Coordination Behavior of 1,4-Disubstituted Cyclen Endowed with Phosphonate, Phosphonate Monoethylester, and H-Phosphinate Pendant Arms
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31547345
PubMed Central
PMC6767212
DOI
10.3390/molecules24183324
PII: molecules24183324
Knihovny.cz E-zdroje
- Klíčová slova
- MRI contrast agents, copper, cyclen derivatives, gadolinium, macrocyclic ligands, manganese, metal complexes, phosphinate ligands, phosphonate ligands, protonation constants, stability constants,
- MeSH
- cyklamy MeSH
- europium chemie MeSH
- gadolinium chemie MeSH
- heterocyklické sloučeniny chemie MeSH
- komplexní sloučeniny chemická syntéza chemie MeSH
- kontrastní látky MeSH
- krystalografie rentgenová MeSH
- kyseliny fosfinové chemie MeSH
- ligandy MeSH
- magnetická rezonanční spektroskopie MeSH
- mangan chemie MeSH
- organofosfonáty chemie MeSH
- potenciometrie MeSH
- spektrofotometrie ultrafialová MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyclen MeSH Prohlížeč
- cyklamy MeSH
- ethyl phosphonate MeSH Prohlížeč
- europium MeSH
- gadolinium MeSH
- heterocyklické sloučeniny MeSH
- komplexní sloučeniny MeSH
- kontrastní látky MeSH
- kyseliny fosfinové MeSH
- ligandy MeSH
- mangan MeSH
- organofosfonáty MeSH
Three 1,4,7,10-tetraazacyclododecane-based ligands disubstituted in 1,4-positions with phosphonic acid, phosphonate monoethyl-ester, and H-phosphinic acid pendant arms, 1,4-H4do2p, 1,4-H2do2pOEt, and 1,4-H2Bn2do2pH, were synthesized and their coordination to selected metal ions, Mg(II), Ca(II), Mn(II), Zn(II), Cu(II), Eu(III), Gd(III), and Tb(III), was investigated. The solid-state structure of the phosphonate ligand, 1,4-H4do2p, was determined by single-crystal X-ray diffraction. Protonation constants of the ligands and stability constants of their complexes were obtained by potentiometry, and their values are comparable to those of previously studied analogous 1,7-disubstitued cyclen derivatives. The Gd(III) complex of 1,4-H4do2p is ~1 order of magnitude more stable than the Gd(III) complex of the 1,7-analogue, probably due to the disubstituted ethylenediamine-like structural motif in 1,4-H4do2p enabling more efficient wrapping of the metal ion. Stability of Gd(III)-1,4-H2do2pOEt and Gd(III)-H2Bn2do2pH complexes is low and the constants cannot be determined due to precipitation of the metal hydroxide. Protonations of the Cu(II), Zn(II), and Gd(III) complexes probably takes place on the coordinated phosphonate groups. Complexes of Mn(II) and alkali-earth metal ions are significantly less stable and are not formed in acidic solutions. Potential presence of water molecule(s) in the coordination spheres of the Mn(II) and Ln(III) complexes was studied by variable-temperature NMR experiments. The Mn(II) complexes of the ligands are not hydrated. The Gd(III)-1,4-H4do2p complex undergoes hydration equilibrium between mono- and bis-hydrated species. Presence of two-species equilibrium was confirmed by UV-Vis spectroscopy of the Eu(III)-1,4-H4do2p complex and hydration states were also determined by luminescence measurements of the Eu(III)/Tb(III)-1,4-H4do2p complexes.
Zobrazit více v PubMed
Hermann P., Kotek J., Kubíček J., Lukeš I. Gadolinium(III) Complexes as MRI Contrast Agents: Ligand Design and Properties of the Complexes. Dalton Trans. 2008:3027–3047. doi: 10.1039/b719704g. PubMed DOI
Terreno E., Castelli D.D., Viale A., Aime S. Challenges for Molecular Magnetic Resonance Imaging. Chem. Rev. 2010;110:3019–3042. doi: 10.1021/cr100025t. PubMed DOI
Dorazio S.J., Olatunde A.O., Tsitovich P.B., Morrow J.R. Comparison of divalent transition metal ion paraCEST MRI contrast agents. J. Biol. Inorg. Chem. 2014;19:191–205. doi: 10.1007/s00775-013-1059-4. PubMed DOI PMC
Angelovski G. Heading toward Macromolecular and Nanosized Bioresponsive MRI Probes for Successful Functional Imaging. Acc. Chem. Res. 2017;50:2215–2224. doi: 10.1021/acs.accounts.7b00203. PubMed DOI
Contrast Agents for MRI . In: Experimental Methods. Pierre V.C., Allen M.J., editors. Royal Society of Chemistry; Croydon, UK: 2018.
