NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins

. 2022 May 25 ; 122 (10) : 9331-9356. [epub] 20220421

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35446534

Intrinsically disordered proteins are ubiquitous throughout all known proteomes, playing essential roles in all aspects of cellular and extracellular biochemistry. To understand their function, it is necessary to determine their structural and dynamic behavior and to describe the physical chemistry of their interaction trajectories. Nuclear magnetic resonance is perfectly adapted to this task, providing ensemble averaged structural and dynamic parameters that report on each assigned resonance in the molecule, unveiling otherwise inaccessible insight into the reaction kinetics and thermodynamics that are essential for function. In this review, we describe recent applications of NMR-based approaches to understanding the conformational energy landscape, the nature and time scales of local and long-range dynamics and how they depend on the environment, even in the cell. Finally, we illustrate the ability of NMR to uncover the mechanistic basis of functional disordered molecular assemblies that are important for human health.

Zobrazit více v PubMed

Uversky V. N. Natively Unfolded Proteins: A Point Where Biology Waits for Physics. Protein Sci. 2002, 11, 739–756. 10.1110/ps.4210102. PubMed DOI PMC

Tompa P. Intrinsically Unstructured Proteins. Trends Biochem. Sci. 2002, 27, 527–533. 10.1016/S0968-0004(02)02169-2. PubMed DOI

Dyson H. J.; Wright P. E. Intrinsically Unstructured Proteins and Their Functions. Nat. Rev. Mol. Cell Biol. 2005, 6, 197–208. 10.1038/nrm1589. PubMed DOI

Uversky V. N.; Dunker A. K. Understanding Protein Non-Folding. Biochim. Biophys. Acta 2010, 1804, 1231–1264. 10.1016/j.bbapap.2010.01.017. PubMed DOI PMC

Tompa P.; Davey N. E.; Gibson T. J.; Babu M. M. A Million Peptide Motifs for the Molecular Biologist. Mol. Cell 2014, 55, 161–169. 10.1016/j.molcel.2014.05.032. PubMed DOI

Csermely P.; Palotai R.; Nussinov R. Induced Fit, Conformational Selection and Independent Dynamic Segments: An Extended View of Binding Events. Trends Biochem. Sci. 2010, 35, 539–546. 10.1016/j.tibs.2010.04.009. PubMed DOI PMC

Shin Y.; Brangwynne C. P. Liquid Phase Condensation in Cell Physiology and Disease. Science 2017, 357, eaaf4382.10.1126/science.aaf4382. PubMed DOI

Lim M. H.; Jackson T. A.; Anfinrud P. A. Ultrafast Rotation and Trapping of Carbon Monoxide Dissociated from Myoglobin. Nat. Struct. Biol. 1997, 4, 209–214. 10.1038/nsb0397-209. PubMed DOI

Thielges M. C.; Fayer M. D. Protein Dynamics Studied with Ultrafast Two-Dimensional Infrared Vibrational Echo Spectroscopy. Acc. Chem. Res. 2012, 45, 1866–1874. 10.1021/ar200275k. PubMed DOI PMC

Ebbinghaus S.; Kim S. J.; Heyden M.; Yu X.; Heugen U.; Gruebele M.; Leitner D. M.; Havenith M. An Extended Dynamical Hydration Shell around Proteins. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 20749–20752. 10.1073/pnas.0709207104. PubMed DOI PMC

Doster W.; Cusack S.; Petry W. Dynamical Transition of Myoglobin Revealed by Inelastic Neutron Scattering. Nature 1989, 337, 754–756. 10.1038/337754a0. PubMed DOI

Cametti C.; Marchetti S.; Gambi C. M. C.; Onori G. Dielectric Relaxation Spectroscopy of Lysozyme Aqueous Solutions: Analysis of the δ-Dispersion and the Contribution of the Hydration Water. J. Phys. Chem. B 2011, 115, 7144–7153. 10.1021/jp2019389. PubMed DOI

Frauenfelder H.; Sligar S. G.; Wolynes P. G. The Energy Landscapes and Motions of Proteins. Science 1991, 254, 1598–1603. 10.1126/science.1749933. PubMed DOI

Buhrke D.; Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem. Rev. 2020, 120, 3577–3630. 10.1021/acs.chemrev.9b00429. PubMed DOI

Schotte F.; Cho H. S.; Kaila V. R. I.; Kamikubo H.; Dashdorj N.; Henry E. R.; Graber T. J.; Henning R.; Wulff M.; Hummer G.; et al. Watching a Signaling Protein Function in Real Time via 100-Ps Time-Resolved Laue Crystallography. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 19256–19261. 10.1073/pnas.1210938109. PubMed DOI PMC

Tenboer J.; Basu S.; Zatsepin N.; Pande K.; Milathianaki D.; Frank M.; Hunter M.; Boutet S.; Williams G. J.; Koglin J. E.; et al. Time-Resolved Serial Crystallography Captures High-Resolution Intermediates of Photoactive Yellow Protein. Science 2014, 346, 1242–1246. 10.1126/science.1259357. PubMed DOI PMC

Dyson H. J.; Wright P. E. Unfolded Proteins and Protein Folding Studied by NMR. Chem. Rev. 2004, 104, 3607–3622. 10.1021/cr030403s. PubMed DOI

Fink A. L. Natively Unfolded Proteins. Curr. Opin. Struct. Biol. 2005, 15, 35–41. 10.1016/j.sbi.2005.01.002. PubMed DOI

Mittag T.; Forman-Kay J. D. Atomic-Level Characterization of Disordered Protein Ensembles. Curr. Opin. Struct. Biol. 2007, 17, 3–14. 10.1016/j.sbi.2007.01.009. PubMed DOI

Dunker A. K.; Silman I.; Uversky V. N.; Sussman J. L. Function and Structure of Inherently Disordered Proteins. Curr. Opin. Struct. Biol. 2008, 18, 756–764. 10.1016/j.sbi.2008.10.002. PubMed DOI

Tompa P.; Fuxreiter M. Fuzzy Complexes: Polymorphism and Structural Disorder in Protein-Protein Interactions. Trends Biochem. Sci. 2008, 33, 2–8. 10.1016/j.tibs.2007.10.003. PubMed DOI

Eliezer D. Biophysical Characterization of Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2009, 19, 23–30. 10.1016/j.sbi.2008.12.004. PubMed DOI PMC

Wright P. E.; Dyson H. J. Linking Folding and Binding. Curr. Opin. Struct. Biol. 2009, 19, 31–38. 10.1016/j.sbi.2008.12.003. PubMed DOI PMC

Fisher C. K.; Stultz C. M. Constructing Ensembles for Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2011, 21, 426–431. 10.1016/j.sbi.2011.04.001. PubMed DOI PMC

Van Roey K.; Gibson T. J.; Davey N. E. Motif Switches: Decision-Making in Cell Regulation. Curr. Opin. Struct. Biol. 2012, 22, 378–385. 10.1016/j.sbi.2012.03.004. PubMed DOI

Forman-Kay J. D.; Mittag T. From Sequence and Forces to Structure, Function, and Evolution of Intrinsically Disordered Proteins. Structure 2013, 21, 1492–1499. 10.1016/j.str.2013.08.001. PubMed DOI PMC

Kosol S.; Contreras-Martos S.; Cedeño C.; Tompa P. Structural Characterization of Intrinsically Disordered Proteins by NMR Spectroscopy. Molecules 2013, 18, 10802–10828. 10.3390/molecules180910802. PubMed DOI PMC

Bernado P.; Mylonas E.; Petoukhov M. V.; Blackledge M.; Svergun D. I. Structural Characterization of Flexible Proteins Using Small-Angle X-Ray Scattering. J. Am. Chem. Soc. 2007, 129, 5656–5664. 10.1021/ja069124n. PubMed DOI

Aznauryan M.; Delgado L.; Soranno A.; Nettels D.; Huang J.-R.; Labhardt A. M.; Grzesiek S.; Schuler B. Comprehensive Structural and Dynamical View of an Unfolded Protein from the Combination of Single-Molecule FRET, NMR, and SAXS. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E5389–5398. 10.1073/pnas.1607193113. PubMed DOI PMC

Fuertes G.; Banterle N.; Ruff K. M.; Chowdhury A.; Mercadante D.; Koehler C.; Kachala M.; Estrada Girona G.; Milles S.; Mishra A.; et al. Decoupling of Size and Shape Fluctuations in Heteropolymeric Sequences Reconciles Discrepancies in SAXS vs. FRET Measurements. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E6342–E6351. 10.1073/pnas.1704692114. PubMed DOI PMC

Riback J. A.; Bowman M. A.; Zmyslowski A. M.; Knoverek C. R.; Jumper J. M.; Hinshaw J. R.; Kaye E. B.; Freed K. F.; Clark P. L.; Sosnick T. R. Innovative Scattering Analysis Shows That Hydrophobic Disordered Proteins Are Expanded in Water. Science 2017, 358, 238–241. 10.1126/science.aan5774. PubMed DOI PMC

Gomes G.-N. W.; Krzeminski M.; Namini A.; Martin E. W.; Mittag T.; Head-Gordon T.; Forman-Kay J. D.; Gradinaru C. C. Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET. J. Am. Chem. Soc. 2020, 142, 15697–15710. 10.1021/jacs.0c02088. PubMed DOI PMC

Marsh J. A.; Forman-Kay J. D. Structure and Disorder in an Unfolded State under Nondenaturing Conditions from Ensemble Models Consistent with a Large Number of Experimental Restraints. J. Mol. Biol. 2009, 391, 359–374. 10.1016/j.jmb.2009.06.001. PubMed DOI

Salmon L.; Nodet G.; Ozenne V.; Yin G.; Jensen M. R.; Zweckstetter M.; Blackledge M. NMR Characterization of Long-Range Order in Intrinsically Disordered Proteins. J. Am. Chem. Soc. 2010, 132, 8407–8418. 10.1021/ja101645g. PubMed DOI

Fisher C. K.; Huang A.; Stultz C. M. Modeling Intrinsically Disordered Proteins with Bayesian Statistics. J. Am. Chem. Soc. 2010, 132, 14919–14927. 10.1021/ja105832g. PubMed DOI PMC

Jensen M. R.; Blackledge M. Testing the Validity of Ensemble Descriptions of Intrinsically Disordered Proteins. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E1557.10.1073/pnas.1323876111. PubMed DOI PMC

Jensen M. R.; Zweckstetter M.; Huang J.; Blackledge M. Exploring Free-Energy Landscapes of Intrinsically Disordered Proteins at Atomic Resolution Using NMR Spectroscopy. Chem. Rev. 2014, 114, 6632–6660. 10.1021/cr400688u. PubMed DOI

De Simone A.; Richter B.; Salvatella X.; Vendruscolo M. Toward an Accurate Determination of Free Energy Landscapes in Solution States of Proteins. J. Am. Chem. Soc. 2009, 131, 3810–3811. 10.1021/ja8087295. PubMed DOI

Roux B.; Weare J. On the Statistical Equivalence of Restrained-Ensemble Simulations with the Maximum Entropy Method. J. Chem. Phys. 2013, 138 (8), 084107.10.1063/1.4792208. PubMed DOI PMC

