Piezoelectric Current Generator Based on Bismuth Ferrite Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu dopisy
Grantová podpora
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
GA 19-17457S
Grantová Agentura České Republiky
LM2018110
MEYS ČR
PubMed
33255719
PubMed Central
PMC7728058
DOI
10.3390/s20236736
PII: s20236736
Knihovny.cz E-zdroje
- Klíčová slova
- BiFeO3, composite material, nanoparticles, piezoelectric generator,
- Publikační typ
- dopisy MeSH
Bismuth ferrite nanoparticles with an average particle diameter of 45 nm and spatial symmetry R3c were obtained by combustion of organic nitrate precursors. BiFeO3-silicone nanocomposites with various concentrations of nanoparticles were obtained by mixing with a solution of M10 silicone. Models of piezoelectric generators were made by applying nanocomposites on a glass substrate and using aluminum foil as contacts. The thickness of the layers was about 230 μm. There was a proportional relationship between the different concentrations of nanoparticles and the detected potential. The output voltages were 0.028, 0.055, and 0.17 V with mass loads of 10, 30, and 50 mass%, respectively.
Zobrazit více v PubMed
Liu Y.Z., Hao Z.W., Yu J.X., Zhou X.R., Lee P.S., Sun Y., Mu Z.C., Zeng F.L. A high-performance soft actuator based on a poly(vinylidene fluoride) piezoelectric bimorph. Smart Mater. Struct. 2019;28:055011. doi: 10.1088/1361-665X/ab0844. DOI
Anton S.R., Sodano H.A. A review of power harvesting using piezoelectric materials (2003–2006) Smart Mater. Struct. 2007;16:R1. doi: 10.1088/0964-1726/16/3/R01. DOI
Kim H.S., Kim J.H., Kim J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011;12:1129–1141. doi: 10.1007/s12541-011-0151-3. DOI
Xu S., Qin Y., Xu C., Wei Y., Yang R., Wang Z.L. Self-powered nanowire devices. Nat. Nanotechnol. 2010;5:366–373. doi: 10.1038/nnano.2010.46. PubMed DOI
Zhu G., Yang R., Wang S., Wang Z.L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010;10:3151–3155. doi: 10.1021/nl101973h. PubMed DOI
Hu Y., Xu C., Zhang Y., Lin L., Snyder R.L., Wang Z.L. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv. Mater. 2011;23:4068–4071. doi: 10.1002/adma.201102067. PubMed DOI
Choi M.Y., Choi D., Jin M.J., Kim I., Kim S.H., Choi J.Y., Lee S.Y., Kim J.M., Kim S.W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 2009;21:2185–2189. doi: 10.1002/adma.200803605. DOI
Hu Y., Zhang Y., Xu C., Lin L., Snyder R.L., Wang Z.L. Self-powered system with wireless data transmission. Nano Lett. 2011;11:2572–2577. doi: 10.1021/nl201505c. PubMed DOI
Kwon J., Seung W., Sharma B.K., Kim S.-W., Ahn J.-H. A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 2012;5:8970. doi: 10.1039/c2ee22251e. DOI
Qi Y., Kim J., Nguyen T.D., Lisko B., Purohit P.K., McAlpine M.C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011;11:1331–1336. doi: 10.1021/nl104412b. PubMed DOI
Park K.-I., Son J.H., Hwang G.T., Jeong C.K., Ryu J., Koo M., Choi I., Lee S.H., Byun M., Wang Z.L., et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014;26:2514–2520. doi: 10.1002/adma.201305659. PubMed DOI
Liu J., Fei P., Song J., Wang X., Lao C., Tummala R., Wang Z.L. Carrier density and schottky barrier on the performance of DC nanogenerator. Nano Lett. 2008;8:328–332. doi: 10.1021/nl0728470. PubMed DOI
Briscoe J., Stewart M., Vopson M., Cain M., Weaver P.M., Dunn S. Nanostructured p-n Junctions for Kinetic-to-Electrical Energy Conversion. Adv. Energy Mater. 2012;2:1261–1268. doi: 10.1002/aenm.201200205. DOI
Xu S., Hansen B.J., Wang Z.L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 2010;1:93. doi: 10.1038/ncomms1098. PubMed DOI
Dagdeviren C., Yang B.D., Su Y., Tran P.L., Joe P., Anderson E., Xia J., Doraiswamy V., Dehdashti B., Feng X., et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA. 2014;111:1927–1932. doi: 10.1073/pnas.1317233111. PubMed DOI PMC