Clough T.J., Jiang L., Wong K.-L., Long N.J. Ligand Design Strategies to Increase Stability of Gadolinium-Based Magnetic Resonance Imaging Contrast Agents. Nat. Commun. 2019;10:1420. doi: 10.1038/s41467-019-09342-3. PubMed DOI PMC
Kueny-Stotz M., Garofalo A., Felder-Flesch D. Manganese-Enhanced MRI Contrast Agents: From Small Chelates to Nanosized Hybrids. Eur. J. Inorg. Chem. 2012:1987–2005. doi: 10.1002/ejic.201101163. DOI
Drahoš B., Lukeš I., Tóth É. Manganese(II) Complexes as Potential Contrast Agents for MRI. Eur. J. Inorg. Chem. 2012:1975–1986. doi: 10.1002/ejic.201101336. DOI
Caravan P., Ellison J.J., McMurry T.J., Lauffer R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999;99:2293–2352. doi: 10.1021/cr980440x. PubMed DOI
Wahsner J., Gale E.M., Rodríguez-Rodríguez A., Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019;119:957–1057. doi: 10.1021/acs.chemrev.8b00363. PubMed DOI PMC
Merbach A.E., Helm L., Tóth É., editors. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. 2nd ed. John Wiley & Sons; Chichester, UK: 2013.
Thomsen H.S., Morcos S.K., Almén T., Bellin M.-F., Bertolotto M., Bongartz G., Clement O., Leander P., Heinz-Peer G., Reimer P., et al. Nephrogenic Systemic Fibrosis and Gadolinium-Based Contrast Media: Updated ESUR Contrast Medium Safety Committee Guidelines. Eur. Radiol. 2013;23:307–318. doi: 10.1007/s00330-012-2597-9. PubMed DOI
Runge V.M., Dechelation (Transmetalation) Consequences and Safety Concerns With the Linear Gadolinium-Based Contrast Agents, In View of Recent Health Care Rulings by the EMA (Europe), FDA (United States), and PMDA (Japan) Invest. Radiol. 2018;53:571–578. PubMed
Le Fur M., Caravan P. The biological fate of gadolinium-based MRI contrast agents: A call to action for bioinorganic chemists. Metallomics. 2019;11:240–254. doi: 10.1039/C8MT00302E. PubMed DOI PMC
Christianson D.W. Structural Chemistry and Biology of Manganese Metalloenzymes. Prog. Biophys. Mol. Biol. 1997;67:217–252. doi: 10.1016/S0079-6107(97)88477-5. PubMed DOI
Koretsky A.P., Silva A.C. Manganese Enhanced Magnetic Resonance Imaging (MEMRI) NMR Biomed. 2004;17:527–631. doi: 10.1002/nbm.940. PubMed DOI
Wolf G.L., Burnett K.R., Goldstein E.J., Joseph P.M. In: Magnetic Resonance Annual 1985. Kressel H., editor. Raven; New York, NY, USA: 1985. pp. 231–266. PubMed
Rocklage S.M., Cacheris W.P., Quay S.C., Hahn F.E., Raymond K.N. Manganese(II) N,N′-dipyridoxylethylenediamine-N,N′-diacetate 5,5′-bis(phosphate). Synthesis and Characterization of a Paramagnetic Chelate for Magnetic Resonance Imaging Enhancement. Inorg. Chem. 1989;28:477–485. doi: 10.1021/ic00302a019. DOI
Kettritz U., Schlund J.F., Wilbur K., Eisenberg L.B., Semelka R.C. Comparison of Gadolinium Chelates with Manganese-DPDP for Liver Lesion Detection and Characterization: Preliminary Results. Magn. Reson. Imaging. 1996;14:1185–1190. doi: 10.1016/S0730-725X(96)00142-7. PubMed DOI
Murakami T., Baron R.L., Peterson M.S., Oliver J.H., 3rd, Davis P.L., Confer S.R., Federle M.P. Hepatocellular Carcinoma: MR Imaging with Mangafodipir Trisodium (Mn-DPDP) Radiology. 1996;200:69–77. doi: 10.1148/radiology.200.1.8657947. PubMed DOI