Hummer G.; Köfinger J. Bayesian Ensemble Refinement by Replica Simulations and Reweighting. J. Chem. Phys. 2015, 143, 243150.10.1063/1.4937786. PubMed DOI

Bonomi M.; Heller G. T.; Camilloni C.; Vendruscolo M. Principles of Protein Structural Ensemble Determination. Curr. Opin. Struct. Biol. 2017, 42, 106–116. 10.1016/j.sbi.2016.12.004. PubMed DOI

Sgourakis N. G.; Yan Y.; McCallum S. A.; Wang C.; Garcia A. E. The Alzheimer’s Peptides A Beta 40 and 42 Adopt Distinct Conformations in Water: A Combined MD/NMR Study. J. Mol. Biol. 2007, 368, 1448–1457. 10.1016/j.jmb.2007.02.093. PubMed DOI PMC

Wu K.-P.; Weinstock D. S.; Narayanan C.; Levy R. M.; Baum J. Structural Reorganization of α-Synuclein at Low PH Observed by NMR and REMD Simulations. J. Mol. Biol. 2009, 391, 784–796. 10.1016/j.jmb.2009.06.063. PubMed DOI PMC

Terakawa T.; Takada S. Multiscale Ensemble Modeling of Intrinsically Disordered Proteins: P53 N-Terminal Domain. Biophys. J. 2011, 101, 1450–1458. 10.1016/j.bpj.2011.08.003. PubMed DOI PMC

Knott M.; Best R. B. A Preformed Binding Interface in the Unbound Ensemble of an Intrinsically Disordered Protein: Evidence from Molecular Simulations. PLoS Comput. Biol. 2012, 8, e100260510.1371/journal.pcbi.1002605. PubMed DOI PMC

Zhang W.; Ganguly D.; Chen J. Residual Structures, Conformational Fluctuations, and Electrostatic Interactions in the Synergistic Folding of Two Intrinsically Disordered Proteins. PLoS Comput. Biol. 2012, 8, e100235310.1371/journal.pcbi.1002353. PubMed DOI PMC

Narayanan C.; Weinstock D. S.; Wu K.-P.; Baum J.; Levy R. M. Investigation of the Polymeric Properties of Alpha-Synuclein and Comparison with NMR Experiments: A Replica Exchange Molecular Dynamics Study. J. Chem. Theory Comput. 2012, 8, 3929–3942. 10.1021/ct300241t. PubMed DOI PMC

Wang Y.; Chu X.; Longhi S.; Roche P.; Han W.; Wang E.; Wang J. Multiscaled Exploration of Coupled Folding and Binding of an Intrinsically Disordered Molecular Recognition Element in Measles Virus Nucleoprotein. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, e374310.1073/pnas.1308381110. PubMed DOI PMC

Mittal J.; Yoo T. H.; Georgiou G.; Truskett T. M. Structural Ensemble of an Intrinsically Disordered Polypeptide. J. Phys. Chem. B 2013, 117, 118–124. 10.1021/jp308984e. PubMed DOI

Bonomi M.; Camilloni C.; Cavalli A.; Vendruscolo M. Metainference: A Bayesian Inference Method for Heterogeneous Systems. Sci. Adv. 2016, 2, e150117710.1126/sciadv.1501177. PubMed DOI PMC

Lincoff J.; Haghighatlari M.; Krzeminski M.; Teixeira J. M. C.; Gomes G.-N. W.; Gradinaru C. C.; Forman-Kay J. D.; Head-Gordon T. Extended Experimental Inferential Structure Determination Method in Determining the Structural Ensembles of Disordered Protein States. Commun. Chem. 2020, 3, 74.10.1038/s42004-020-0323-0. PubMed DOI PMC

Ozenne V.; Schneider R.; Yao M.; Huang J.-R.; Salmon L.; Zweckstetter M.; Jensen M. R.; Blackledge M. Mapping the Potential Energy Landscape of Intrinsically Disordered Proteins at Amino Acid Resolution. J. Am. Chem. Soc. 2012, 134, 15138–15148. 10.1021/ja306905s. PubMed DOI

Das R. K.; Ruff K. M.; Pappu R. V. Relating Sequence Encoded Information to Form and Function of Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2015, 32, 102–112. 10.1016/j.sbi.2015.03.008. PubMed DOI PMC

Huang C.-Y.; Getahun Z.; Zhu Y.; Klemke J. W.; DeGrado W. F.; Gai F. Helix Formation via Conformation Diffusion Search. PROC. NATL. ACAD. SCI. U.S.A. 2002, 99, 2788–2793. 10.1073/pnas.052700099. PubMed DOI PMC

Hamm P.; Helbing J.; Bredenbeck J.. Two-Dimensional Infrared Spectroscopy of Photoswitchable Peptides. In Annual Review of Physical Chemistry; Annual Reviews: Palo Alto, CA, 2008; Vol. 59, pp 291–317.

Balakrishnan G.; Weeks C. L.; Ibrahim M.; Soldatova A. V.; Spiro T. G. Protein Dynamics from Time Resolved UV Raman Spectroscopy. Curr. Opin. Struct. Biol. 2008, 18, 623–629. 10.1016/j.sbi.2008.06.001. PubMed DOI PMC

Gallat F.-X.; Laganowsky A.; Wood K.; Gabel F.; van Eijck L.; Wuttke J.; Moulin M.; Haertlein M.; Eisenberg D.; Colletier J.-P.; Zaccai G.; Weik M. Dynamical Coupling of Intrinsically Disordered Proteins and Their Hydration Water: Comparison with Folded Soluble and Membrane Proteins. Biophys. J. 2012, 103, 129–136. 10.1016/j.bpj.2012.05.027. PubMed DOI PMC

Perticaroli S.; Nickels J. D.; Ehlers G.; Mamontov E.; Sokolov A. P. Dynamics and Rigidity in an Intrinsically Disordered Protein, Beta-Casein. J. Phys. Chem. B 2014, 118, 7317–7326. 10.1021/jp503788r. PubMed DOI

Schiro G.; Fichou Y.; Gallat F.-X.; Wood K.; Gabel F.; Moulin M.; Haertlein M.; Heyden M.; Colletier J.-P.; Orecchini A.; et al. Translational Diffusion of Hydration Water Correlates with Functional Motions in Folded and Intrinsically Disordered Proteins. Nat. Commun. 2015, 6, 6490.10.1038/ncomms7490. PubMed DOI PMC

Kuzmenkina E. V.; Heyes C. D.; Nienhaus G. U. Single-Molecule Forster Resonance Energy Transfer Study of Protein Dynamics under Denaturing Conditions. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15471–15476. 10.1073/pnas.0507728102. PubMed DOI PMC

Doose S.; Neuweiler H.; Sauer M. Fluorescence Quenching by Photoinduced Electron Transfer: A Reporter for Conformational Dynamics of Macromolecules. ChemPhysChem 2009, 10, 1389–1398. 10.1002/cphc.200900238. PubMed DOI

Ferreon A. C. M.; Gambin Y.; Lemke E. A.; Deniz A. A. Interplay of Alpha-Synuclein Binding and Conformational Switching Probed by Single-Molecule Fluorescence. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5645–5650. 10.1073/pnas.0809232106. PubMed DOI PMC

Nettels D.; Mueller-Spaeth S.; Kuester F.; Hofmann H.; Haenni D.; Rueegger S.; Reymond L.; Hoffmann A.; Kubelka J.; Heinz B.; et al. Single-Molecule Spectroscopy of the Temperature-Induced Collapse of Unfolded Proteins. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20740–20745. 10.1073/pnas.0900622106. PubMed DOI PMC

Müller-Späth S.; Soranno A.; Hirschfeld V.; Hofmann H.; Rüegger S.; Reymond L.; Nettels D.; Schuler B. From the Cover: Charge Interactions Can Dominate the Dimensions of Intrinsically Disordered Proteins. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 14609–14614. 10.1073/pnas.1001743107. PubMed DOI PMC

Milles S.; Lemke E. A. Single Molecule Study of the Intrinsically Disordered FG-Repeat Nucleoporin 153. Biophys. J. 2011, 101, 1710–1719. 10.1016/j.bpj.2011.08.025. PubMed DOI PMC

Soranno A.; Buchli B.; Nettels D.; Cheng R. R.; Müller-Späth S.; Pfeil S. H.; Hoffmann A.; Lipman E. A.; Makarov D. E.; Schuler B. Quantifying Internal Friction in Unfolded and Intrinsically Disordered Proteins with Single-Molecule Spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17800–17806. 10.1073/pnas.1117368109. PubMed DOI PMC

Schuler B.; Hofmann H. Single-Molecule Spectroscopy of Protein Folding Dynamics–Expanding Scope and Timescales. Curr. Opin. Struct. Biol. 2013, 23, 36–47. 10.1016/j.sbi.2012.10.008. PubMed DOI

Milles S.; Mercadante D.; Aramburu I. V.; Jensen M. R.; Banterle N.; Koehler C.; Tyagi S.; Clarke J.; Shammas S. L.; Blackledge M.; et al. Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors. Cell 2015, 163, 734–745. 10.1016/j.cell.2015.09.047. PubMed DOI PMC

Otosu T.; Ishii K.; Tahara T. Microsecond Protein Dynamics Observed at the Single-Molecule Level. Nat. Commun. 2015, 6, 7685.10.1038/ncomms8685. PubMed DOI PMC

Columbus L.; Hubbell W. L. A New Spin on Protein Dynamics. Trends Biochem. Sci. 2002, 27, 288–295. 10.1016/S0968-0004(02)02095-9. PubMed DOI

Kavalenka A.; Urbancic I.; Belle V.; Rouger S.; Costanzo S.; Kure S.; Fournel A.; Longhi S.; Guigliarelli B.; Strancar J. Conformational Analysis of the Partially Disordered Measles Virus N-TAIL-XD Complex by SDSL EPR Spectroscopy. Biophys. J. 2010, 98, 1055–1064. 10.1016/j.bpj.2009.11.036. PubMed DOI PMC

Chui A. J.; Lopez C. J.; Brooks E. K.; Chua K. C.; Doupey T. G.; Foltz G. N.; Kamel J. G.; Larrosa E.; Sadiki A.; Bridges M. D. Multiple Structural States Exist Throughout the Helical Nucleation Sequence of the Intrinsically Disordered Protein Stathmin, As Reported by Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2015, 54, 1717–1728. 10.1021/bi500894q. PubMed DOI

Gillespie J. R.; Shortle D. Characterization of Long-Range Structure in the Denatured State of Staphylococcal Nuclease. I. Paramagnetic Relaxation Enhancement by Nitroxide Spin Labels. J. Mol. Biol. 1997, 268, 158–169. 10.1006/jmbi.1997.0954. PubMed DOI

Eliezer D.; Yao J.; Dyson H. J.; Wright P. E. Structural and Dynamic Characterization of Partially Folded States of Apomyoglobin and Implications for Protein Folding. Nat. Struct. Biol. 1998, 5, 148–155. 10.1038/nsb0298-148. PubMed DOI

Lindorff-Larsen K.; Kristjansdottir S.; Teilum K.; Fieber W.; Dobson C. M.; Poulsen F. M.; Vendruscolo M. Determination of an Ensemble of Structures Representing the Denatured State of the Bovine Acyl-Coenzyme a Binding Protein. J. Am. Chem. Soc. 2004, 126, 3291–3299. 10.1021/ja039250g. PubMed DOI