Guillon O., Thiebaud F., Perreux D. Tensile fracture of soft and hard PZT. Int. J. Fract. 2002;117:235–246. doi: 10.1023/A:1022072500963. DOI
Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. Nature. 2006;442:759–765. doi: 10.1038/nature05023. PubMed DOI
Abrahams S.C., Kurtz S.K., Jamieson P.B. Atomic displacement relationship to curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev. 1968;172:551–553. doi: 10.1103/PhysRev.172.551. DOI
Wesselinowa J.M., Apostolova I. Theoretical study of multiferroic BiFeO3 nanoparticles. J. Appl. Phys. 2008;104:084108. doi: 10.1063/1.3006003. DOI
Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Viehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719–1722. doi: 10.1126/science.1080615. PubMed DOI
Lebeugle D., Colson D., Forget A., Viret M., Bonville P., Marucco J.F., Fusil S. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B Condens. Matter Mater. Phys. 2007;76:024116. doi: 10.1103/PhysRevB.76.024116. DOI
Shvartsman V.V., Kleemann W., Haumont R., Kreisel J. Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 2007;90:172115. doi: 10.1063/1.2731312. DOI
Dutta D.P., Mandal B.P., Naik R., Lawes G., Tyagi A.K. Magnetic, Ferroelectric, and Magnetocapacitive Properties of Sonochemically Synthesized Sc-Doped BiFeO3 Nanoparticles. J. Phys. Chem. C. 2013;117:2382–2389. doi: 10.1021/jp310710p. DOI
Jain S.R., Adiga K.C., Pai Verneker V.R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame. 1981;40 doi: 10.1016/0010-2180(81)90111-5. DOI
Orudzhev F.F., Alikhanov N.-R., Rabadanov M.K., Ramazanov S.M., Isaev A.B., Gadzhimagomedov S.K., Aliyev A.S., Abdullaev V.R. Synthesis and study of the properties of magnetically separable nanophotocatalyst BiFeO3. Chem. Probl. 2018;16 doi: 10.32737/2221-8688-2018-4-484-495. DOI
Yang J., Li X., Zhou J., Tang Y., Zhang Y., Li Y. Factors controlling pure-phase magnetic BiFeO3 powders synthesized by solution combustion synthesis. J. Alloys Compd. 2011;509:9271–9277. doi: 10.1016/j.jallcom.2011.07.023. DOI
Chen P., Xu X., Koenigsmann C., Santulli A.C., Wong S.S., Musfeldt J.L. Size-Dependent Infrared Phonon Modes and Ferroelectric Phase Transition in BiFeO3 Nanoparticles. Nano Lett. 2010;10:4526–4532. doi: 10.1021/nl102470f. PubMed DOI
Yang Y., Sun J.Y., Zhu K., Liu Y.L., Chen J., Xing X.R. Raman study of BiFeO3 with different excitation wavelengths. Phys. B Condens. Matter. 2009;404:171–174. doi: 10.1016/j.physb.2008.10.029. DOI
Eitel R., Randall C.A. Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr,Ti)O3. Phys. Rev. B Condens. Matter Mater. Phys. 2007;75:094106. doi: 10.1103/PhysRevB.75.094106. DOI
Freitas V.F., Dias G.S., Protzek O.A., Montanher D.Z., Catellani I.B., Silva D.M., Cótica L.F., dos Santos I.A. Structural phase relations in perovskite-structured BiFeO3-based multiferroic compounds. J. Adv. Ceram. 2013;2:103–111. doi: 10.1007/s40145-013-0052-2. DOI
Sobola D., Ramazanov S., Koneĉnỳ M., Orudzhev F., Kaspar P., Papež N., Knápek A., Potoĉek M. Complementary SEM-AFM of swelling Bi-Fe-O film on HOPG substrate. Materials. 2020;13:2402. doi: 10.3390/ma13102402. PubMed DOI PMC
Kaspar P., Sobola D., Dallaev R., Ramazanov S., Nebojsa A., Rezaee S., Grmela L. Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS. Appl. Surf. Sci. 2019;493:673–678. doi: 10.1016/j.apsusc.2019.07.058. DOI
Li Z., Zhu G., Yang R., Wang A.C., Wang Z.L. Muscle-driven in vivo nanogenerator. Adv. Mater. 2010;22:2534–2537. doi: 10.1002/adma.200904355. PubMed DOI
Wu W., Wang L., Li Y., Zhang F., Lin L., Niu S., Chenet D., Zhang X., Hao Y., Heinz T.F., et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature. 2014;514:470–474. doi: 10.1038/nature13792. PubMed DOI
Singh M.K., Jang H.M., Ryu S., Jo M.H. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 2006;88:1–3. doi: 10.1063/1.2168038. DOI