ε, a new subunit of RNA polymerase found in gram-positive bacteria

. 2014 Oct ; 196 (20) : 3622-32. [epub] 20140804

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25092033

RNA polymerase in bacteria is a multisubunit protein complex that is essential for gene expression. We have identified a new subunit of RNA polymerase present in the high-A+T Firmicutes phylum of Gram-positive bacteria and have named it ε. Previously ε had been identified as a small protein (ω1) that copurified with RNA polymerase. We have solved the structure of ε by X-ray crystallography and show that it is not an ω subunit. Rather, ε bears remarkable similarity to the Gp2 family of phage proteins involved in the inhibition of host cell transcription following infection. Deletion of ε shows no phenotype and has no effect on the transcriptional profile of the cell. Determination of the location of ε within the assembly of RNA polymerase core by single-particle analysis suggests that it binds toward the downstream side of the DNA binding cleft. Due to the structural similarity of ε with Gp2 and the fact they bind similar regions of RNA polymerase, we hypothesize that ε may serve a role in protection from phage infection.

Zobrazit více v PubMed

Burgess RR. 1969. Separation and characterization of the subunits of ribonucleic acid polymerase. J. Biol. Chem. 244:6168–6176 PubMed

Wiedermannova J, Sudzinova P, Koval T, Rabatinova A, Sanderova H, Ramaniuk O, Rittich S, Dohnalek J, Fu Z, Lewis P, Halada P, Krasny L. 2014. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res. 42:5151–5163. 10.1093/nar/gku113 PubMed DOI PMC

Juang YL, Helmann JD. 1994. The delta subunit of Bacillus subtilis RNA polymerase. An allosteric effector of the initiation and core-recycling phases of transcription. J. Mol. Biol. 239:1–14 PubMed

Rabatinova A, Sanderova H, Jirat Matejckova J, Korelusova J, Sojka L, Barvik I, Papouskova V, Sklenar V, Zidek L, Krasny L. 2013. The delta subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J. Bacteriol. 195:2603–2611. 10.1128/JB.00188-13 PubMed DOI PMC

Lopez de Saro FJ, Woody AY, Helmann JD. 1995. Structural analysis of the Bacillus subtilis delta factor: a protein polyanion which displaces RNA from RNA polymerase. J. Mol. Biol. 252:189–202. 10.1006/jmbi.1995.0487 PubMed DOI

Delumeau O, Lecointe F, Muntel J, Guillot A, Guedon E, Monnet V, Hecker M, Becher D, Polard P, Noirot P. 2011. The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics 11:2992–3001. 10.1002/pmic.201000790 PubMed DOI

Helmann JD. 2003. Purification of Bacillus subtilis RNA polymerase and associated factors. Methods Enzymol. 370:10–24. 10.1016/S0076-6879(03)70002-0 PubMed DOI

Yang X, Lewis PJ. 2008. Overproduction and purification of recombinant Bacillus subtilis RNA polymerase. Protein Expr. Purif. 59:86–93. 10.1016/j.pep.2008.01.006 PubMed DOI

Spiegelman GB, Hiatt WR, Whiteley HR. 1978. Role of the 21,000 molecular weight polypeptide of Bacillus subtilis RNA polymerase in RNA synthesis. J. Biol. Chem. 253:1756–1765 PubMed

Achberger EC, Tahara M, Whiteley HR. 1982. Interchangeability of delta subunits of RNA polymerase from different species of the genus Bacillus. J. Bacteriol. 150:977–980 PubMed PMC

Gentry DR, Burgess RR. 1986. The cloning and sequence of the gene encoding the omega subunit of Escherichia coli RNA polymerase. Gene 48:33–40. 10.1016/0378-1119(86)90349-5 PubMed DOI

Figaro S, Durand S, Gilet L, Cayet N, Sachse M, Condon C. 2013. Bacillus subtilis mutants with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence. J. Bacteriol. 195:2340–2348. 10.1128/JB.00164-13 PubMed DOI PMC

Kunst F, Rapoport G. 1995. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J. Bacteriol. 177:2403–2407 PubMed PMC

Guerout-Fleury AM, Frandsen N, Stragier P. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57–61. 10.1016/S0378-1119(96)00404-0 PubMed DOI

Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P. 2012. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335:1103–1106. 10.1126/science.1206848 PubMed DOI