Bertoncini C. W.; Jung Y.-S.; Fernandez C. O.; Hoyer W.; Griesinger C.; Jovin T. M.; Zweckstetter M. Release of Long-Range Tertiary Interactions Potentiates Aggregation of Natively Unstructured Alpha-Synuclein. Proc. Natl. Acad. Sci. U.S.A 2005, 102, 1430–1435. 10.1073/pnas.0407146102. PubMed DOI PMC

Kristjansdottir S.; Lindorff-Larsen K.; Fieber W.; Dobson C. M.; Vendruscolo M.; Poulsen F. M. Formation of Native and Non-Native Interactions in Ensembles of Denatured ACBP Molecules from Paramagnetic Relaxation Enhancement Studies. J. Mol. Biol. 2005, 347, 1053–1062. 10.1016/j.jmb.2005.01.009. PubMed DOI

Felitsky D. J.; Lietzow M. A.; Dyson H. J.; Wright P. E. Modeling Transient Collapsed States of an Unfolded Protein to Provide Insights into Early Folding Events. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 6278–6283. 10.1073/pnas.0710641105. PubMed DOI PMC

Clore G. M.; Iwahara J. Theory, Practice, and Applications of Paramagnetic Relaxation Enhancement for the Characterization of Transient Low-Population States of Biological Macromolecules and Their Complexes. Chem. Rev. 2009, 109, 4108–4139. 10.1021/cr900033p. PubMed DOI PMC

Feig M.; Brooks C. L. Recent Advances in the Development and Application of Implicit Solvent Models in Biomolecule Simulations. Curr. Opin. Struct. Biol. 2004, 14, 217–224. 10.1016/j.sbi.2004.03.009. PubMed DOI

Mackerell A. D. Jr; Feig M.; Brooks C. L. 3rd Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1415. 10.1002/jcc.20065. PubMed DOI

Showalter S. A.; Bruschweiler R. Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks: Application to the AMBER99SB Force Field. J. Chem. Theory Comput. 2007, 3, 961–975. 10.1021/ct7000045. PubMed DOI

Best R. B.; Zhu X.; Shim J.; Lopes P. E. M.; Mittal J.; Feig M.; MacKerell A. D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Phi, Psi and Side-Chain Chi(1) and Chi(2) Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. 10.1021/ct300400x. PubMed DOI PMC

Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; shaw D. E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins 2010, 78, 1950–1958. 10.1002/prot.22711. PubMed DOI PMC

Cerutti D. S.; Swope W. C.; Rice J. E.; Case D. A. Ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins. J. Chem. Theory Comput. 2014, 10, 4515–4534. 10.1021/ct500643c. PubMed DOI PMC

Levy R. M.; Karplus M.; McCammon J. A. Molecular Dynamics Studies of NMR Relaxation in Proteins. Biophys. J. 1980, 32, 628–630. 10.1016/S0006-3495(80)84998-8. PubMed DOI PMC

Bruschweiler R.; Roux B.; Blackledge M.; Griesinger C.; Karplus M.; Ernst R. Influence Of Rapid Intramolecular Motion On Nmr Cross-Relaxation Rates - A Molecular-Dynamics Study Of Antamanide In Solution. J. Am. Chem. Soc. 1992, 114, 2289–2302. 10.1021/ja00033a002. DOI

Hornak V.; Abel R.; Okur A.; Strockbine B.; Roitberg A.; Simmerling C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins 2006, 65, 712–725. 10.1002/prot.21123. PubMed DOI PMC

Beauchamp K. A.; Lin Y.-S.; Das R.; Pande V. S. Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements. J. Chem. Theory Comput. 2012, 8, 1409–1414. 10.1021/ct2007814. PubMed DOI PMC

Piana S.; Donchev A. G.; Robustelli P.; Shaw D. E. Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States. J. Phys. Chem. B 2015, 119, 5113–5123. 10.1021/jp508971m. PubMed DOI

Zapletal V.; Mládek A.; Melková K.; Louša P.; Nomilner E.; Jasenáková Z.; Kubán V.; Makovická M.; Laníková A.; Žídek L.; et al. Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions. Biophys. J. 2020, 118, 1621–1633. 10.1016/j.bpj.2020.02.019. PubMed DOI PMC

Palmer A. NMR Characterization of the Dynamics of Biomacromolecules. Chem. Rev. 2004, 104, 3623–3640. 10.1021/cr030413t. PubMed DOI

Alexandrescu A.; Shortlet D. Backbone Dynamics of a Highly Disordered 131-Residue Fragment of Staphylococcal Nuclease. J. Mol. Biol. 1994, 242, 527–546. 10.1006/jmbi.1994.1598. PubMed DOI

Farrow N.; Zhang O.; Formankay J.; Kay L. Comparison of the Backbone Dynamics of a Folded and an Unfolded Sh3 Domain Existing in Equilibrium in Aqueous Buffer. Biochemistry 1995, 34, 868–878. 10.1021/bi00003a021. PubMed DOI

Frank M.; Clore G.; Gronenborn A. Structural and Dynamic Characterization of the Urea Denatured State of the Immunoglobulin Binding Domain of Streptococcal Protein-G by Multidimensional Heteronuclear Nmr-Spectroscopy. Protein Sci. 1995, 4, 2605–2615. 10.1002/pro.5560041218. PubMed DOI PMC

Buck M.; Schwalbe H.; Dobson C. M. Main-Chain Dynamics of a Partially Folded Protein: 15N NMR Relaxation Measurements of Hen Egg White Lysozyme Denatured in Trifluoroethanol. J. Mol. Biol. 1996, 257, 669–683. 10.1006/jmbi.1996.0193. PubMed DOI

Brutscher B.; Brüschweiler R.; Ernst R. R. Backbone Dynamics and Structural Characterization of the Partially Folded A State of Ubiquitin by 1H, 13C, and 15N Nuclear Magnetic Resonance Spectroscopy. Biochemistry 1997, 36, 13043–13053. 10.1021/bi971538t. PubMed DOI

Schwalbe H.; Fiebig K. M.; Buck M.; Jones J. A.; Grimshaw S. B.; Spencer A.; Glaser S. J.; Smith L. J.; Dobson C. M. Structural and Dynamical Properties of a Denatured Protein. Heteronuclear 3D NMR Experiments and Theoretical Simulations of Lysozyme in 8 M Urea. Biochemistry 1997, 36, 8977–8991. 10.1021/bi970049q. PubMed DOI

Buevich A. V.; Baum J. Dynamics of Unfolded Proteins: Incorporation of Distributions of Correlation Times in the Model Free Analysis of NMR Relaxation Data. J. Am. Chem. Soc. 1999, 121, 8671–8672. 10.1021/ja9910412. DOI

Yang D. W.; Mok Y. K.; Muhandiram D. R.; Forman-Kay J. D.; Kay L. E. H-1-C-13 Dipole-Dipole Cross-Correlated Spin Relaxation as a Probe of Dynamics in Unfolded Proteins: Application to the DrkN SH3 Domain. J. Am. Chem. Soc. 1999, 121, 3555–3556. 10.1021/ja9900914. DOI

Tollinger M.; Skrynnikov N. R.; Mulder F. a. A.; Forman-Kay J. D.; Kay L. E. Slow Dynamics in Folded and Unfolded States of an SH3 Domain. J. Am. Chem. Soc. 2001, 123, 11341–11352. 10.1021/ja011300z. PubMed DOI

Yao J.; Chung J.; Eliezer D.; Wright P. E.; Dyson H. J. NMR Structural and Dynamic Characterization of the Acid-Unfolded State of Apomyoglobin Provides Insights into the Early Events in Protein Folding. Biochemistry 2001, 40, 3561–3571. 10.1021/bi002776i. PubMed DOI

Ochsenbein F.; Neumann J. M.; Guittet E.; Van Heijenoort C. Dynamical Characterization of Residual and Non-Native Structures in a Partially Folded Protein by N-15 NMR Relaxation Using a Model Based on a Distribution of Correlation Times. Protein Sci. 2002, 11, 957–964. 10.1110/ps.4000102. PubMed DOI PMC

Klein-Seetharaman J.; Oikawa M.; Grimshaw S. B.; Wirmer J.; Duchardt E.; Ueda T.; Imoto T.; Smith L. J.; Dobson C. M.; Schwalbe H. Long-Range Interactions within a Nonnative Protein. Science 2002, 295, 1719–1722. 10.1126/science.1067680. PubMed DOI

Choy W. Y.; Shortle D.; Kay L. E. Side Chain Dynamics in Unfolded Protein States: An NMR Based H-2 Spin Relaxation Study of Delta 131 Delta. J. Am. Chem. Soc. 2003, 125, 1748–1758. 10.1021/ja021179b. PubMed DOI

Wirmer J.; Peti W.; Schwalbe H. Motional Properties of Unfolded Ubiquitin: A Model for a Random Coil Protein. J. Biomol. NMR 2006, 35, 175–186. 10.1007/s10858-006-9026-9. PubMed DOI

Le Duff C. S.; Whittaker S. B.-M.; Radford S. E.; Moore G. R. Characterisation of the Conformational Properties of Urea-Unfolded Im7: Implications for the Early Stages of Protein Folding. J. Mol. Biol. 2006, 364, 824–835. 10.1016/j.jmb.2006.09.037. PubMed DOI

Houben K.; Blanchard L.; Blackledge M.; Marion D. Intrinsic Dynamics of the Partly Unstructured PX Domain from the Sendai Virus RNA Polymerase Cofactor P. Biophys. J. 2007, 93, 2830–2844. 10.1529/biophysj.107.108829. PubMed DOI PMC

Ebert M.-O.; Bae S.-H.; Dyson H. J.; Wright P. E. NMR Relaxation Study of the Complex Formed between CBP and the Activation Domain of the Nuclear Hormone Receptor Coactivator ACTR. Biochemistry 2008, 47, 1299–1308. 10.1021/bi701767j. PubMed DOI

Modig K.; Poulsen F. M. Model-Independent Interpretation of NMR Relaxation Data for Unfolded Proteins: The Acid-Denatured State of ACBP. J. Biomol. NMR 2008, 42, 163–177. 10.1007/s10858-008-9280-0. PubMed DOI

Silvers R.; Sziegat F.; Tachibana H.; Segawa S.; Whittaker S.; Günther U. L.; Gabel F.; Huang J.; Blackledge M.; Wirmer-Bartoschek J.; et al. Modulation of Structure and Dynamics by Disulfide Bond Formation in Unfolded States. J. Am. Chem. Soc. 2012, 134, 6846–6854. 10.1021/ja3009506. PubMed DOI

Sziegat F.; Silvers R.; Hähnke M.; Jensen M. R.; Blackledge M.; Wirmer-Bartoschek J.; Schwalbe H. Disentangling the Coil: Modulation of Conformational and Dynamic Properties by Site-Directed Mutation in the Non-Native State of Hen Egg White Lysozyme. Biochemistry 2012, 51, 3361–3372. 10.1021/bi300222f. PubMed DOI

