• This record comes from PubMed

Room-Temperature Defect Qubits in Ultrasmall Nanocrystals

. 2020 Mar 05 ; 11 (5) : 1675-1681. [epub] 20200214

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we present a synthesis method that avoids any interaction of the solid with high-energy particles and uses self-propagated high-temperature synthesis with a subsequent electrochemical method, the no-photon exciton generation chemistry to produce room-temperature qubits in ultrasmall nanocrystals of sizes down to 3 nm with high yield. We first create the host silicon carbide (SiC) crystallites by high-temperature synthesis and then apply wet chemical etching, which results in ultrasmall SiC nanocrystals and facilitates the creation of thermally stable defect qubits in the material. We demonstrate room-temperature optically detected magnetic resonance signal of divacancy qubits with 3.5% contrast from these nanoparticles with emission wavelengths falling in the second biological window (1000-1380 nm). These results constitute the formation of nonperturbative bioagents for quantum sensing and efficient hyperpolarization.

See more in PubMed

Eckstein J. N.; Levy J. Materials Issues for Quantum Computation. MRS Bull. 2013, 38, 783–789. 10.1557/mrs.2013.210. DOI

Gruber A.; Drabenstedt A.; Tietz C.; Fleury L.; Wrachtrup J.; Von Borczyskowski C.; Gruber A.; Dra A.; Tietz C.; Fleury L.; et al. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science 1997, 276, 2012–2014. 10.1126/science.276.5321.2012. DOI

Koehl W. F.; Buckley B. B.; Heremans F. J.; Calusine G.; Awschalom D. D. Room Temperature Coherent Control of Defect Spin Qubits in Silicon Carbide. Nature 2011, 479, 84–87. 10.1038/nature10562. PubMed DOI

Falk A. L.; Buckley B. B.; Calusine G.; Koehl W. F.; Dobrovitski V. V.; Politi A.; Zorman C. A.; Feng P. X.-L.; Awschalom D. D. Polytype Control of Spin Qubits in Silicon Carbide. Nat. Commun. 2013, 4, 1819.10.1038/ncomms2854. PubMed DOI PMC

Kucsko G.; Maurer P. C.; Yao N. Y.; Kubo M.; Noh H. J.; Lo P. K.; Park H.; Lukin M. D. Nanometre-Scale Thermometry in a Living Cell. Nature 2013, 500, 54–58. 10.1038/nature12373. PubMed DOI PMC

Fernández-Acebal P.; Rosolio O.; Scheuer J.; Müller C.; Müller S.; Schmitt S.; McGuinness L. P.; Schwarz I.; Chen Q.; Retzker A.; et al. Toward Hyperpolarization of Oil Molecules via Single Nitrogen Vacancy Centers in Diamond. Nano Lett. 2018, 18, 1882–1887. 10.1021/acs.nanolett.7b05175. PubMed DOI

Staudacher T.; Shi F.; Pezzagna S.; Meijer J.; Du J.; Meriles C. A.; Reinhard F.; Wrachtrup J. Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer) 3 Sample Volume. Science 2013, 339, 561–563. 10.1126/science.1231675. PubMed DOI

Schmitt S.; Gefen T.; Stürner F. M.; Unden T.; Wolff G.; Müller C.; Scheuer J.; Naydenov B.; Markham M.; Pezzagna S.; et al. Submillihertz Magnetic Spectroscopy Performed with a Nanoscale Quantum Sensor. Science 2017, 356, 832–837. 10.1126/science.aam5532. PubMed DOI

Wu Y.; Jelezko F.; Plenio M. B.; Weil T. Diamond Quantum Devices in Biology. Angew. Chem., Int. Ed. 2016, 55, 6586–6598. 10.1002/anie.201506556. PubMed DOI

Bucher D. B.; Glenn D. R.; Park H.; Lukin M. D.; Walsworth R. L.. Hyperpolarization-Enhanced NMR Spectroscopy with Femtomole Sensitivity Using Quantum Defects in Diamond. 2018, arXiv:1810.02408 No. 1. arXiv preprint. https://arxiv.org/abs/1810.02408.

