang L., Li Y., Zhang F., Lin L., Niu S., Chenet D., Zhang X., Hao Y., Heinz T.F., et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature. 2014;514:470–474. doi: 10.1038/nature13792. PubMed DOI

Singh M.K., Jang H.M., Ryu S., Jo M.H. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 2006;88:1–3. doi: 10.1063/1.2168038. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane

. 2023 Jan 03 ; 15 (1) : . [epub] 20230103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...