Konrat R. NMR Contributions to Structural Dynamics Studies of Intrinsically Disordered Proteins. J. Magn. Reson. 2014, 241, 74–85. 10.1016/j.jmr.2013.11.011. PubMed DOI PMC

Kurzbach D.; Schwarz T. C.; Platzer G.; Hoefler S.; Hinderberger D.; Konrat R. Compensatory Adaptations of Structural Dynamics in an Intrinsically Disordered Protein Complex. Angew. Chem., Int. Ed. 2014, 53, 3840–3843. 10.1002/anie.201308389. DOI

Prompers J. J.; Bruschweiler R. General Framework for Studying the Dynamics of Folded and Nonfolded Proteins by NMR Relaxation Spectroscopy and MD Simulation. J. Am. Chem. Soc. 2002, 124, 4522–4534. 10.1021/ja012750u. PubMed DOI

Xue Y.; Skrynnikov N. R. Motion of a Disordered Polypeptide Chain as Studied by Paramagnetic Relaxation Enhancements, 15N Relaxation, and Molecular Dynamics Simulations: How Fast Is Segmental Diffusion in Denatured Ubiquitin?. J. Am. Chem. Soc. 2011, 133, 14614–14628. 10.1021/ja201605c. PubMed DOI

Lindorff-Larsen K.; Trbovic N.; Maragakis P.; Piana S.; Shaw D. E. Structure and Dynamics of an Unfolded Protein Examined by Molecular Dynamics Simulation. J. Am. Chem. Soc. 2012, 134, 3787–3791. 10.1021/ja209931w. PubMed DOI

Robustelli P.; Trbovic N.; Friesner R. A.; Palmer A. G. Conformational Dynamics of the Partially Disordered Yeast Transcription Factor GCN4. J. Chem. Theory Comput. 2013, 9, 5190–5200. 10.1021/ct400654r. DOI

Markwick P. R. L.; Bouvignies G.; Salmon L.; McCammon J. A.; Nilges M.; Blackledge M. Toward a Unified Representation of Protein Structural Dynamics in Solution. J. Am. Chem. Soc. 2009, 131, 16968–16975. 10.1021/ja907476w. PubMed DOI PMC

Rauscher S.; Gapsys V.; Gajda M. J.; Zweckstetter M.; de Groot B. L.; Grubmüller H. Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment. J. Chem. Theory Comput. 2015, 11, 5513–5524. 10.1021/acs.jctc.5b00736. PubMed DOI

Pietrek L. M.; Stelzl L. S.; Hummer G. Hierarchical Ensembles of Intrinsically Disordered Proteins at Atomic Resolution in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 725–737. 10.1021/acs.jctc.9b00809. PubMed DOI

Fawzi N. L.; Phillips A. H.; Ruscio J. Z.; Doucleff M.; Wemmer D. E.; Head-Gordon T. Structure and Dynamics of the A Ss(21–30) Peptide from the Interplay of NMR Experiments and Molecular Simulations. J. Am. Chem. Soc. 2008, 130, 6145–6158. 10.1021/ja710366c. PubMed DOI PMC

Shrestha U. R.; Smith J. C.; Petridis L. Full Structural Ensembles of Intrinsically Disordered Proteins from Unbiased Molecular Dynamics Simulation. Commun. Biol. 2021, 4, 243–250. 10.1038/s42003-021-01759-1. PubMed DOI PMC

Best R. B.; Buchete N.-V.; Hummer G. Are Current Molecular Dynamics Force Fields Too Helical?. Biophys. J. 2008, 95, L07–09. 10.1529/biophysj.108.132696. PubMed DOI PMC

Salvi N.; Abyzov A.; Blackledge M. Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation. J. Phys. Chem. Lett. 2016, 7, 2483–2489. 10.1021/acs.jpclett.6b00885. PubMed DOI

Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; de Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC

Vitalis A.; Pappu R. V. ABSINTH: A New Continuum Solvation Model for Simulations of Polypeptides in Aqueous Solutions. J. Comput. Chem. 2009, 30, 673–699. 10.1002/jcc.21005. PubMed DOI PMC

Best R. B.; Hummer G. Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides. J. Phys. Chem. B 2009, 113, 9004–9015. 10.1021/jp901540t. PubMed DOI PMC

Mercadante D.; Milles S.; Fuertes G.; Svergun D. I.; Lemke E. A.; Gräter F. Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields. J. Phys. Chem. B 2015, 119, 7975–7984. 10.1021/acs.jpcb.5b03440. PubMed DOI

Ye W.; Ji D.; Wang W.; Luo R.; Chen H.-F. Test and Evaluation of Ff99IDPs Force Field for Intrinsically Disordered Proteins. J. Chem. Inf. Model. 2015, 55, 1021–1029. 10.1021/acs.jcim.5b00043. PubMed DOI PMC

Carr H. Y.; Purcell E. M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630–638. 10.1103/PhysRev.94.630. DOI

Meiboom S.; Gill D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958, 29, 688–691. 10.1063/1.1716296. DOI

Forsén S.; Hoffman R. A. Study of Moderately Rapid Chemical Exchange Reactions by Means of Nuclear Magnetic Double Resonance. J. Chem. Phys. 1963, 39, 2892–2901. 10.1063/1.1734121. DOI

Kopple K.; Wang Y.; Cheng A.; Bhandary K. Conformations Of Cyclic Octapeptides.5. Crystal-Structure Of Cyclo(Cys-Gly-Pro-Phe)2 And Rotating Frame Relaxation (T1-Rho) Nmr-Studies Of Internal Mobility In Cyclic Octapeptides. J. Am. Chem. Soc. 1988, 110, 4168–4176. 10.1021/ja00221a012. DOI

Palmer A. G.; Massi F. Characterization of the Dynamics of Biomacromolecules Using Rotating-Frame Spin Relaxation NMR Spectroscopy. Chem. Rev. 2006, 106, 1700–1719. 10.1021/cr0404287. PubMed DOI

Baldwin A. J.; Kay L. E. NMR Spectroscopy Brings Invisible Protein States into Focus. Nat. Chem. Biol. 2009, 5, 808–814. 10.1038/nchembio.238. PubMed DOI

Tompa P.; Schad E.; Tantos A.; Kalmar L. Intrinsically Disordered Proteins: Emerging Interaction Specialists. Curr. Opin. Struct. Biol. 2015, 35, 49–59. 10.1016/j.sbi.2015.08.009. PubMed DOI

Papaleo E.; Saladino G.; Lambrughi M.; Lindorff-Larsen K.; Gervasio F. L.; Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem. Rev. 2016, 116, 6391–6423. 10.1021/acs.chemrev.5b00623. PubMed DOI

Delaforge E.; Milles S.; Huang J.-R.; Bouvier D.; Jensen M. R.; Sattler M.; Hart D. J.; Blackledge M. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions. Front. Mol. Biosci. 2016, 3, 54.10.3389/fmolb.2016.00054. PubMed DOI PMC

Das R. K.; Pappu R. V. Conformations of Intrinsically Disordered Proteins Are Influenced by Linear Sequence Distributions of Oppositely Charged Residues. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 13392–13397. 10.1073/pnas.1304749110. PubMed DOI PMC

Wang J.; Choi J.-M.; Holehouse A. S.; Lee H. O.; Zhang X.; Jahnel M.; Maharana S.; Lemaitre R.; Pozniakovsky A.; Drechsel D.; et al. Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell 2018, 174, 688–699. 10.1016/j.cell.2018.06.006. PubMed DOI PMC

Choi J.-M.; Holehouse A. S.; Pappu R. V. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annu. Rev. Biophys. 2020, 49, 107–133. 10.1146/annurev-biophys-121219-081629. PubMed DOI PMC

Fawzi N. L.; Parekh S. H.; Mittal J. Biophysical Studies of Phase Separation Integrating Experimental and Computational Methods. Curr. Opin. Struct. Biol. 2021, 70, 78–86. 10.1016/j.sbi.2021.04.004. PubMed DOI PMC

Saar K. L.; Morgunov A. S.; Qi R.; Arter W. E.; Krainer G.; Lee A. A.; Knowles T. P. J. Learning the Molecular Grammar of Protein Condensates from Sequence Determinants and Embeddings. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e201905311810.1073/pnas.2019053118. PubMed DOI PMC

Mittag T.; Orlicky S.; Choy W.-Y.; Tang X.; Lin H.; Sicheri F.; Kay L. E.; Tyers M.; Forman-Kay J. D. Dynamic Equilibrium Engagement of a Polyvalent Ligand with a Single-Site Receptor. Proc. Natl. Acad. Sci. U.S.A 2008, 105, 17772–17777. 10.1073/pnas.0809222105. PubMed DOI PMC

Selenko P.; Frueh D. P.; Elsaesser S. J.; Haas W.; Gygi S. P.; Wagner G. In Situ Observation of Protein Phosphorylation by High-Resolution NMR Spectroscopy. Nat. Struct. Mol. Biol. 2008, 15, 321–329. 10.1038/nsmb.1395. PubMed DOI

Theillet F.-X.; Rose H. M.; Liokatis S.; Binolfi A.; Thongwichian R.; Stuiver M.; Selenko P. Site-Specific NMR Mapping and Time-Resolved Monitoring of Serine and Threonine Phosphorylation in Reconstituted Kinase Reactions and Mammalian Cell Extracts. Nat. Protoc. 2013, 8, 1416–1432. 10.1038/nprot.2013.083. PubMed DOI

Savastano A.; Flores D.; Kadavath H.; Biernat J.; Mandelkow E.; Zweckstetter M. Disease-Associated Tau Phosphorylation Hinders Tubulin Assembly within Tau Condensates. Ang. Chem., Int. Ed. 2021, 60, 726–730. 10.1002/anie.202011157. DOI

Salvi N.; Salmon L.; Blackledge M. Dynamic Descriptions of Highly Flexible Molecules from NMR Dipolar Couplings: Physical Basis and Limitations. J. Am. Chem. Soc. 2017, 139, 5011–5014. 10.1021/jacs.7b01566. PubMed DOI

Saupe A.; Englert G. High-Resolution Nuclear Magnetic Resonance Spectra of Orientated Molecules. Phys. Rev. Lett. 1963, 11, 462–464. 10.1103/PhysRevLett.11.462. DOI

Bernado P.; Blanchard L.; Timmins P.; Marion D.; Ruigrok R. W. H.; Blackledge M. A Structural Model for Unfolded Proteins from Residual Dipolar Couplings and Small-Angle x-Ray Scattering. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17002–17007. 10.1073/pnas.0506202102. PubMed DOI PMC

Ozenne V.; Bauer F.; Salmon L.; Huang J.-R.; Jensen M. R.; Segard S.; Bernadó P.; Charavay C.; Blackledge M. Flexible-Meccano: A Tool for the Generation of Explicit Ensemble Descriptions of Intrinsically Disordered Proteins and Their Associated Experimental Observables. Bioinformatics 2012, 28, 1463–1470. 10.1093/bioinformatics/bts172. PubMed DOI

Motácková V.; Sanderová H.; Zídek L.; Novácek J.; Padrta P.; Svenková A.; Korelusová J.; Jonák J.; Krásný L.; Sklenár V. Solution Structure of the N-Terminal Domain of Bacillus Subtilis Delta Subunit of RNA Polymerase and Its Classification Based on Structural Homologs. Proteins 2010, 78, 1807–1810. 10.1002/prot.22708. PubMed DOI

Rabatinová A.; Šanderová H.; Jirát Matejčková J.; Korelusová J.; Sojka L.; Barvík I.; Papoušková V.; Sklenár V.; Žídek L.; Krásný L. The δ Subunit of RNA Polymerase Is Required for Rapid Changes in Gene Expression and Competitive Fitness of the Cell. J. Bacteriol. 2013, 195, 2603–2611. 10.1128/JB.00188-13. PubMed DOI PMC

Papouskova V.; Kaderavek P.; Otrusinova O.; Rabatinova A.; Sanderova H.; Novacek J.; Krasny L.; Sklenar V.; Zidek L. Structural Study of the Partially Disordered Full-Length Delta Subunit of RNA Polymerase from Bacillus Subtilis. Chembiochem 2013, 14, 1772–1779. 10.1002/cbic.201300226. PubMed DOI

Kubán V.; Srb P.; Štégnerová H.; Padrta P.; Zachrdla M.; Jasenáková Z.; Šanderová H.; Vítovská D.; Krásný L.; Koval’ T.; et al. Quantitative Conformational Analysis of Functionally Important Electrostatic Interactions in the Intrinsically Disordered Region of Delta Subunit of Bacterial RNA Polymerase. J. Am. Chem. Soc. 2019, 141, 16817–16828. 10.1021/jacs.9b07837. PubMed DOI

Abragam A.The Principles of Nuclear Magnetism; Clarendon Press, 1994; pp 289–305.