Choi H. S.; Liu W.; Misra P.; Tanaka E.; Zimmer J. P.; Itty Ipe B.; Bawendi M. G.; Frangioni J. V. Renal Clearance of Quantum Dots. Nat. Biotechnol. 2007, 25, 1165–1170. 10.1038/nbt1340. PubMed DOI PMC

Wrachtrup J.; Jelezko F.; Grotz B.; McGuinness L. Nitrogen-Vacancy Centers Close to Surfaces. MRS Bull. 2013, 38, 149–154. 10.1557/mrs.2013.22. DOI

Tisler J.; Balasubramanian G.; Naydenov B.; Kolesov R.; Grotz B.; Reuter R.; Boudou J.-P.; Curmi P. A.; Sennour M.; Thorel A.; et al. Fluorescence and Spin Properties of Defects in Single Digit Nanodiamonds. ACS Nano 2009, 3, 1959–1965. 10.1021/nn9003617. PubMed DOI

Bradac C.; Gaebel T.; Naidoo N.; Sellars M. J.; Twamley J.; Brown L. J.; Barnard A. S.; Plakhotnik T.; Zvyagin A. V.; Rabeau J. R. Observation and Control of Blinking Nitrogen-Vacancy Centres in Discrete Nanodiamonds. Nat. Nanotechnol. 2010, 5, 345–349. 10.1038/nnano.2010.56. PubMed DOI

Terada D.; Segawa T. F.; Shames A. I.; Onoda S.; Ohshima T.; O̅sawa E.; Igarashi R.; Shirakawa M. Monodisperse Five-Nanometer-Sized Detonation Nanodiamonds Enriched in Nitrogen-Vacancy Centers. ACS Nano 2019, 13, 6461–6468. 10.1021/acsnano.8b09383. PubMed DOI

Barnard A. S. Theory and Modeling of Nanocarbon Phase Stability. Diamond Relat. Mater. 2006, 15, 285–291. 10.1016/j.diamond.2005.05.007. DOI

De Vita A.; Galli G.; Canning A.; Car R. A Microscopic Model for Surface-Induced Diamond-to-Graphite Transitions. Nature 1996, 379, 523–526. 10.1038/379523a0. DOI

Vlasov I. I.; Shiryaev A. A.; Rendler T.; Steinert S.; Lee S.-Y.; Antonov D.; Vörös M.; Jelezko F.; Fisenko A. V.; Semjonova L. F.; et al. Molecular-Sized Fluorescent Nanodiamonds. Nat. Nanotechnol. 2014, 9, 54–58. 10.1038/nnano.2013.255. PubMed DOI

Hepp C.; Müller T.; Waselowski V.; Becker J. N.; Pingault B.; Sternschulte H.; Steinmüller-Nethl D.; Gali A.; Maze J. R.; Atatüre M.; et al. Electronic Structure of the Silicon Vacancy Color Center in Diamond. Phys. Rev. Lett. 2014, 112, 03640510.1103/PhysRevLett.112.036405. PubMed DOI

Saddow S. E.Silicon Carbide Biotechnology, 2nd ed.; Elsevier Inc, 2016.

Beke D.; Szekrényes Z.; Pálfi D.; Róna G.; Balogh I.; Maák P. A.; Katona G.; Czigány Z.; Kamarás K.; Rózsa B.; et al. Silicon Carbide Quantum Dots for Bioimaging. J. Mater. Res. 2013, 28, 205–209. 10.1557/jmr.2012.296. DOI

Muzha A.; Fuchs F.; Tarakina N. V.; Simin D.; Trupke M.; Soltamov V. A.; Mokhov E. N.; Baranov P. G.; Dyakonov V.; Krueger A.; et al. Room-Temperature near-Infrared Silicon Carbide Nanocrystalline Emitters Based on Optically Aligned Spin Defects. Appl. Phys. Lett. 2014, 105, 243112.10.1063/1.4904807. DOI

Havlik J.; Petrakova V.; Kucka J.; Raabova H.; Panek D.; Stepan V.; Zlamalova Cilova Z.; Reineck P.; Stursa J.; Kucera J.; et al. Extremely Rapid Isotropic Irradiation of Nanoparticles with Ions Generated in Situ by a Nuclear Reaction. Nat. Commun. 2018, 9, 4467.10.1038/s41467-018-06789-8. PubMed DOI PMC

Deák P.; Aradi B.; Kaviani M.; Frauenheim T.; Gali A. Formation of NV Centers in Diamond: A Theoretical Study Based on Calculated Transitions and Migration of Nitrogen and Vacancy Related Defects. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 07520310.1103/PhysRevB.89.075203. DOI

Fávaro de Oliveira F.; Antonov D.; Wang Y.; Neumann P.; Momenzadeh S. A.; Häußermann T.; Pasquarelli A.; Denisenko A.; Wrachtrup J. Tailoring Spin Defects in Diamond by Lattice Charging. Nat. Commun. 2017, 8, 15409.10.1038/ncomms15409. PubMed DOI PMC

Froumin N.; Prabhakar N.; Giordani S.; Reineck P.; Torelli M. D.; Vlasov I.; Rosenholm J. M.; Gibson B.; Panich A. M.; Nunn N.; et al. Fluorescent Single-Digit Detonation Nanodiamond for Biomedical Applications. Methods Appl. Fluoresc. 2018, 6, 03501010.1088/2050-6120/aac0c8. PubMed DOI