Gallez B., Baudelet C., Geurts M. Regional Distribution of Manganese Found in the Brain after Injection of a Single Dose of Manganese-Based Contrast Agents. Magn. Reson. Imaging. 1998;16:1211–1215. doi: 10.1016/S0730-725X(98)00082-4. PubMed DOI
Cersosimo M.G., Koller W.C. The Diagnosis of Manganese-Induced Parkinsonism. Neurotoxicology. 2006;27:340–346. doi: 10.1016/j.neuro.2005.10.006. PubMed DOI
Price E.W., Orvig C. Matching Chelators to Radiometals for Radiopharmaceuticals. Chem. Soc. Rev. 2014;43:260–290. doi: 10.1039/C3CS60304K. PubMed DOI
Boros E., Packard A.B. Radioactive Transition Metals for Imaging and Therapy. Chem. Rev. 2019;119:870–901. PubMed
Kostelnik T.I., Orvig C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019;119:902–956. doi: 10.1021/acs.chemrev.8b00294. PubMed DOI
McInnes L.E., Rudd S.E., Donnelly P.S. Copper, Gallium and Zirconium Positron Emission Tomography Imaging Agents: The Importance of Metal Ion Speciation. Coord. Chem. Rev. 2017;352:499–516. doi: 10.1016/j.ccr.2017.05.011. DOI
Amoroso A.J., Fallis I.A., Pope S.J.A. Chelating Agents for Radiolanthanides: Applications to Imaging and Therapy. Coord. Chem. Rev. 2017;340:198–219. doi: 10.1016/j.ccr.2017.01.010. DOI
Huskens J., Torres D.A., Kovacs Z., André J.P., Geraldes C.F.G.C., Sherry A.D. Alkaline Earth Metal and Lanthanide(III) Complexes of Ligands Based upon 1,4,7,10-Tetraazacyclododecane-1,7-bis(acetic acid) Inorg. Chem. 1997;36:1495–1503. doi: 10.1021/ic961131x. PubMed DOI
Bianchi A., Calabi L., Giorgi C., Losi P., Mariani P., Palano D., Paoli P., Rossi P., Valtancoli B. Thermodynamic and Structural Aspects of Manganese(II) Complexes with Polyaminopolycarboxylic Ligands Based upon 1,4,7,10-Tetraazacyclododecane (Cyclen). Crystal Structure of Dimeric [MnL]2·2CH3OH Containing the New Ligand 1,4,7,10-Tetraazacyclododecane-1,4-diacetate. J. Chem. Soc. Dalton Trans. 2001:917–922.
Rolla G.A., Platas-Iglesias C., Botta M., Tei L., Helm L. 1H and 17O NMR Relaxometric and Computational Study on Macrocyclic Mn(II) Complexes. Inorg. Chem. 2013;52:3268–3279. PubMed
Rolla G., De Biasio V., Giovenzana G.B., Botta M., Tei L. Supramolecular Assemblies Based on Amphiphilic Mn2+-Complexes as High Relaxivity MRI Probes. Dalton Trans. 2018;47:10660–10670. doi: 10.1039/C8DT01250D. PubMed DOI
Garda Z., Forgács A., Do Q.N., Kálmán F.K., Timári S., Baranyai Z., Tei L., Tóth I., Kovács Z., Tircsó G. Physico-Chemical Properties of MnII Complexes Formed with Cis- and Trans-DO2A: Thermodynamic, Electrochemical and Kinetic Studies. J. Inorg. Biochem. 2016;163:206–213. doi: 10.1016/j.jinorgbio.2016.07.018. PubMed DOI
Forgács A., Tei L., Baranyai Z., Tóth I., Zékány L., Botta M. A Bisamide Derivative of [Mn(1,4-DO2A)]—Solution Thermodynamic, Kinetic, and NMR Relaxometric Studies. Eur. J. Inorg. Chem. 2016:1165–1174. doi: 10.1002/ejic.201501415. DOI
Burai L., Ren J., Kovacs Z., Brücher E., Sherry A.D. Synthesis, Potentiometry, and NMR Studies of Two New 1,7-Disubstituted Tetraazacyclododecanes and Their Complexes Formed with Lanthanide, Alkaline Earth Metal, Mn2+, and Zn2+ Ions. Inorg. Chem. 1998;37:69–75. doi: 10.1021/ic970599c. PubMed DOI