Doherty GP, Meredith DH, Lewis PJ. 2006. Subcellular partitioning of transcription factors in Bacillus subtilis. J. Bacteriol. 188:4101–4110. 10.1128/JB.01934-05 PubMed DOI PMC

Doherty GP, Fogg MJ, Wilkinson AJ, Lewis PJ. 2010. Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition. Microbiology 156:3532–3543. 10.1099/mic.0.041566-0 PubMed DOI

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. 10.1093/bioinformatics/btm404 PubMed DOI

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066. 10.1093/nar/gkf436 PubMed DOI PMC

Ling MM, Robinson BH. 1997. Approaches to DNA mutagenesis: an overview. Anal. Biochem. 254:157–178. 10.1006/abio.1997.2428 PubMed DOI

Quin M, Newman J, Firbank S, Lewis RJ, Marles-Wright J. 2008. Crystallization and preliminary X-ray analysis of RsbS from Moorella thermoacetica at 2.5 Å resolution. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64:196–199. 10.1107/S1744309108003849 PubMed DOI PMC

McPhillips TM, McPhillips SE, Chiu HJ, Cohen AE, Deacon AM, Ellis PJ, Garman E, Gonzalez A, Sauter NK, Phizackerley RP, Soltis SM, Kuhn P. 2002. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 9:401–406. 10.1107/S0909049502015170 PubMed DOI

Evens G, Pettifer RF. 2001. CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J. Appl. Crystallogr. 34:82–86. 10.1107/S0021889800014655 DOI

Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. 2011. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67:271–281. 10.1107/S0907444910048675 PubMed DOI PMC

Leslie AG. 2006. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62:48–57. 10.1107/S0907444905039107 PubMed DOI

CCP4. 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50:760–763. 10.1107/S0907444994003112 PubMed DOI

Ness SR, de Graaff RA, Abrahams JP, Pannu NS. 2004. CRANK: new methods for automated macromolecular crystal structure solution. Structure 12:1753–1761. 10.1016/j.str.2004.07.018 PubMed DOI

de Graaff RA, Hilge M, van der Plas JL, Abrahams JP. 2001. Matrix methods for solving protein substructures of chlorine and sulfur from anomalous data. Acta Crystallogr. D Biol. Crystallogr. 57:1857–1862. 10.1107/S0907444901016535 PubMed DOI

Abrahams JP, Leslie AG. 1996. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52:30–42. 10.1107/S0907444995008754 PubMed DOI

Cowtan K. 2006. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62:1002–1011. 10.1107/S0907444906022116 PubMed DOI

Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66:486–501. 10.1107/S0907444910007493 PubMed DOI PMC

Langer G, Cohen SX, Lamzin VS, Perrakis A. 2008. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3:1171–1179. 10.1038/nprot.2008.91 PubMed DOI PMC

Adams PD, Afonine PV, Bunkoczi G, Chen VB, Echols N, Headd JJ, Hung LW, Jain S, Kapral GJ, Grosse Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner RD, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2011. The Phenix software for automated determination of macromolecular structures. Methods 55:94–106. 10.1016/j.ymeth.2011.07.005 PubMed DOI PMC

Yang X, Molimau S, Doherty GP, Johnston EB, Marles-Wright J, Rothnagel R, Hankamer B, Lewis RJ, Lewis PJ. 2009. The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 10:997–1002. 10.1038/embor.2009.155 PubMed DOI PMC

Ludtke SJ, Baldwin PR, Chiu W. 1999. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128:82–97. 10.1006/jsbi.1999.4174 PubMed DOI

Davies KM, Lewis PJ. 2003. Localization of rRNA synthesis in Bacillus subtilis: characterization of loci involved in transcription focus formation. J. Bacteriol. 185:2346–2353. 10.1128/JB.185.7.2346-2353.2003 PubMed DOI PMC

Lewis PJ, Thaker SD, Errington J. 2000. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J. 19:710–718. 10.1093/emboj/19.4.710 PubMed DOI PMC

Britton RA, Wen T, Schaefer L, Pellegrini O, Uicker WC, Mathy N, Tobin C, Daou R, Szyk J, Condon C. 2007. Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol. Microbiol. 63:127–138. 10.1111/j.1365-2958.2006.05499.x PubMed DOI

