The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis

. 2019 Feb 15 ; 201 (4) : . [epub] 20190128

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30478083

Grantová podpora
MC_EX_G0901534 Medical Research Council - United Kingdom

Bacterial RNA polymerase (RNAP) is essential for gene expression and as such is a valid drug target. Hence, it is imperative to know its structure and dynamics. Here, we present two as-yet-unreported forms of Mycobacterium smegmatis RNAP: core and holoenzyme containing σA but no other factors. Each form was detected by cryo-electron microscopy in two major conformations. Comparisons of these structures with known structures of other RNAPs reveal a high degree of conformational flexibility of the mycobacterial enzyme and confirm that region 1.1 of σA is directed into the primary channel of RNAP. Taken together, we describe the conformational changes of unrestrained mycobacterial RNAP.IMPORTANCE We describe here three-dimensional structures of core and holoenzyme forms of mycobacterial RNA polymerase (RNAP) solved by cryo-electron microscopy. These structures fill the thus-far-empty spots in the gallery of the pivotal forms of mycobacterial RNAP and illuminate the extent of conformational dynamics of this enzyme. The presented findings may facilitate future designs of antimycobacterial drugs targeting RNAP.

Zobrazit více v PubMed

Molodtsov V, Scharf NT, Stefan MA, Garcia GA, Murakami KS. 2017. Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Mol Microbiol 103:1034–1045. doi:10.1111/mmi.13606. PubMed DOI PMC

Ma C, Yang X, Lewis PJ. 2016. Bacterial transcription as a target for antibacterial drug development. Microbiol Mol Biol Rev 80:139–160. doi:10.1128/MMBR.00055-15. PubMed DOI PMC

Sutherland C, Murakami KS. 2018. An introduction to the structure and function of the catalytic core enzyme of Escherichia coli RNA polymerase. EcoSal Plus 8. doi:10.1128/ecosalplus.ESP-0004-2018. PubMed DOI PMC

Paget MS. 2015. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5:1245–1265. doi:10.3390/biom5031245. PubMed DOI PMC

Bae B, Chen J, Davis E, Leon K, Darst SA, Campbell EA. 2015. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex. Elife 4:e08505. doi:10.7554/eLife.08505.001. PubMed DOI PMC

Hu Y, Morichaud Z, Perumal AS, Roquet-Baneres F, Brodolin K. 2014. Mycobacterium RbpA cooperates with the stress-response sigmaB subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res 42:10399–10408. doi:10.1093/nar/gku742. PubMed DOI PMC

Sudalaiyadum Perumal A, Vishwakarma RK, Hu Y, Morichaud Z, Brodolin K. 2018. RbpA relaxes promoter selectivity of Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Res 46:10106–10118. doi:10.1093/nar/gky714. PubMed DOI PMC

Bae B, Davis E, Brown D, Campbell EA, Wigneshweraraj S, Darst SA. 2013. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of sigma70 domain 1.1. Proc Natl Acad Sci U S A 110:19772–19777. doi:10.1073/pnas.1314576110. PubMed DOI PMC

Schwartz EC, Shekhtman A, Dutta K, Pratt MR, Cowburn D, Darst S, Muir TW. 2008. A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding. Chem Biol 15:1091–1103. doi:10.1016/j.chembiol.2008.09.008. PubMed DOI PMC

Zachrdla M, Padrta P, Rabatinova A, Sanderova H, Barvik I, Krasny L, Zidek L. 2017. Solution structure of domain 1.1 of the sigma(A) factor from Bacillus subtilis is preformed for binding to the RNA polymerase core. J Biol Chem 292:11610–11617. doi:10.1074/jbc.M117.784074. PubMed DOI PMC

Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. 2018. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. Elife 7:e34823. doi:10.7554/eLife.34823. PubMed DOI PMC

Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. 2017. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. Elife 6:e22520. doi:10.7554/eLife.22520. PubMed DOI PMC

Hubin EA, Lilic M, Darst SA, Campbell EA. 2017. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat Commun 8:16072. doi:10.1038/ncomms16072. PubMed DOI PMC

Lin W, Mandal S, Degen D, Liu Y, Ebright YW, Li S, Feng Y, Zhang Y, Mandal S, Jiang Y, Liu S, Gigliotti M, Talaue M, Connell N, Das K, Arnold E, Ebright RH. 2017. Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol Cell 66:169–179. doi:10.1016/j.molcel.2017.03.001. PubMed DOI PMC