Bellouard F., Chuburu F., Kervarec N., Toupet L., Triki S., Le Mest Y., Handel H. Cis-Diprotected Cyclams and Cyclens: A New Route to Symmetrically or Asymmetrically 1,4-Disubstituted Tetraazamacrocycles and to Asymmetrically Tetrasubstituted Derivatives. J. Chem. Soc. Perkin Trans. 1. 1999:3499–3505. doi: 10.1039/a905701c. DOI
Sun X., Wuest M., Kovacs Z., Sherry D.A., Motekaitis R., Wang Z., Martell A.E., Welch M.J., Anderson C.J. In Vivo Behavior of Copper-64-Labeled Methanephosphonate Tetraaza Macrocyclic Ligands. J. Biol. Inorg. Chem. 2003;8:217–225. doi: 10.1007/s00775-002-0408-5. PubMed DOI
Lebdušková P., Hermann P., Helm L., Tóth É., Kotek J., Binnemans K., Rudovský J., Lukeš I., Merbach A.E. Gadolinium(III) Complexes of Mono- and Diethyl Esters of Monophosphonic Acid Analogue of DOTA as Potential MRI Contrast Agents: Solution Structures and Relaxometric Studies. Dalton Trans. 2007:493–501. doi: 10.1039/B612876A. PubMed DOI
Försterová M., Jandurová Z., Marques F., Gano L., Lubal P., Vaněk J., Hermann P., Santos I. Chemical and Biological Evaluation of 153Sm and 166Ho Complexes of 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrakis(methylphosphonic acid monoethylester) (H4dotpOEt) J. Inorg. Biochem. 2008;102:1531–1540. doi: 10.1016/j.jinorgbio.2008.02.002. PubMed DOI
Kotek J., Vojtíšek P., Císařová I., Hermann P., Jurečka P., Rohovec J., Lukeš I. Bis(methylphosphonic Acid) Derivatives of 1,4,8,11-Tetraazacyclotetradecane (Cyclam). Synthesis, Crystal and Molecular Structures, and Solution Properties. Collect. Czech. Chem. Commun. 2000;65:1289–1316. doi: 10.1135/cccc20001289. DOI
Meyer M., Dahaoui-Gindrey V., Lecomte C., Guilard R. Conformations and Coordination Schemes of Carboxylate and Carbamoyl Derivatives of the Tetraazamacrocycles Cyclen and Cyclam, and the Relation to their Protonation States. Coord. Chem. Rev. 1998;178–180:1313–1405. doi: 10.1016/S0010-8545(98)00169-6. DOI
Pniok M., Kubíček V., Havlíčková J., Kotek J., Sabatie-Gogová A., Plutnar J., Huclier-Markai S., Hermann P. Thermodynamic and Kinetic Study of Scandium(III) Complexes of DTPA and DOTA: A Step Toward Scandium Radiopharmaceuticals. Chem. Eur. J. 2014;20:7944–7955. doi: 10.1002/chem.201402041. PubMed DOI
Lukeš I., Kotek J., Vojtíšek P., Hermann P. Complexes of Tetraazacycles Bearing Methylphosphinic/phosphonic Acid Pendant Arms with Copper(II), Zinc(II) and Lanthanides(III). A Comparison with their Acetic Acid Analogues. Coord. Chem. Rev. 2001;216–217:287–312. doi: 10.1016/S0010-8545(01)00336-8. DOI
Lima L.M.P., Delgado R., Hermann P., Ševčík R., Lubal P., Carvalho H.F., Martins A.F., Tóth É., Geraldes C.F.G.C. Tris(phosphonomethyl)cyclen Derivatives: Thermodynamic Stability, Kinetics, Solution Structure, and Relaxivity of Ln3+ Complexes. Eur. J. Inorg. Chem. 2012:2548–2559. doi: 10.1002/ejic.201101335. DOI
Lima L.M.P., Esteves C.V., Delgado R., Hermann P., Kotek J., Ševčíková R., Lubal P. Tris(phosphonomethyl) Cyclen Derivatives: Synthesis, Acid–Base Properties and Complexation Studies with Cu2+ and Zn2+ Ions. Eur. J. Inorg. Chem. 2012;15:2533–2547. doi: 10.1002/ejic.201101334. DOI