Goldman M.Quantum Description of High-Resolution NMR in Liquids; Clarendon Press, 1988; pp 231–250.

Peng J. W.; Wagner G. Mapping of the Spectral Densities of N-H Bond Motions in Eglin c Using Heteronuclear Relaxation Experiments. Biochemistry 1992, 31, 8571–8586. 10.1021/bi00151a027. PubMed DOI

Peng J. W.; Wagner G. Frequency Spectrum of NH Bonds in Eglin c from Spectral Density Mapping at Multiple Fields. Biochemistry 1995, 34, 16733–16752. 10.1021/bi00051a023. PubMed DOI

Farrow N.; Zhang O.; Szabo A.; Torchia D.; Kay L. Spectral Density-Function Mapping Using N-15 Relaxation Data Exclusively. J. Biomol. NMR 1995, 6, 153–162. 10.1007/BF00211779. PubMed DOI

Ishima R.; Nagayama K. Protein Backbone Dynamics Revealed by Quasi Spectral Density Function Analysis of Amide N-15 Nuclei. Biochemistry 1995, 34, 3162–3171. 10.1021/bi00010a005. PubMed DOI

Ishima R.; Yamasaki K.; Nagayama K. Application of the Quasi-Spectral Density Function of (15)N Nuclei to the Selection of a Motional Model for Model-Free Analysis. J. Biomol. NMR 1995, 6, 423–426. 10.1007/BF00197640. PubMed DOI

Kaderavek P.; Zapletal V.; Rabatinova A.; Krasny L.; Sklenar V.; Zidek L. Spectral Density Mapping Protocols for Analysis of Molecular Motions in Disordered Proteins. J. Biomol. NMR 2014, 58, 193–207. 10.1007/s10858-014-9816-4. PubMed DOI

Halle B.; Wennerström H. Interpretation of Magnetic Resonance Data from Water Nuclei in Heterogeneous Systems. J. Chem. Phys. 1981, 75, 1928–1943. 10.1063/1.442218. DOI

Lipari G.; Szabo A. Model-Free Approach To The Interpretation Of Nuclear Magnetic-Resonance Relaxation In Macromolecules.1. Theory And Range Of Validity. J. Am. Chem. Soc. 1982, 104, 4546–4559. 10.1021/ja00381a009. DOI

Lipari G.; Szabo A. Model-Free Approach To The Interpretation Of Nuclear Magnetic-Resonance Relaxation In Macromolecules.2. Analysis Of Experimental Results. J. Am. Chem. Soc. 1982, 104, 4559–4570. 10.1021/ja00381a010. DOI

Clore G.; Szabo A.; Bax A.; Kay L.; Driscoll P.; Gronenborn A. Deviations from the Simple 2-Parameter Model-Free Approach to the Interpretation of N-15 Nuclear Magnetic-Relaxation of Proteins. J. Am. Chem. Soc. 1990, 112, 4989–4991. 10.1021/ja00168a070. DOI

Halle B. The Physical Basis of Model-Free Analysis of NMR Relaxation Data from Proteins and Complex Fluids. J. Chem. Phys. 2009, 131, 224507.10.1063/1.3269991. PubMed DOI

Farrow N. A.; Zhang O. W.; FormanKay J. D.; Kay L. E. Characterization of the Backbone Dynamics of Folded and Denatured States of an SH3 Domain. Biochemistry 1997, 36, 2390–2402. 10.1021/bi962548h. PubMed DOI

Yang D.; Kay L. E. Contributions to Conformational Entropy Arising from Bond Vector Fluctuations Measured from NMR-Derived Order Parameters: Application to Protein Folding. J. Mol. Biol. 1996, 263, 369–382. 10.1006/jmbi.1996.0581. PubMed DOI

Yang D.; Mok Y.-K.; Forman-Kay J. D.; Farrow N. A.; Kay L. E. Contributions to Protein Entropy and Heat Capacity from Bond Vector Motions Measured by NMR Spin Relaxation1. J. Mol. Biol. 1997, 272, 790–804. 10.1006/jmbi.1997.1285. PubMed DOI

Ochsenbein F.; Guerois R.; Neumann J.-M.; Sanson A.; Guittet E.; van Heijenoort C. 15N NMR Relaxation as a Probe for Helical Intrinsic Propensity: The Case of the Unfolded D2 Domain of Annexin I. J. Biomol NMR 2001, 19, 3–18. 10.1023/A:1008390606077. PubMed DOI

Cole K. S.; Cole R. H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. 10.1063/1.1750906. DOI

Bovey F. A.; Mirau P. A.. NMR of Polymers; Academic Press, 1996; pp 361–376.

Cho M.-K.; Kim H.-Y.; Bernado P.; Fernandez C. O.; Blackledge M.; Zweckstetter M. Amino Acid Bulkiness Defines the Local Conformations and Dynamics of Natively Unfolded Alpha-Synuclein and Tau. J. Am. Chem. Soc. 2007, 129, 3032.10.1021/ja067482k. PubMed DOI

Parigi G.; Rezaei-Ghaleh N.; Giachetti A.; Becker S.; Fernandez C.; Blackledge M.; Griesinger C.; Zweckstetter M.; Luchinat C. Long-Range Correlated Dynamics in Intrinsically Disordered Proteins. J. Am. Chem. Soc. 2014, 136, 16201–16209. 10.1021/ja506820r. PubMed DOI

Bae S.-H.; Dyson H. J.; Wright P. E. Prediction of the Rotational Tumbling Time for Proteins with Disordered Segments. J. Am. Chem. Soc. 2009, 131, 6814–6821. 10.1021/ja809687r. PubMed DOI PMC

Walsh J. D.; Meier K.; Ishima R.; Gronenborn A. M. NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats. Biophys. J. 2010, 99, 2636–2646. 10.1016/j.bpj.2010.08.036. PubMed DOI PMC

Amoros D.; Ortega A.; Garcia de la Torre J. Prediction of Hydrodynamic and Other Solution Properties of Partially Disordered Proteins with a Simple, Coarse-Grained Model. J. Chem. Theory Comput. 2013, 9, 1678–1685. 10.1021/ct300948u. PubMed DOI

Rezaei-Ghaleh N.; Klama F.; Munari F.; Zweckstetter M. Predicting the Rotational Tumbling of Dynamic Multidomain Proteins and Supramolecular Complexes. Angew. Chem., Int. Ed. Engl. 2013, 52, 11410–11414. 10.1002/anie.201305094. PubMed DOI

Sugase K.; Dyson H. J.; Wright P. E. Mechanism of Coupled Folding and Binding of an Intrinsically Disordered Protein. Nature 2007, 447, 1021-U11.10.1038/nature05858. PubMed DOI

Hilser V. J.; Thompson E. B. Intrinsic Disorder as a Mechanism to Optimize Allosteric Coupling in Proteins. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 8311–8315. 10.1073/pnas.0700329104. PubMed DOI PMC

Kiefhaber T.; Bachmann A.; Jensen K. S. Dynamics and Mechanisms of Coupled Protein Folding and Binding Reactions. Curr. Opin. Struct. Biol. 2012, 22, 21–29. 10.1016/j.sbi.2011.09.010. PubMed DOI

Marsh J. A.; Teichmann S. A.; Forman-Kay J. D. Probing the Diverse Landscape of Protein Flexibility and Binding. Curr. Opin. Struct. Biol. 2012, 22, 643–650. 10.1016/j.sbi.2012.08.008. PubMed DOI

Rogers J. M.; Steward A.; Clarke J. Folding and Binding of an Intrinsically Disordered Protein: Fast, but Not “Diffusion-Limited.. J. Am. Chem. Soc. 2013, 135, 1415–1422. 10.1021/ja309527h. PubMed DOI PMC

Iesmantavicius V.; Dogan J.; Jemth P.; Teilum K.; Kjaergaard M. Helical Propensity in an Intrinsically Disordered Protein Accelerates Ligand Binding. Angew. Chem., Int. Ed. 2014, 53, 1548–1551. 10.1002/anie.201307712. DOI

Rogers J. M.; Wong C. T.; Clarke J. Coupled Folding and Binding of the Disordered Protein PUMA Does Not Require Particular Residual Structure. J. Am. Chem. Soc. 2014, 136, 5197–5200. 10.1021/ja4125065. PubMed DOI PMC

Rogers J. M.; Oleinikovas V.; Shammas S. L.; Wong C. T.; De Sancho D.; Baker C. M.; Clarke J. Interplay between Partner and Ligand Facilitates the Folding and Binding of an Intrinsically Disordered Protein. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 15420–15425. 10.1073/pnas.1409122111. PubMed DOI PMC

Flock T.; Weatheritt R. J.; Latysheva N. S.; Babu M. M. Controlling Entropy to Tune the Functions of Intrinsically Disordered Regions. Curr. Opin. Struct. Biol. 2014, 26, 62–72. 10.1016/j.sbi.2014.05.007. PubMed DOI

Schneider R.; Maurin D.; Communie G.; Kragelj J.; Hansen D. F.; Ruigrok R. W. H.; Jensen M. R.; Blackledge M. Visualizing the Molecular Recognition Trajectory of an Intrinsically Disordered Protein Using Multinuclear Relaxation Dispersion NMR. J. Am. Chem. Soc. 2015, 137, 1220–1229. 10.1021/ja511066q. PubMed DOI

Gianni S.; Dogan J.; Jemth P. Coupled Binding and Folding of Intrinsically Disordered Proteins: What Can We Learn from Kinetics?. Curr. Opin. Struct. Biol. 2016, 36, 18–24. 10.1016/j.sbi.2015.11.012. PubMed DOI