Hunt A, Rawlins JP, Thomaides HB, Errington J. 2006. Functional analysis of 11 putative essential genes in Bacillus subtilis. Microbiology 152:2895–2907. 10.1099/mic.0.29152-0 PubMed DOI

Gabdulkhakov A, Nikonov S, Garber M. 2013. Revisiting the Haloarcula marismortui 50S ribosomal subunit model. Acta Crystallogr. D Biol. Crystallogr. 69:997–1004. 10.1107/S0907444913004745 PubMed DOI

Serrano-Heras G, Salas M, Bravo A. 2006. A uracil-DNA glycosylase inhibitor encoded by a non-uracil containing viral DNA. J. Biol. Chem. 281:7068–7074. 10.1074/jbc.M511152200 PubMed DOI

Serrano-Heras G, Ruiz-Maso JA, del Solar G, Espinosa M, Bravo A, Salas M. 2007. Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 35:5393–5401. 10.1093/nar/gkm584 PubMed DOI PMC

Hesselbach BA, Nakada D. 1977. I protein: bacteriophage T7-coded inhibitor of Escherichia coli RNA polymerase. J. Virol. 24:746–760 PubMed PMC

Nechaev S, Severinov K. 1999. Inhibition of Escherichia coli RNA polymerase by bacteriophage T7 gene 2 protein. J. Mol. Biol. 289:815–826. 10.1006/jmbi.1999.2782 PubMed DOI

Bae B, Davis E, Brown D, Campbell EA, Wigneshweraraj S, Darst SA. 2013. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of sigma70 domain 1.1. Proc. Natl. Acad. Sci. U. S. A. 110:19772–19777. 10.1073/pnas.1314576110 PubMed DOI PMC

James E, Liu M, Sheppard C, Mekler V, Camara B, Liu B, Simpson P, Cota E, Severinov K, Matthews S, Wigneshweraraj S. 2012. Structural and mechanistic basis for the inhibition of Escherichia coli RNA polymerase by T7 Gp2. Mol. Cell 47:755–766. 10.1016/j.molcel.2012.06.013 PubMed DOI PMC

Sheppard C, Camara B, Shadrin A, Akulenko N, Liu M, Baldwin G, Severinov K, Cota E, Matthews S, Wigneshweraraj SR. 2011. Inhibition of Escherichia coli RNAp by T7 Gp2 protein: role of negatively charged strip of amino acid residues in Gp2. J. Mol. Biol. 407:623–632. 10.1016/j.jmb.2011.02.013 PubMed DOI

Camara B, Liu M, Reynolds J, Shadrin A, Liu B, Kwok K, Simpson P, Weinzierl R, Severinov K, Cota E, Matthews S, Wigneshweraraj SR. 2010. T7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site. Proc. Natl. Acad. Sci. U. S. A. 107:2247–2252. 10.1073/pnas.0907908107 PubMed DOI PMC

Vrentas CE, Gaal T, Ross W, Ebright RH, Gourse RL. 2005. Response of RNA polymerase to ppGpp: requirement for the omega subunit and relief of this requirement by DksA. Genes Dev. 19:2378–2387. 10.1101/gad.1340305 PubMed DOI PMC

Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S, Artsimovitch I, Vassylyev DG. 2004. Regulation through the secondary channel–structural framework for ppGpp-DksA synergism during transcription. Cell 118:297–309. 10.1016/j.cell.2004.06.030 PubMed DOI

Vassylyeva MN, Svetlov V, Dearborn AD, Klyuyev S, Artsimovitch I, Vassylyev DG. 2007. The carboxy-terminal coiled-coil of the RNA polymerase β′-subunit is the main binding site for Gre factors. EMBO Rep. 8:1038–1043. 10.1038/sj.embor.7401079 PubMed DOI PMC

Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. 2004. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32:W665–W667. 10.1093/nar/gkh381 PubMed DOI PMC

Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:113–130. 10.1016/0022-2836(86)90385-2 PubMed DOI

Neylon C, Brown SE, Kralicek AV, Miles CS, Love CA, Dixon NE. 2000. Interaction of the Escherichia coli replication terminator protein (Tus) with DNA: a model derived from DNA-binding studies of mutant proteins by surface plasmon resonance. Biochemistry 39:11989–11999. 10.1021/bi001174w PubMed DOI

Lewis PJ, Marston AL. 1999. GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227:101–110. 10.1016/S0378-1119(98)00580-0 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...