Marques F., Gano L., Paula Campello M., Lacerda S., Santos I., Lima L.M.P., Costa J., Antunes P., Delgado R. 13- and 14-Membered Macrocyclic Ligands Containing Methylcarboxylate or Methylphosphonate Pendant Arms: Chemical and Biological Evaluation of their 153Sm and 166Ho Complexes as Potential Agents for Therapy or Bone Pain Palliation. J. Inorg. Biochem. 2006;100:270–280. doi: 10.1016/j.jinorgbio.2005.11.011. PubMed DOI
Kumar K., Chang C.A., Francesconi L.C., Dischino D.D., Malley M.F., Gougoutas J.Z., Tweedle M.F. Synthesis, Stability, and Structure of Gadolinium(III) and Yttrium(III) Macrocyclic Poly(amino carboxylates) Inorg. Chem. 1994;33:3567–3575. doi: 10.1021/ic00094a021. DOI
Takács A., Napolitano R., Purgel M., Bényei A.C., Zékány L., Brücher E., Tóth I., Baranyai Z., Aime S. Solution Structures, Stabilities, Kinetics, and Dynamics of DO3A and DO3A–Sulphonamide Complexes. Inorg. Chem. 2014;53:2858–2872. doi: 10.1021/ic4025958. PubMed DOI
Bianchi A., Calabi L., Ferrini L., Losi P., Uggeri F., Valtancoli B. Thermodynamics of Gd(III) Complexation by Macrocyclic and Acyclic Polyamino Carboxylates. Inorg. Chim. Acta. 1996;249:13–15. doi: 10.1016/0020-1693(96)05182-1. DOI
Bianchi A., Calabi L., Giorgi C., Losi P., Mariani P., Paoli P., Rossi P., Valtancoli B., Virtuani M. Thermodynamic and Structural Properties of Gd3+ Complexes with Functionalized Macrocyclic Ligands Based upon 1,4,7,10-Tetraazacyclododecane. J. Chem. Soc. Dalton Trans. 2000:697–705. doi: 10.1039/a909098c. DOI
Kumar K., Chang C.A., Tweedle M.F. Equilibrium and Kinetic Studies of Lanthanide Complexes of Macrocyclic Polyamino Carboxylates. Inorg. Chem. 1993;32:587–593. doi: 10.1021/ic00057a017. DOI
Polášek M., Caravan P. Is Macrocycle a Synonym for Kinetic Inertness in Gd(III) Complexes? Effect of Coordinating and Noncoordinating Substituents on Inertness and Relaxivity of Gd(III) Chelates with DO3A-like Ligands. Inorg. Chem. 2013;52:4084–4096. doi: 10.1021/ic400227k. PubMed DOI PMC
Caravan P., Esteban-Gómez D., Rodríguez-Rodríguez A., Platas-Iglesias C. Water exchange in lanthanide complexes for MRI applications. Lessons learned over the last 25 years. Dalton Trans. 2019;48:11161–11180. doi: 10.1039/C9DT01948K. PubMed DOI
Drahoš B., Kubíček V., Bonnet C.S., Hermann P., Lukeš I., Tóth É. Dissociation kinetics of Mn2+ complexes of NOTA and DOTA. Dalton Trans. 2011;40:1945–1951. doi: 10.1039/c0dt01328e. PubMed DOI
Wang S., Westmoreland T.D. Correlation of Relaxivity with Coordination Number in Six-, Seven-, and Eight-Coordinate Mn(II) Complexes of Pendant-Arm Cyclen Derivatives. Inorg. Chem. 2009;48:719–727. doi: 10.1021/ic8003068. PubMed DOI PMC
Kálmán F.K., Baranyai Z., Tóth I., Bányai I., Király R., Brücher E., Aime S., Sun X., Sherry A.D., Kovács Z. Synthesis, Potentiometric, Kinetic, and NMR Studies of 1,4,7,10-Tetraazacyclododecane-1,7-bis(acetic acid)-4,10-bis(methylenephosphonic acid) (DO2A2P) and its Complexes with Ca(II), Cu(II), Zn(II) and Lanthanide(III) Ions. Inorg. Chem. 2008;47:3851–3862. doi: 10.1021/ic7024704. PubMed DOI
Tóth É., Dhubhghaill O.M.N., Besson G., Helm L., Merbach A.E. Coordination equilibrium—A clue for fast water exchange on potential magnetic resonance imaging contrast agents? Magn. Reson. Chem. 1999;37:701–708. doi: 10.1002/(SICI)1097-458X(199910)37:10<701::AID-MRC523>3.0.CO;2-6. DOI