Khan S. N.; Charlier C.; Augustyniak R.; Salvi N.; Déjean V.; Bodenhausen G.; Lequin O.; Pelupessy P.; Ferrage F. Distribution of Pico- and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation. Biophys. J. 2015, 109, 988–999. 10.1016/j.bpj.2015.06.069. PubMed DOI PMC

Gill M. L.; Byrd R. A.; Palmer A. G. III Dynamics of GCN4 Facilitate DNA Interaction: A Model-Free Analysis of an Intrinsically Disordered Region. Phys. Chem. Chem. Phys. 2016, 18, 5839–5849. 10.1039/C5CP06197K. PubMed DOI PMC

Brady J. P.; Farber P. J.; Sekhar A.; Lin Y.-H.; Huang R.; Bah A.; Nott T. J.; Chan H. S.; Baldwin A. J.; Forman-Kay J. D.; et al. Structural and Hydrodynamic Properties of an Intrinsically Disordered Region of a Germ Cell-Specific Protein on Phase Separation. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E8194–E8203. 10.1073/pnas.1706197114. PubMed DOI PMC

Ryan V. H.; Dignon G. L.; Zerze G. H.; Chabata C. V.; Silva R.; Conicella A. E.; Amaya J.; Burke K. A.; Mittal J.; Fawzi N. L. Mechanistic View of HnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Mol. Cell 2018, 69, 465–479. 10.1016/j.molcel.2017.12.022. PubMed DOI PMC

Murthy A. C.; Dignon G. L.; Kan Y.; Zerze G. H.; Parekh S. H.; Mittal J.; Fawzi N. L. Molecular Interactions Underlying Liquid–liquid Phase Separation of the FUS Low-Complexity Domain. Nat. Struct. Mol. Biol. 2019, 26, 637–648. 10.1038/s41594-019-0250-x. PubMed DOI PMC

Theillet F.-X.; Binolfi A.; Bekei B.; Martorana A.; Rose H. M.; Stuiver M.; Verzini S.; Lorenz D.; van Rossum M.; Goldfarb D.; Selenko P. Structural Disorder of Monomeric α-Synuclein Persists in Mammalian Cells. Nature 2016, 530, 45–50. 10.1038/nature16531. PubMed DOI

Abyzov A.; Salvi N.; Schneider R.; Maurin D.; Ruigrok R. W. H.; Jensen M. R.; Blackledge M. Identification of Dynamic Modes in an Intrinsically Disordered Protein Using Temperature-Dependent NMR Relaxation. J. Am. Chem. Soc. 2016, 138, 6240–6251. 10.1021/jacs.6b02424. PubMed DOI

Lewandowski J. R.; Halse M. E.; Blackledge M.; Emsley L. Protein Dynamics. Direct Observation of Hierarchical Protein Dynamics. Science 2015, 348, 578–581. 10.1126/science.aaa6111. PubMed DOI

Kimmich R.; Anoardo E. Field-Cycling NMR Relaxometry. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 44, 257–320. 10.1016/j.pnmrs.2004.03.002. DOI

Bryant R. G.; Korb J. P. Nuclear Magnetic Resonance and Spin Relaxation in Biological Systems. Magn. Reson. Imaging 2005, 23, 167–173. 10.1016/j.mri.2004.11.026. PubMed DOI

Rouse P. J. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 1953, 21, 1272.10.1063/1.1699180. DOI

Young W. S.; Brooks C. L. III A Microscopic View of Helix Propagation: N and C-Terminal Helix Growth in Alanine Helices. J. Mol. Biol. 1996, 259, 560–572. 10.1006/jmbi.1996.0339. PubMed DOI

Mikhonin A. V.; Asher S. A. Direct UV Raman Monitoring of 310-Helix and π-Bulge Premelting during α-Helix Unfolding. J. Am. Chem. Soc. 2006, 128, 13789–13795. 10.1021/ja062269+. PubMed DOI

Best R. B.; Mittal J. Balance between α and β Structures in Ab Initio Protein Folding. J. Phys. Chem. B 2010, 114, 8790–8798. 10.1021/jp102575b. PubMed DOI

Adamski W.; Salvi N.; Maurin D.; Magnat J.; Milles S.; Jensen M. R.; Abyzov A.; Moreau C. J.; Blackledge M. A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy. J. Am. Chem. Soc. 2019, 141, 17817–17829. 10.1021/jacs.9b09002. PubMed DOI

Theillet F.-X.; Binolfi A.; Frembgen-Kesner T.; Hingorani K.; Sarkar M.; Kyne C.; Li C.; Crowley P. B.; Gierasch L.; Pielak G. J.; et al. Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs). Chem. Rev. 2014, 114, 6661–6714. 10.1021/cr400695p. PubMed DOI PMC

Gruebele M.; Pielak G. J. Dynamical Spectroscopy and Microscopy of Proteins in Cells. Curr. Opin. Struct. Biol. 2021, 70, 1–7. 10.1016/j.sbi.2021.02.001. PubMed DOI

Selenko P.; Serber Z.; Gadea B.; Ruderman J.; Wagner G. Quantitative NMR Analysis of the Protein G B1 Domain in Xenopus Laevis Egg Extracts and Intact Oocytes. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11904–11909. 10.1073/pnas.0604667103. PubMed DOI PMC

Li C.; Charlton L. M.; Lakkavaram A.; Seagle C.; Wang G.; Young G. B.; Macdonald J. M.; Pielak G. J. Differential Dynamical Effects of Macromolecular Crowding on an Intrinsically Disordered Protein and a Globular Protein: Implications for in-Cell NMR Spectroscopy. J. Am. Chem. Soc. 2008, 130, 6310–6311. 10.1021/ja801020z. PubMed DOI PMC

Ito Y.; Selenko P. Cellular Structural Biology. Curr. Opin. Struct. Biol. 2010, 20, 640–648. 10.1016/j.sbi.2010.07.006. PubMed DOI

Smith A. E.; Zhang Z.; Pielak G. J.; Li C. NMR Studies of Protein Folding and Binding in Cells and Cell-like Environments. Curr. Opin. Struct. Biol. 2015, 30, 7–16. 10.1016/j.sbi.2014.10.004. PubMed DOI

Majumder S.; Xue J.; DeMott C. M.; Reverdatto S.; Burz D. S.; Shekhtman A. Probing Protein Quinary Interactions by In-Cell Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2015, 54, 2727–2738. 10.1021/acs.biochem.5b00036. PubMed DOI PMC

Luchinat E.; Banci L. In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation. Acc. Chem. Res. 2018, 51, 1550–1557. 10.1021/acs.accounts.8b00147. PubMed DOI

Guseman A. J.; Perez Goncalves G. M.; Speer S. L.; Young G. B.; Pielak G. J. Protein Shape Modulates Crowding Effects. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 10965–10970. 10.1073/pnas.1810054115. PubMed DOI PMC

Zimmerman S. B.; Trach S. O. Estimation of Macromolecule Concentrations and Excluded Volume Effects for the Cytoplasm of Escherichia Coli. J. Mol. Biol. 1991, 222, 599–620. 10.1016/0022-2836(91)90499-V. PubMed DOI

Ellis R. J. Macromolecular Crowding: Obvious but Underappreciated. Trends Biochem. Sci. 2001, 26, 597–604. 10.1016/S0968-0004(01)01938-7. PubMed DOI

Zeskind B. J.; Jordan C. D.; Timp W.; Trapani L.; Waller G.; Horodincu V.; Ehrlich D. J.; Matsudaira P. Nucleic Acid and Protein Mass Mapping by Live-Cell Deep-Ultraviolet Microscopy. Nat. Methods 2007, 4, 567–569. 10.1038/nmeth1053. PubMed DOI

Cohen R. D.; Pielak G. J. A Cell Is More than the Sum of Its (Dilute) Parts: A Brief History of Quinary Structure. Protein Sci. 2017, 26, 403–413. 10.1002/pro.3092. PubMed DOI PMC

Davey N. E. The Functional Importance of Structure in Unstructured Protein Regions. Curr. Opin. Struct. Biol. 2019, 56, 155–163. 10.1016/j.sbi.2019.03.009. PubMed DOI

von Bülow S.; Siggel M.; Linke M.; Hummer G. Dynamic Cluster Formation Determines Viscosity and Diffusion in Dense Protein Solutions. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 9843–9852. 10.1073/pnas.1817564116. PubMed DOI PMC

Wei M.-T.; Elbaum-Garfinkle S.; Holehouse A. S.; Chen C. C.-H.; Feric M.; Arnold C. B.; Priestley R. D.; Pappu R. V.; Brangwynne C. P. Phase Behaviour of Disordered Proteins Underlying Low Density and High Permeability of Liquid Organelles. Nat. Chem. 2017, 9, 1118–1125. 10.1038/nchem.2803. PubMed DOI PMC

Brangwynne C. P.; Eckmann C. R.; Courson D. S.; Rybarska A.; Hoege C.; Gharakhani J.; Jülicher F.; Hyman A. A. Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation. Science 2009, 324, 1729–1732. 10.1126/science.1172046. PubMed DOI

Alberti S.; Gladfelter A.; Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019, 176, 419–434. 10.1016/j.cell.2018.12.035. PubMed DOI PMC

Schuler B.; Eaton W. A. Protein Folding Studied by Single-Molecule FRET. Curr. Opin. Struct. Biol. 2008, 18, 16–26. 10.1016/j.sbi.2007.12.003. PubMed DOI PMC

Echeverria I.; Makarov D. E.; Papoian G. A. Concerted Dihedral Rotations Give Rise to Internal Friction in Unfolded Proteins. J. Am. Chem. Soc. 2014, 136, 8708–8713. 10.1021/ja503069k. PubMed DOI

König I.; Zarrine-Afsar A.; Aznauryan M.; Soranno A.; Wunderlich B.; Dingfelder F.; Stüber J. C.; Plückthun A.; Nettels D.; Schuler B. Single-Molecule Spectroscopy of Protein Conformational Dynamics in Live Eukaryotic Cells. Nat. Methods 2015, 12, 773–779. 10.1038/nmeth.3475. PubMed DOI

König I.; Soranno A.; Nettels D.; Schuler B. Impact of In-Cell and In-Vitro Crowding on the Conformations and Dynamics of an Intrinsically Disordered Protein. Ang. Chem., Int. Ed. 2021, 60, 10724–10729. 10.1002/anie.202016804. DOI

Paudel B. P.; Fiorini E.; Börner R.; Sigel R. K. O.; Rueda D. S. Optimal Molecular Crowding Accelerates Group II Intron Folding and Maximizes Catalysis. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 11917–11922. 10.1073/pnas.1806685115. PubMed DOI PMC

McConkey E. H. Molecular Evolution, Intracellular Organization, and the Quinary Structure of Proteins. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 3236–3240. 10.1073/pnas.79.10.3236. PubMed DOI PMC

Monteith W. B.; Cohen R. D.; Smith A. E.; Guzman-Cisneros E.; Pielak G. J. Quinary Structure Modulates Protein Stability in Cells. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 1739–1742. 10.1073/pnas.1417415112. PubMed DOI PMC