Castelletto S.; Almutairi A. F. M.; Thalassinos G.; Lohrmann A.; Buividas R.; Lau D. W. M.; Reineck P.; Juodkazis S.; Ohshima T.; Gibson B. C.; et al. Fluorescent Color Centers in Laser Ablated 4H-SiC Nanoparticles. Opt. Lett. 2017, 42, 1297.10.1364/OL.42.001297. PubMed DOI

Viala J. C.; Bosselet F.; Laurent V.; Lepetitcorps Y. Mechanism and Kinetics of the Chemical Interaction between Liquid Aluminium and Silicon-Carbide Single Crystals. J. Mater. Sci. 1993, 28, 5301–5312. 10.1007/BF00570081. DOI

Du H.; Yang Z.; Libera M.; Jacobson D. C.; Wang Y. C.; Davis R. F. Chemistry and Structure of Beta Silicon Carbide Implanted with High-Dose Aluminum. J. Am. Ceram. Soc. 1993, 76, 330–335. 10.1111/j.1151-2916.1993.tb03787.x. DOI

Beke D.; Károlyházy G.; Czigány Z.; Bortel G.; Kamarás K.; Gali A. Harnessing No-Photon Exciton Generation Chemistry to Engineer Semiconductor Nanostructures. Sci. Rep. 2017, 7, 10599.10.1038/s41598-017-10751-x. PubMed DOI PMC

Itoh H.; Kawasuso A.; Ohshima T.; Yoshikawa M.; Nashiyama I.; Tanigawa S.; Misawa S.; Okumura H.; Yoshida S. Intrinsic Defects in Cubic Silicon Carbide. Phys. Stat. Sol. a 1997, 162, 173–198. 10.1002/1521-396X(199707)162:1<173::AID-PSSA173>3.0.CO;2-W. DOI

Bockstedte M.; Mattausch A.; Pankratov O. Ab Initio Study of the Migration of Intrinsic Defects in 3 C – SiC. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 205201.10.1103/PhysRevB.68.205201. DOI

Rauls E.; Lingner T.; Hajnal Z.; Greulich-Weber S.; Frauenheim T.; Spaeth J.-M. Metastability of the Neutral Silicon Vacancy in 4H-SiC. Phys. Status Solidi B 2000, 217, R1–R3. 10.1002/(SICI)1521-3951(200002)217:2<R1::AID-PSSB99991>3.0.CO;2-3. DOI

Castelletto S.; Johnson B. C.; Zachreson C.; Beke D.; Balogh I.; Ohshima T.; Aharonovich I.; Gali A. Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles. ACS Nano 2014, 8, 7938–7947. 10.1021/nn502719y. PubMed DOI

Carlsson P.; Son N. T.; Gali A.; Isoya J.; Morishita N.; Ohshima T.; Magnusson B.; Janzén E. EPR and Ab Initio Calculation Study on the EI4 Center in 4H- and 6H-SiC. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 235203.10.1103/PhysRevB.82.235203. DOI

Szekrényes Z.; Somogyi B.; Beke D.; Károlyházy G.; Balogh I.; Kamarás K.; Gali A. Chemical Transformation of Carboxyl Groups on the Surface of Silicon Carbide Quantum Dots. J. Phys. Chem. C 2014, 118, 19995–20001. 10.1021/jp5053024. DOI

Soukiassian P.; Amy F. Silicon Carbide Surface Oxidation and SiO2/SiC Interface Formation Investigated by Soft X-ray Synchrotron Radiation. J. Electron Spectrosc. Relat. Phenom. 2005, 144–147, 783–788. 10.1016/j.elspec.2005.01.254. DOI

Powers J. M.; Somorjai G. A. The Surface Oxidation of Alpha-Silicon Carbide by O2 from 300 to 1373 K. Surf. Sci. 1991, 244, 39–50. 10.1016/0039-6028(91)90167-Q. DOI

Brown B. R.; Phil M. A. The Mechanism of Thermal Decarboxylation. Q. Rev., Chem. Soc. 1951, 5, 131–146. 10.1039/qr9510500131. DOI

Englert J. M.; Dotzer C.; Yang G.; Schmid M.; Papp C.; Gottfried J. M.; Steinrück H. P.; Spiecker E.; Hauke F.; Hirsch A. Covalent Bulk Functionalization of Graphene. Nat. Chem. 2011, 3, 279–286. 10.1038/nchem.1010. PubMed DOI

von Bardeleben H. J.; Cantin J. L.; Ke L.; Shishkin Y.; Devaty R. P.; Choyke W. J. Interface Defects in N-Type 3C-SiC/SiO2: An EPR Study of Oxidized Porous Silicon Carbide Single Crystals. Mater. Sci. Forum 2005, 483–485, 273–276. 10.4028/www.scientific.net/MSF.483-485.273. DOI