Chakraborty A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R, Nixon BT, Knight J, Weiss S, Ebright RH. 2012. Opening and closing of the bacterial RNA polymerase clamp. Science 337:591–595. doi:10.1126/science.1218716. PubMed DOI PMC

Darst SA, Opalka N, Chacon P, Polyakov A, Richter C, Zhang G, Wriggers W. 2002. Conformational flexibility of bacterial RNA polymerase. Proc Natl Acad Sci U S A 99:4296–4301. doi:10.1073/pnas.052054099. PubMed DOI PMC

Ruff EF, Drennan AC, Capp MW, Poulos MA, Artsimovitch I, Record MT Jr.. 2015. E. coli RNA polymerase determinants of open complex lifetime and structure. J Mol Biol 427:2435–2450. doi:10.1016/j.jmb.2015.05.024. PubMed DOI PMC

Glyde R, Ye F, Jovanovic M, Kotta-Loizou I, Buck M, Zhang X. 2018. Structures of Bacterial RNA polymerase complexes reveal the mechanism of DNA loading and transcription initiation. Mol Cell 70:1111–1120. doi:10.1016/j.molcel.2018.05.021. PubMed DOI PMC

Glyde R, Ye F, Darbari VC, Zhang N, Buck M, Zhang X. 2017. Structures of RNA polymerase closed and intermediate complexes reveal mechanisms of DNA opening and transcription initiation. Mol Cell 67:106–116. doi:10.1016/j.molcel.2017.05.010. PubMed DOI PMC

Browning DF, Busby SJ. 2016. Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol 14:638–650. doi:10.1038/nrmicro.2016.103. PubMed DOI

Krasny L, Tiserova H, Jonak J, Rejman D, Sanderova H. 2008. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol Microbiol 69:42–54. doi:10.1111/j.1365-2958.2008.06256.x. PubMed DOI

Lane WJ, Darst SA. 2010. Molecular evolution of multisubunit RNA polymerases: sequence analysis. J Mol Biol 395:671–685. doi:10.1016/j.jmb.2009.10.062. PubMed DOI PMC

Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, Ebright YW, Ebright RY, Sineva E, Gigliotti M, Srivastava A, Mandal S, Jiang Y, Liu Y, Yin R, Zhang Z, Eng ET, Thomas D, Donadio S, Zhang H, Zhang C, Kapanidis AN, Ebright RH. 2018. Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Mol Cell 70:60–71. doi:10.1016/j.molcel.2018.02.026. PubMed DOI PMC

Naydenova K, Russo CJ. 2017. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat Commun 8:629. doi:10.1038/s41467-017-00782-3. PubMed DOI PMC

Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. 2007. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448:157–162. doi:10.1038/nature05932. PubMed DOI

Tagami S, Sekine S, Kumarevel T, Hino N, Murayama Y, Kamegamori S, Yamamoto M, Sakamoto K, Yokoyama S. 2010. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. Nature 468:978–982. doi:10.1038/nature09573. PubMed DOI

Duchi D, Mazumder A, Malinen AM, Ebright RH, Kapanidis AN. 2018. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. Nucleic Acids Res 46:7284–7295. doi:10.1093/nar/gky482. PubMed DOI PMC

Sojka L, Kouba T, Barvik I, Sanderova H, Maderova Z, Jonak J, Krasny L. 2011. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res 39:4598–4611. doi:10.1093/nar/gkr032. PubMed DOI PMC

China A, Tare P, Nagaraja V. 2010. Comparison of promoter-specific events during transcription initiation in mycobacteria. Microbiology 156:1942–1952. doi:10.1099/mic.0.038620-0. PubMed DOI

Scheres SH. 2012. A Bayesian view on cryo-EM structure determination. J Mol Biol 415:406–418. doi:10.1016/j.jmb.2011.11.010. PubMed DOI PMC

Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332. doi:10.1038/nmeth.4193. PubMed DOI PMC

Zhang K. 2016. Gctf: real-time CTF determination and correction. J Struct Biol 193:1–12. doi:10.1016/j.jsb.2015.11.003. PubMed DOI PMC

Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66:22–25. doi:10.1107/S0907444909042589. PubMed DOI

Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G. 2015. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr D Biol Crystallogr 71:136–153. doi:10.1107/S1399004714021683. PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. doi:10.1107/S0907444910007493. PubMed DOI PMC

Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367. doi:10.1107/S0907444911001314. PubMed DOI PMC

Nicholls RA, Long F, Murshudov GN. 2012. Low-resolution refinement tools in REFMAC5. Acta Crystallogr D Biol Crystallogr 68:404–417. doi:10.1107/S090744491105606X. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...