NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35446534
PubMed Central
PMC9136928
DOI
10.1021/acs.chemrev.1c01023
Knihovny.cz E-zdroje
- MeSH
- konformace proteinů MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- termodynamika MeSH
- vnitřně neuspořádané proteiny * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- vnitřně neuspořádané proteiny * MeSH
Intrinsically disordered proteins are ubiquitous throughout all known proteomes, playing essential roles in all aspects of cellular and extracellular biochemistry. To understand their function, it is necessary to determine their structural and dynamic behavior and to describe the physical chemistry of their interaction trajectories. Nuclear magnetic resonance is perfectly adapted to this task, providing ensemble averaged structural and dynamic parameters that report on each assigned resonance in the molecule, unveiling otherwise inaccessible insight into the reaction kinetics and thermodynamics that are essential for function. In this review, we describe recent applications of NMR-based approaches to understanding the conformational energy landscape, the nature and time scales of local and long-range dynamics and how they depend on the environment, even in the cell. Finally, we illustrate the ability of NMR to uncover the mechanistic basis of functional disordered molecular assemblies that are important for human health.
Central European Institute of Technology Masaryk University Kamenice 5 82500 Brno Czech Republic
Université Grenoble Alpes CEA CNRS IBS 38000 Grenoble France
Zobrazit více v PubMed
Uversky V. N. Natively Unfolded Proteins: A Point Where Biology Waits for Physics. Protein Sci. 2002, 11, 739–756. 10.1110/ps.4210102. PubMed DOI PMC
Tompa P. Intrinsically Unstructured Proteins. Trends Biochem. Sci. 2002, 27, 527–533. 10.1016/S0968-0004(02)02169-2. PubMed DOI
Dyson H. J.; Wright P. E. Intrinsically Unstructured Proteins and Their Functions. Nat. Rev. Mol. Cell Biol. 2005, 6, 197–208. 10.1038/nrm1589. PubMed DOI
Uversky V. N.; Dunker A. K. Understanding Protein Non-Folding. Biochim. Biophys. Acta 2010, 1804, 1231–1264. 10.1016/j.bbapap.2010.01.017. PubMed DOI PMC
Tompa P.; Davey N. E.; Gibson T. J.; Babu M. M. A Million Peptide Motifs for the Molecular Biologist. Mol. Cell 2014, 55, 161–169. 10.1016/j.molcel.2014.05.032. PubMed DOI
Csermely P.; Palotai R.; Nussinov R. Induced Fit, Conformational Selection and Independent Dynamic Segments: An Extended View of Binding Events. Trends Biochem. Sci. 2010, 35, 539–546. 10.1016/j.tibs.2010.04.009. PubMed DOI PMC
Shin Y.; Brangwynne C. P. Liquid Phase Condensation in Cell Physiology and Disease. Science 2017, 357, eaaf4382.10.1126/science.aaf4382. PubMed DOI
Lim M. H.; Jackson T. A.; Anfinrud P. A. Ultrafast Rotation and Trapping of Carbon Monoxide Dissociated from Myoglobin. Nat. Struct. Biol. 1997, 4, 209–214. 10.1038/nsb0397-209. PubMed DOI
Thielges M. C.; Fayer M. D. Protein Dynamics Studied with Ultrafast Two-Dimensional Infrared Vibrational Echo Spectroscopy. Acc. Chem. Res. 2012, 45, 1866–1874. 10.1021/ar200275k. PubMed DOI PMC