Umeda T.; Esaki K.; Kosugi R.; Fukuda K.; Morishita N.; Ohshima T.; Isoya J. Electrically Detected ESR Study of Interface Defects in 4H-SiC Metal-Oxide-Semiconductor Field Effect Transistor. Mater. Sci. Forum 2011, 679–680, 370–373. 10.4028/www.scientific.net/MSF.679-680.370. DOI

Bratus’ V. Y.; Melnik R. S.; Okulov S. M.; Rodionov V. N.; Shanina B. D.; Smoliy M. I. A New Spin One Defect in Cubic SiC. Phys. B 2009, 404, 4739–4741. 10.1016/j.physb.2009.08.124. DOI

de Biasi R. S.; Mendonca J. A. M. Powder ESR Spectra of Paramagnetic Impurities in Axial Symmetry Sites. J. Magn. Reson. 1983, 53, 462–472. 10.1016/0022-2364(83)90217-2. DOI

Son N. T.; Sörman E.; Chen W. M.; Hallin C.; Kordina O.; Monemar B.; Janzén E.; Lindström J. L. Optically Detected Magnetic Resonance Studies of Defects in Electron-Irradiated 3C SiC Layers. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 55, 2863–2866. 10.1103/PhysRevB.55.2863. DOI

Wolfowicz G.; Anderson C. P.; Yeats A. L.; Whiteley S. J.; Niklas J.; Poluektov O. G.; Heremans F. J.; Awschalom D. D. Optical Charge State Control of Spin Defects in 4H-SiC. Nat. Commun. 2017, 8, 1876.10.1038/s41467-017-01993-4. PubMed DOI PMC

Beke D.; Fučíková A.; Jánosi T. Z.; Károlyházy G.; Somogyi B.; Lenk S.; Krafcsik O.; Czigány Z.; Erostyák J.; Kamarás K.; et al. Direct Observation of Transition from Solid-State to Molecular-Like Optical Properties in Ultrasmall Silicon Carbide Nanoparticles. J. Phys. Chem. C 2018, 122, 26713–26721. 10.1021/acs.jpcc.8b07826. DOI

Falk A. L.; Klimov P. V.; Ivády V.; Szász K.; Christle D. J.; Koehl W. F.; Gali Á.; Awschalom D. D. Optical Polarization of Nuclear Spins in Silicon Carbide. Phys. Rev. Lett. 2015, 114, 247603.10.1103/PhysRevLett.114.247603. PubMed DOI

Ivády V.; Klimov P. V.; Miao K. C.; Falk A. L.; Christle D. J.; Szász K.; Abrikosov I. A.; Awschalom D. D.; Gali A. High-Fidelity Bidirectional Nuclear Qubit Initialization in SiC. Phys. Rev. Lett. 2016, 117, 220503.10.1103/PhysRevLett.117.220503. PubMed DOI

Isoya J.; Retzker A.; Plenio M. B.; Schwartz I.; Carl P.; Jelezko F.; Luy B.; Scheuer J.; Höfer P.; Naydenov B.; et al. Optically Induced Dynamic Nuclear Spin Polarisation in Diamond. New J. Phys. 2016, 18, 01304010.1088/1367-2630/18/1/013040. DOI

Schwartz I.; Scheuer J.; Tratzmiller B.; Müller S.; Chen Q.; Dhand I.; Wang Z.; Müller C.; Naydenov B.; Jelezko F.; et al. Robust Optical Polarization of Nuclear Spin Baths Using Hamiltonian Engineering of Nitrogen-Vacancy Center Quantum Dynamics. Sci. Adv. 2018, 4, eaat897810.1126/sciadv.aat8978. PubMed DOI PMC

Chen Q.; Schwarz I.; Jelezko F.; Retzker A.; Plenio M. B. Optical Hyperpolarization of 13C Nuclear Spins in Nanodiamond Ensembles. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 184420.10.1103/PhysRevB.92.184420. DOI

Falk A. L.; Klimov P. V.; Buckley B. B.; Ivády V.; Abrikosov I. A.; Calusine G.; Koehl W. F.; Gali Á.; Awschalom D. D. Electrically and Mechanically Tunable Electron Spins in Silicon Carbide Color Centers. Phys. Rev. Lett. 2014, 112, 187601.10.1103/PhysRevLett.112.187601. PubMed DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...