Kimpe K., D’Olieslager W., Görller-Walrand C., Figueirinha A., Kovács Z., Geraldes C.F.G.C. Interaction of [Ln(DO2A)(H2O)2−3]+ and [Ln(DO2P)(H2O)2−3]− with Phosphate, Acetate and Fluoride Anions in Aqueous Solution. J. Alloys Compd. 2001;323–324:828–832. doi: 10.1016/S0925-8388(01)01154-9. DOI
Horrocks W.D., Sudnick D.R. Lanthanide Ion Probes of Structure in Biology. Laser-Induced Luminescence Decay Constants Provide a Direct Measure of the Number of Metal-Coordinated Water Molecules. J. Am. Chem. Soc. 1979;101:334–340. doi: 10.1021/ja00496a010. DOI
Clarkson I., Dickins R., de Sousa A. Non-Radiative Deactivation of the Excited States of Europium, Terbium and Ytterbium Complexes by Proximate Energy-Matched OH, NH and CH Oscillators: An Improved Luminescence Method for Establishing Solution Hydration States. J. Chem. Soc. Perkin Trans. 2. 1999:493–504.
Supkowski R.M., Horrocks W.D., Jr. On the Determination of the Number of Water Molecules, q, Coordinated to Europium(III) Ions in Solution from Luminescence Decay Lifetimes. Inorg. Chim. Acta. 2002;340:44–48. doi: 10.1016/S0020-1693(02)01022-8. DOI
Graeppi N., Hugh Powell D., Laurenczy G., Zékány L., Merbach A. Coordination equilibria and water exchange kinetics of lanthanide(III) propylenediaminetetraacetates and other magnetic resonance imaging related complexes. Inorg. Chim. Acta. 1995;235:311–326. doi: 10.1016/0020-1693(95)90073-F. DOI
Perrin D.D. Purification of Laboratory Chemicals. Pergamon Press; Oxford, UK: 1988.
Kývala M. OPIUM – Program for Solution Equilibria Analysis. Charles University; Prague, Czech Republic: 1995.
Kývala M., Lukeš I. Chemometrics ’95 (International conference) University of Pardubice; Pardubice, Czech Republic: 1995. p. 63.
Martell A.E., Smith R.M. Critical Stability Constants. Plenum Press; New York, NY, USA: 1974–1989. pp. 1–6.
NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes), Version 7.0. National Institute for Standards and Technology; Gaithersburg, MD, USA: 2003.
Baes C.F., Jr., Mesmer R.E. The Hydrolysis of Cations. Wiley; New York, NY, USA: 1976.
Försterová M., Svobodová I., Lubal P., Táborský P., Kotek J., Hermann P., Lukeš I. Thermodynamic Study of Lanthanide(III) Complexes with Bifunctional Monophosphinic Acid Analogues of H4dota and Comparative Kinetic Study of Yttrium(III) Complexes. Dalton Trans. 2007:535–549. doi: 10.1039/B613404A. PubMed DOI
Kubíček V., Kotek J., Hermann P., Lukeš I. Aminoalkyl-bis(phosphonates): Their Complexation Properties in Solution and in the Solid State. Eur. J. Inorg. Chem. 2007:333–344. doi: 10.1002/ejic.200600615. DOI
Otwinowski Z., Minor W. HKL Denzo and Scalepack Program Package. Nonius BV; Delft, The Netherlands: 1997.
Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–326. PubMed
Sheldrick G.M. SHELXS97. Program for Crystal Structure Solution from Diffraction Data. University of Göttingen; Göttingen, Germany: 1997.
Sheldrick G.M. A Short History of SHELX. Acta Crystallogr. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Sheldrick G.M. SHELXL-2014/7. Program for Crystal Structure Refinement from Diffraction Data. University of Göttingen; Göttingen, Germany: 2014.