Ebbinghaus S.; Kim S. J.; Heyden M.; Yu X.; Heugen U.; Gruebele M.; Leitner D. M.; Havenith M. An Extended Dynamical Hydration Shell around Proteins. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 20749–20752. 10.1073/pnas.0709207104. PubMed DOI PMC
Doster W.; Cusack S.; Petry W. Dynamical Transition of Myoglobin Revealed by Inelastic Neutron Scattering. Nature 1989, 337, 754–756. 10.1038/337754a0. PubMed DOI
Cametti C.; Marchetti S.; Gambi C. M. C.; Onori G. Dielectric Relaxation Spectroscopy of Lysozyme Aqueous Solutions: Analysis of the δ-Dispersion and the Contribution of the Hydration Water. J. Phys. Chem. B 2011, 115, 7144–7153. 10.1021/jp2019389. PubMed DOI
Frauenfelder H.; Sligar S. G.; Wolynes P. G. The Energy Landscapes and Motions of Proteins. Science 1991, 254, 1598–1603. 10.1126/science.1749933. PubMed DOI
Buhrke D.; Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem. Rev. 2020, 120, 3577–3630. 10.1021/acs.chemrev.9b00429. PubMed DOI
Schotte F.; Cho H. S.; Kaila V. R. I.; Kamikubo H.; Dashdorj N.; Henry E. R.; Graber T. J.; Henning R.; Wulff M.; Hummer G.; et al. Watching a Signaling Protein Function in Real Time via 100-Ps Time-Resolved Laue Crystallography. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 19256–19261. 10.1073/pnas.1210938109. PubMed DOI PMC
Tenboer J.; Basu S.; Zatsepin N.; Pande K.; Milathianaki D.; Frank M.; Hunter M.; Boutet S.; Williams G. J.; Koglin J. E.; et al. Time-Resolved Serial Crystallography Captures High-Resolution Intermediates of Photoactive Yellow Protein. Science 2014, 346, 1242–1246. 10.1126/science.1259357. PubMed DOI PMC
Dyson H. J.; Wright P. E. Unfolded Proteins and Protein Folding Studied by NMR. Chem. Rev. 2004, 104, 3607–3622. 10.1021/cr030403s. PubMed DOI
Fink A. L. Natively Unfolded Proteins. Curr. Opin. Struct. Biol. 2005, 15, 35–41. 10.1016/j.sbi.2005.01.002. PubMed DOI
Mittag T.; Forman-Kay J. D. Atomic-Level Characterization of Disordered Protein Ensembles. Curr. Opin. Struct. Biol. 2007, 17, 3–14. 10.1016/j.sbi.2007.01.009. PubMed DOI
Dunker A. K.; Silman I.; Uversky V. N.; Sussman J. L. Function and Structure of Inherently Disordered Proteins. Curr. Opin. Struct. Biol. 2008, 18, 756–764. 10.1016/j.sbi.2008.10.002. PubMed DOI
Tompa P.; Fuxreiter M. Fuzzy Complexes: Polymorphism and Structural Disorder in Protein-Protein Interactions. Trends Biochem. Sci. 2008, 33, 2–8. 10.1016/j.tibs.2007.10.003. PubMed DOI
Eliezer D. Biophysical Characterization of Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2009, 19, 23–30. 10.1016/j.sbi.2008.12.004. PubMed DOI PMC
Wright P. E.; Dyson H. J. Linking Folding and Binding. Curr. Opin. Struct. Biol. 2009, 19, 31–38. 10.1016/j.sbi.2008.12.003. PubMed DOI PMC
Fisher C. K.; Stultz C. M. Constructing Ensembles for Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2011, 21, 426–431. 10.1016/j.sbi.2011.04.001. PubMed DOI PMC
Van Roey K.; Gibson T. J.; Davey N. E. Motif Switches: Decision-Making in Cell Regulation. Curr. Opin. Struct. Biol. 2012, 22, 378–385. 10.1016/j.sbi.2012.03.004. PubMed DOI
Forman-Kay J. D.; Mittag T. From Sequence and Forces to Structure, Function, and Evolution of Intrinsically Disordered Proteins. Structure 2013, 21, 1492–1499. 10.1016/j.str.2013.08.001. PubMed DOI PMC