Danielsson J.; Mu X.; Lang L.; Wang H.; Binolfi A.; Theillet F.-X.; Bekei B.; Logan D. T.; Selenko P.; Wennerström H.; et al. Thermodynamics of Protein Destabilization in Live Cells. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 12402–12407. 10.1073/pnas.1511308112. PubMed DOI PMC

Song X.; Lv T.; Chen J.; Wang J.; Yao L. Characterization of Residue Specific Protein Folding and Unfolding Dynamics in Cells. J. Am. Chem. Soc. 2019, 141, 11363–11366. 10.1021/jacs.9b04435. PubMed DOI

Sakai T.; Tochio H.; Tenno T.; Ito Y.; Kokubo T.; Hiroaki H.; Shirakawa M. In-Cell NMR Spectroscopy of Proteins inside Xenopus Laevis Oocytes. J. Biomol. NMR 2006, 36, 179–188. 10.1007/s10858-006-9079-9. PubMed DOI

Bodart J.-F.; Wieruszeski J.-M.; Amniai L.; Leroy A.; Landrieu I.; Rousseau-Lescuyer A.; Vilain J.-P.; Lippens G. NMR Observation of Tau in Xenopus Oocytes. J. Magn. Reson. 2008, 192, 252–257. 10.1016/j.jmr.2008.03.006. PubMed DOI

Wang Q.; Zhuravleva A.; Gierasch L. M. Exploring Weak, Transient Protein–Protein Interactions in Crowded in Vivo Environments by in-Cell Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2011, 50, 9225–9236. 10.1021/bi201287e. PubMed DOI PMC

Waudby C. A.; Mantle M. D.; Cabrita L. D.; Gladden L. F.; Dobson C. M.; Christodoulou J. Rapid Distinction of Intracellular and Extracellular Proteins Using NMR Diffusion Measurements. J. Am. Chem. Soc. 2012, 134, 11312–11315. 10.1021/ja304912c. PubMed DOI

Dedmon M. M.; Patel C. N.; Young G. B.; Pielak G. J. FlgM Gains Structure in Living Cells. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12681–12684. 10.1073/pnas.202331299. PubMed DOI PMC

Ye Y.; Liu X.; Zhang Z.; Wu Q.; Jiang B.; Jiang L.; Zhang X.; Liu M.; Pielak G. J.; Li C. 19F NMR Spectroscopy as a Probe of Cytoplasmic Viscosity and Weak Protein Interactions in Living Cells. Chem. Eur. J. 2013, 19, 12705–12710. 10.1002/chem.201301657. PubMed DOI

Sekhar A.; Latham M. P.; Vallurupalli P.; Kay L. E. Viscosity-Dependent Kinetics of Protein Conformational Exchange: Microviscosity Effects and the Need for a Small Viscogen. J. Phys. Chem. B 2014, 118, 4546–4551. 10.1021/jp501583t. PubMed DOI

Roos M.; Ott M.; Hofmann M.; Link S.; Rössler E.; Balbach J.; Krushelnitsky A.; Saalwächter K. Coupling and Decoupling of Rotational and Translational Diffusion of Proteins under Crowding Conditions. J. Am. Chem. Soc. 2016, 138, 10365–10372. 10.1021/jacs.6b06615. PubMed DOI

Bai J.; Liu M.; Pielak G. J.; Li C. Macromolecular and Small Molecular Crowding Have Similar Effects on α-Synuclein Structure. ChemPhysChem 2017, 18, 55–58. 10.1002/cphc.201601097. PubMed DOI

Leeb S.; Yang F.; Oliveberg M.; Danielsson J. Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR. J. Phys. Chem. B 2020, 124, 10698–10707. 10.1021/acs.jpcb.0c08274. PubMed DOI PMC

Persson E.; Halle B. Cell Water Dynamics on Multiple Time Scales. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 6266–6271. 10.1073/pnas.0709585105. PubMed DOI PMC

Kimmich R.; Fatkullin N. Self-Diffusion Studies by Intra- and Inter-Molecular Spin-Lattice Relaxometry Using Field-Cycling: Liquids, Plastic Crystals, Porous Media, and Polymer Segments. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 101, 18–50. 10.1016/j.pnmrs.2017.04.001. PubMed DOI

Korb J.-P. Multiscale Nuclear Magnetic Relaxation Dispersion of Complex Liquids in Bulk and Confinement. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 104, 12–55. 10.1016/j.pnmrs.2017.11.001. PubMed DOI

Cukier R. I. Diffusion of Brownian Spheres in Semidilute Polymer Solutions. Macromolecules 1984, 17, 252–255. 10.1021/ma00132a023. DOI

Barshtein G.; Almagor A.; Yedgar S.; Gavish B. Inhomogeneity of Viscous Aqueous-Solutions. Phys. Rev. E 1995, 52, 555–557. 10.1103/PhysRevE.52.555. DOI

Lavalette D.; Tétreau C.; Tourbez M.; Blouquit Y. Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment. Biophys. J. 1999, 76, 2744–2751. 10.1016/S0006-3495(99)77427-8. PubMed DOI PMC

Szymański J.; Patkowski A.; Wilk A.; Garstecki P.; Holyst R. Diffusion and Viscosity in a Crowded Environment: From Nano- to Macroscale. J. Phys. Chem. B 2006, 110, 25593–25597. 10.1021/jp0666784. PubMed DOI

Sekhar A.; Vallurupalli P.; Kay L. E. Defining a Length Scale for Millisecond-Timescale Protein Conformational Exchange. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11391–11396. 10.1073/pnas.1303273110. PubMed DOI PMC

Kalwarczyk T.; Sozanski K.; Ochab-Marcinek A.; Szymanski J.; Tabaka M.; Hou S.; Holyst R. Motion of Nanoprobes in Complex Liquids within the Framework of the Length-Scale Dependent Viscosity Model. Adv. Colloid Interface Sci. 2015, 223, 55–63. 10.1016/j.cis.2015.06.007. PubMed DOI

Wisniewska A.; Sozanski K.; Kalwarczyk T.; Kedra-Krolik K.; Holyst R. Scaling Equation for Viscosity of Polymer Mixtures in Solutions with Application to Diffusion of Molecular Probes. Macromolecules 2017, 50, 4555–4561. 10.1021/acs.macromol.7b00545. DOI

Qin S.; Zhou H.-X. Protein Folding, Binding, and Droplet Formation in Cell-like Conditions. Curr. Opin. Struct. Biol. 2017, 43, 28–37. 10.1016/j.sbi.2016.10.006. PubMed DOI PMC

Luh L. M.; Hänsel R.; Löhr F.; Kirchner D. K.; Krauskopf K.; Pitzius S.; Schäfer B.; Tufar P.; Corbeski I.; Güntert P.; et al. Molecular Crowding Drives Active Pin1 into Nonspecific Complexes with Endogenous Proteins Prior to Substrate Recognition. J. Am. Chem. Soc. 2013, 135, 13796–13803. 10.1021/ja405244v. PubMed DOI

Salvi N.; Abyzov A.; Blackledge M. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins. Angew. Chem.. Int. Ed. 2017, 56, 14020–14024. 10.1002/anie.201706740. DOI

Abascal J. L. F.; Vega C. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.10.1063/1.2121687. PubMed DOI

Chandrasekhar I.; Clore G.; Szabo A.; Gronenborn A.; Brooks B. A 500-Ps Molecular-Dynamics Simulation Study of Interleukin-1-Beta in Water - Correlation with Nuclear-Magnetic-Resonance Spectroscopy and Crystallography. J. Mol. Biol. 1992, 226, 239–250. 10.1016/0022-2836(92)90136-8. PubMed DOI

Salmon L.; Pierce L.; Grimm A.; Roldan J.-L. O.; Mollica L.; Jensen M. R.; van Nuland N.; Markwick P. R. L.; McCammon J. A.; Blackledge M. Multi-Timescale Conformational Dynamics of the SH3 Domain of CD2-Associated Protein Using NMR Spectroscopy and Accelerated Molecular Dynamics. Angew. Chem., Int. Ed. 2012, 51, 6103–6106. 10.1002/anie.201202026. DOI

Salvi N.; Abyzov A.; Blackledge M. Solvent-Dependent Segmental Dynamics in Intrinsically Disordered Proteins. Sci. Adv. 2019, 5, eaax234810.1126/sciadv.aax2348. PubMed DOI PMC

Fung H. Y. J.; Birol M.; Rhoades E. IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr. Opin. Str. Biol. 2018, 49, 36–43. 10.1016/j.sbi.2017.12.007. DOI

Ivarsson Y.; Jemth P. Affinity and Specificity of Motif-Based Protein-Protein Interactions. Curr. Opin. Struct. Biol. 2019, 54, 26–33. 10.1016/j.sbi.2018.09.009. PubMed DOI

Milles S.; Salvi N.; Blackledge M.; Jensen M. R. Characterization of Intrinsically Disordered Proteins and Their Dynamic Complexes: From in Vitro to Cell-like Environments. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 79–100. 10.1016/j.pnmrs.2018.07.001. PubMed DOI

Bugge K.; Brakti I.; Fernandes C. B.; Dreier J. E.; Lundsgaard J. E.; Olsen J. G.; Skriver K.; Kragelund B. B. Interactions by Disorder - A Matter of Context. Front. Mol. Biosci. 2020, 7, 110.10.3389/fmolb.2020.00110. PubMed DOI PMC

Dyson H. J.; Wright P. E. NMR Illuminates Intrinsic Disorder. Curr. Opin. Struct. Biol. 2021, 70, 44–52. 10.1016/j.sbi.2021.03.015. PubMed DOI PMC

Schneider R.; Blackledge M.; Jensen M. R. Elucidating Binding Mechanisms and Dynamics of Intrinsically Disordered Protein Complexes Using NMR Spectroscopy. Curr. Opin. Struct. Biol. 2019, 54, 10–18. 10.1016/j.sbi.2018.09.007. PubMed DOI

Xie M.; Hansen A. L.; Yuan J.; Brüschweiler R. Residue-Specific Interactions of an Intrinsically Disordered Protein with Silica Nanoparticles and Their Quantitative Prediction. J. Phys. Chem. C Nanomater Interfaces 2016, 120, 24463–24468. 10.1021/acs.jpcc.6b08213. PubMed DOI PMC

Xie M.; Li D.-W.; Yuan J.; Hansen A. L.; Brüschweiler R. Quantitative Binding Behavior of Intrinsically Disordered Proteins to Nanoparticle Surfaces at Individual Residue Level. Chemistry 2018, 24, 16997–17001. 10.1002/chem.201804556. PubMed DOI

Xie M.; Yu L.; Bruschweiler-Li L.; Xiang X.; Hansen A. L.; Brüschweiler R. Functional Protein Dynamics on Uncharted Time Scales Detected by Nanoparticle-Assisted NMR Spin Relaxation. Sci. Adv. 2019, 5, eaax556010.1126/sciadv.aax5560. PubMed DOI PMC

Vallurupalli P.; Bouvignies G.; Kay L. E. Studying “Invisible” Excited Protein States in Slow Exchange with a Major State Conformation. J. Am. Chem. Soc. 2012, 134, 8148–8161. 10.1021/ja3001419. PubMed DOI