Kosol S.; Contreras-Martos S.; Cedeño C.; Tompa P. Structural Characterization of Intrinsically Disordered Proteins by NMR Spectroscopy. Molecules 2013, 18, 10802–10828. 10.3390/molecules180910802. PubMed DOI PMC
Bernado P.; Mylonas E.; Petoukhov M. V.; Blackledge M.; Svergun D. I. Structural Characterization of Flexible Proteins Using Small-Angle X-Ray Scattering. J. Am. Chem. Soc. 2007, 129, 5656–5664. 10.1021/ja069124n. PubMed DOI
Aznauryan M.; Delgado L.; Soranno A.; Nettels D.; Huang J.-R.; Labhardt A. M.; Grzesiek S.; Schuler B. Comprehensive Structural and Dynamical View of an Unfolded Protein from the Combination of Single-Molecule FRET, NMR, and SAXS. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E5389–5398. 10.1073/pnas.1607193113. PubMed DOI PMC
Fuertes G.; Banterle N.; Ruff K. M.; Chowdhury A.; Mercadante D.; Koehler C.; Kachala M.; Estrada Girona G.; Milles S.; Mishra A.; et al. Decoupling of Size and Shape Fluctuations in Heteropolymeric Sequences Reconciles Discrepancies in SAXS vs. FRET Measurements. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E6342–E6351. 10.1073/pnas.1704692114. PubMed DOI PMC
Riback J. A.; Bowman M. A.; Zmyslowski A. M.; Knoverek C. R.; Jumper J. M.; Hinshaw J. R.; Kaye E. B.; Freed K. F.; Clark P. L.; Sosnick T. R. Innovative Scattering Analysis Shows That Hydrophobic Disordered Proteins Are Expanded in Water. Science 2017, 358, 238–241. 10.1126/science.aan5774. PubMed DOI PMC
Gomes G.-N. W.; Krzeminski M.; Namini A.; Martin E. W.; Mittag T.; Head-Gordon T.; Forman-Kay J. D.; Gradinaru C. C. Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET. J. Am. Chem. Soc. 2020, 142, 15697–15710. 10.1021/jacs.0c02088. PubMed DOI PMC
Marsh J. A.; Forman-Kay J. D. Structure and Disorder in an Unfolded State under Nondenaturing Conditions from Ensemble Models Consistent with a Large Number of Experimental Restraints. J. Mol. Biol. 2009, 391, 359–374. 10.1016/j.jmb.2009.06.001. PubMed DOI
Salmon L.; Nodet G.; Ozenne V.; Yin G.; Jensen M. R.; Zweckstetter M.; Blackledge M. NMR Characterization of Long-Range Order in Intrinsically Disordered Proteins. J. Am. Chem. Soc. 2010, 132, 8407–8418. 10.1021/ja101645g. PubMed DOI
Fisher C. K.; Huang A.; Stultz C. M. Modeling Intrinsically Disordered Proteins with Bayesian Statistics. J. Am. Chem. Soc. 2010, 132, 14919–14927. 10.1021/ja105832g. PubMed DOI PMC
Jensen M. R.; Blackledge M. Testing the Validity of Ensemble Descriptions of Intrinsically Disordered Proteins. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E1557.10.1073/pnas.1323876111. PubMed DOI PMC
Jensen M. R.; Zweckstetter M.; Huang J.; Blackledge M. Exploring Free-Energy Landscapes of Intrinsically Disordered Proteins at Atomic Resolution Using NMR Spectroscopy. Chem. Rev. 2014, 114, 6632–6660. 10.1021/cr400688u. PubMed DOI
De Simone A.; Richter B.; Salvatella X.; Vendruscolo M. Toward an Accurate Determination of Free Energy Landscapes in Solution States of Proteins. J. Am. Chem. Soc. 2009, 131, 3810–3811. 10.1021/ja8087295. PubMed DOI
Roux B.; Weare J. On the Statistical Equivalence of Restrained-Ensemble Simulations with the Maximum Entropy Method. J. Chem. Phys. 2013, 138 (8), 084107.10.1063/1.4792208. PubMed DOI PMC