Fawzi N. L.; Ying J.; Ghirlando R.; Torchia D. A.; Clore G. M. Atomic-Resolution Dynamics on the Surface of Amyloid-β Protofibrils Probed by Solution NMR. Nature 2011, 480, 268–272. 10.1038/nature10577. PubMed DOI PMC

Montelione G. T.; Wagner G. 2D Chemical Exchange NMR Spectroscopy by Proton-Detected Heteronuclear Correlation. J. Am. Chem. Soc. 1989, 111, 3096–3098. 10.1021/ja00190a072. DOI

Wider G.; Neri D.; Wüthrich K. Studies of Slow Conformational Equilibria in Macromolecules by Exchange of Heteronuclear Longitudinal 2-Spin-Order in a 2D Difference Correlation Experiment. J. Biomol. NMR 1991, 1, 93–98. 10.1007/BF01874572. DOI

Jensen M. R.; Houben K.; Lescop E.; Blanchard L.; Ruigrok R. W. H.; Blackledge M. Quantitative Conformational Analysis of Partially Folded Proteins from Residual Dipolar Couplings: Application to the Molecular Recognition Element of Sendai Virus Nucleoprotein. J. Am. Chem. Soc. 2008, 130, 8055–8061. 10.1021/ja801332d. PubMed DOI

Fonin A. V.; Darling A. L.; Kuznetsova I. M.; Turoverov K. K.; Uversky V. N. Intrinsically Disordered Proteins in Crowded Milieu: When Chaos Prevails within the Cellular Gumbo. Cell. Mol. Life Sci. 2018, 75, 3907–3929. 10.1007/s00018-018-2894-9. PubMed DOI PMC

Breindel L.; Burz D. S.; Shekhtman A. Interaction Proteomics by Using In-Cell NMR Spectroscopy. J. Proteomics 2019, 191, 202–211. 10.1016/j.jprot.2018.02.006. PubMed DOI PMC

Zosel F.; Soranno A.; Buholzer K. J.; Nettels D.; Schuler B. Depletion Interactions Modulate the Binding between Disordered Proteins in Crowded Environments. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 13480–13489. 10.1073/pnas.1921617117. PubMed DOI PMC

Kim Y. C.; Bhattacharya A.; Mittal J. Macromolecular Crowding Effects on Coupled Folding and Binding. J. Phys. Chem. B 2014, 118, 12621–12629. 10.1021/jp508046y. PubMed DOI

Maldonado A. Y.; Burz D. S.; Reverdatto S.; Shekhtman A. Fate of Pup inside the Mycobacterium Proteasome Studied by In-Cell NMR. PLoS One 2013, 8, e7457610.1371/journal.pone.0074576. PubMed DOI PMC

Binolfi A.; Limatola A.; Verzini S.; Kosten J.; Theillet F.-X.; Rose H. M.; Bekei B.; Stuiver M.; van Rossum M.; Selenko P. Intracellular Repair of Oxidation-Damaged α-Synuclein Fails to Target C-Terminal Modification Sites. Nat. Commun. 2016, 7, 10251.10.1038/ncomms10251. PubMed DOI PMC

Zhang S.; Wang C.; Lu J.; Ma X.; Liu Z.; Li D.; Liu Z.; Liu C. In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau. Int. J. Mol. Sci. 2019, 20, e9010.3390/ijms20010090. DOI

Yuwen T.; Brady J. P.; Kay L. E. Probing Conformational Exchange in Weakly Interacting, Slowly Exchanging Protein Systems via Off-Resonance R1ρ Experiments: Application to Studies of Protein Phase Separation. J. Am. Chem. Soc. 2018, 140, 2115–2126. 10.1021/jacs.7b09576. PubMed DOI

Hough L. E.; Dutta K.; Sparks S.; Temel D. B.; Kamal A.; Tetenbaum-Novatt J.; Rout M. P.; Cowburn D. The Molecular Mechanism of Nuclear Transport Revealed by Atomic-Scale Measurements. Elife 2015, 4, e10027.10.7554/eLife.10027. PubMed DOI PMC

Raveh B.; Karp J. M.; Sparks S.; Dutta K.; Rout M. P.; Sali A.; Cowburn D. Slide-and-Exchange Mechanism for Rapid and Selective Transport through the Nuclear Pore Complex. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, e248910.1073/pnas.1522663113. PubMed DOI PMC

Milles S.; Jensen M. R.; Lazert C.; Guseva S.; Ivashchenko S.; Communie G.; Maurin D.; Gerlier D.; Ruigrok R. W. H.; Blackledge M. An Ultraweak Interaction in the Intrinsically Disordered Replication Machinery Is Essential for Measles Virus Function. Sci. Adv. 2018, 4, eaat777810.1126/sciadv.aat7778. PubMed DOI PMC

Guseva S.; Milles S.; Jensen M. R.; Schoehn G.; Ruigrok R. W.; Blackledge M. Structure, Dynamics and Phase Separation of Measles Virus RNA Replication Machinery. Curr. Opin. Virol. 2020, 41, 59–67. 10.1016/j.coviro.2020.05.006. PubMed DOI

Longhi S.; Bloyet L.-M.; Gianni S.; Gerlier D. How Order and Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins Orchestrate the Molecular Interplay of Transcription and Replication. Cell. Mol. Life Sci. 2017, 74, 3091–3118. 10.1007/s00018-017-2556-3. PubMed DOI PMC

Chang C.; Hou M.-H.; Chang C.-F.; Hsiao C.-D.; Huang T. The SARS Coronavirus Nucleocapsid Protein–Forms and Functions. Antiviral Res. 2014, 103, 39–50. 10.1016/j.antiviral.2013.12.009. PubMed DOI PMC

Savastano A.; Ibáñez de Opakua A.; Rankovic M.; Zweckstetter M. Nucleocapsid Protein of SARS-CoV-2 Phase Separates into RNA-Rich Polymerase-Containing Condensates. Nat. Commun. 2020, 11, 6041.10.1038/s41467-020-19843-1. PubMed DOI PMC

Guseva S.; Perez L. M.; Camacho-Zarco A.; Bessa L. M.; Salvi N.; Malki A.; Maurin D.; Blackledge M. 1H, 13C and 15N Backbone Chemical Shift Assignments of the n-Terminal and Central Intrinsically Disordered Domains of SARS-CoV-2 Nucleoprotein. Biomol. NMR Assign. 2021, 15, 255–260. 10.1007/s12104-021-10014-x. PubMed DOI PMC

Schiavina M.; Pontoriero L.; Uversky V. N.; Felli I. C.; Pierattelli R. The Highly Flexible Disordered Regions of the SARS-CoV-2 Nucleocapsid N Protein within the 1–248 Residue Construct: Sequence-Specific Resonance Assignments through NMR. Biomol. NMR Assign. 2021, 15, 219–227. 10.1007/s12104-021-10009-8. PubMed DOI PMC

Cubuk J.; Alston J. J.; Incicco J. J.; Singh S.; Stuchell-Brereton M. D.; Ward M. D.; Zimmerman M. I.; Vithani N.; Griffith D.; Wagoner J. A.; et al. The SARS-CoV-2 Nucleocapsid Protein Is Dynamic, Disordered, and Phase Separates with RNA. Nat. Commun. 2021, 12, 1936.10.1038/s41467-021-21953-3. PubMed DOI PMC

Bessa L. M.; Guseva S.; Camacho-Zarco A. R.; Salvi N.; Maurin D.; Perez L. M.; Botova M.; Malki A.; Nanao M.; Jensen M. R. The Intrinsically Disordered SARS-CoV-2 Nucleoprotein in Dynamic Complex with Its Viral Partner Nsp3a. Sci. Adv. 2022, 8, eabm403410.1126/sciadv.abm4034. PubMed DOI PMC

Delaforge E.; Milles S.; Bouvignies G.; Bouvier D.; Boivin S.; Salvi N.; Maurin D.; Martel A.; Round A.; Lemke E. A.; et al. Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin α. J. Am. Chem. Soc. 2015, 137, 15122–15134. 10.1021/jacs.5b07765. PubMed DOI

Boivin S.; Cusack S.; Ruigrok R. W. H.; Hart D. J. Influenza A Virus Polymerase: Structural Insights into Replication and Host Adaptation Mechanisms. J. Biol. Chem. 2010, 285, 28411–28417. 10.1074/jbc.R110.117531. PubMed DOI PMC

Long J. S.; Giotis E. S.; Moncorgé O.; Frise R.; Mistry B.; James J.; Morisson M.; Iqbal M.; Vignal A.; Skinner M. A.; Barclay W. S. Species Difference in ANP32A Underlies Influenza A Virus Polymerase Host Restriction. Nature 2016, 529, 101–104. 10.1038/nature16474. PubMed DOI PMC

Camacho-Zarco A. R.; Kalayil S.; Maurin D.; Salvi N.; Delaforge E.; Milles S.; Jensen M. R.; Hart D. J.; Cusack S.; Blackledge M. Molecular Basis of Host-Adaptation Interactions between Influenza Virus Polymerase PB2 Subunit and ANP32A. Nat. Commun. 2020, 11, 3656.10.1038/s41467-020-17407-x. PubMed DOI PMC

Borgia A.; Borgia M. B.; Bugge K.; Kissling V. M.; Heidarsson P. O.; Fernandes C. B.; Sottini A.; Soranno A.; Buholzer K. J.; Nettels D.; et al. Extreme Disorder in an Ultrahigh-Affinity Protein Complex. Nature 2018, 555, 61–66. 10.1038/nature25762. PubMed DOI PMC

Sottini A.; Borgia A.; Borgia M. B.; Bugge K.; Nettels D.; Chowdhury A.; Heidarsson P. O.; Zosel F.; Best R. B.; Kragelund B. B.; et al. Polyelectrolyte Interactions Enable Rapid Association and Dissociation in High-Affinity Disordered Protein Complexes. Nat. Commun. 2020, 11, 5736.10.1038/s41467-020-18859-x. PubMed DOI PMC

Kragelj J.; Palencia A.; Nanao M. H.; Maurin D.; Bouvignies G.; Blackledge M.; Jensen M. R. Structure and Dynamics of the MKK7-JNK Signaling Complex. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 3409–3414. 10.1073/pnas.1419528112. PubMed DOI PMC

Delaforge E.; Kragelj J.; Tengo L.; Palencia A.; Milles S.; Bouvignies G.; Salvi N.; Blackledge M.; Jensen M. R. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy. J. Am. Chem. Soc. 2018, 140, 1148–1158. 10.1021/jacs.7b12407. PubMed DOI

Kragelj J.; Orand T.; Delaforge E.; Tengo L.; Blackledge M.; Palencia A.; Jensen M. R. Enthalpy-Entropy Compensation in the Promiscuous Interaction of an Intrinsically Disordered Protein with Homologous Protein Partners. Biomolecules 2021, 11, 1204.10.3390/biom11081204. PubMed DOI PMC

Charlier C.; Bouvignies G.; Pelupessy P.; Walrant A.; Marquant R.; Kozlov M.; De Ioannes P.; Bolik-Coulon N.; Sagan S.; Cortes P.; et al. Structure and Dynamics of an Intrinsically Disordered Protein Region That Partially Folds upon Binding by Chemical-Exchange NMR. J. Am. Chem. Soc. 2017, 139, 12219–12227. 10.1021/jacs.7b05823. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...