Hummer G.; Köfinger J. Bayesian Ensemble Refinement by Replica Simulations and Reweighting. J. Chem. Phys. 2015, 143, 243150.10.1063/1.4937786. PubMed DOI
Bonomi M.; Heller G. T.; Camilloni C.; Vendruscolo M. Principles of Protein Structural Ensemble Determination. Curr. Opin. Struct. Biol. 2017, 42, 106–116. 10.1016/j.sbi.2016.12.004. PubMed DOI
Sgourakis N. G.; Yan Y.; McCallum S. A.; Wang C.; Garcia A. E. The Alzheimer’s Peptides A Beta 40 and 42 Adopt Distinct Conformations in Water: A Combined MD/NMR Study. J. Mol. Biol. 2007, 368, 1448–1457. 10.1016/j.jmb.2007.02.093. PubMed DOI PMC
Wu K.-P.; Weinstock D. S.; Narayanan C.; Levy R. M.; Baum J. Structural Reorganization of α-Synuclein at Low PH Observed by NMR and REMD Simulations. J. Mol. Biol. 2009, 391, 784–796. 10.1016/j.jmb.2009.06.063. PubMed DOI PMC
Terakawa T.; Takada S. Multiscale Ensemble Modeling of Intrinsically Disordered Proteins: P53 N-Terminal Domain. Biophys. J. 2011, 101, 1450–1458. 10.1016/j.bpj.2011.08.003. PubMed DOI PMC
Knott M.; Best R. B. A Preformed Binding Interface in the Unbound Ensemble of an Intrinsically Disordered Protein: Evidence from Molecular Simulations. PLoS Comput. Biol. 2012, 8, e100260510.1371/journal.pcbi.1002605. PubMed DOI PMC
Zhang W.; Ganguly D.; Chen J. Residual Structures, Conformational Fluctuations, and Electrostatic Interactions in the Synergistic Folding of Two Intrinsically Disordered Proteins. PLoS Comput. Biol. 2012, 8, e100235310.1371/journal.pcbi.1002353. PubMed DOI PMC
Narayanan C.; Weinstock D. S.; Wu K.-P.; Baum J.; Levy R. M. Investigation of the Polymeric Properties of Alpha-Synuclein and Comparison with NMR Experiments: A Replica Exchange Molecular Dynamics Study. J. Chem. Theory Comput. 2012, 8, 3929–3942. 10.1021/ct300241t. PubMed DOI PMC
Wang Y.; Chu X.; Longhi S.; Roche P.; Han W.; Wang E.; Wang J. Multiscaled Exploration of Coupled Folding and Binding of an Intrinsically Disordered Molecular Recognition Element in Measles Virus Nucleoprotein. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, e374310.1073/pnas.1308381110. PubMed DOI PMC
Mittal J.; Yoo T. H.; Georgiou G.; Truskett T. M. Structural Ensemble of an Intrinsically Disordered Polypeptide. J. Phys. Chem. B 2013, 117, 118–124. 10.1021/jp308984e. PubMed DOI
Bonomi M.; Camilloni C.; Cavalli A.; Vendruscolo M. Metainference: A Bayesian Inference Method for Heterogeneous Systems. Sci. Adv. 2016, 2, e150117710.1126/sciadv.1501177. PubMed DOI PMC
Lincoff J.; Haghighatlari M.; Krzeminski M.; Teixeira J. M. C.; Gomes G.-N. W.; Gradinaru C. C.; Forman-Kay J. D.; Head-Gordon T. Extended Experimental Inferential Structure Determination Method in Determining the Structural Ensembles of Disordered Protein States. Commun. Chem. 2020, 3, 74.10.1038/s42004-020-0323-0. PubMed DOI PMC
Ozenne V.; Schneider R.; Yao M.; Huang J.-R.; Salmon L.; Zweckstetter M.; Jensen M. R.; Blackledge M. Mapping the Potential Energy Landscape of Intrinsically Disordered Proteins at Amino Acid Resolution. J. Am. Chem. Soc. 2012, 134, 15138–15148. 10.1021/ja306905s. PubMed DOI
Das R. K.; Ruff K. M.; Pappu R. V. Relating Sequence Encoded Information to Form and Function of Intrinsically Disordered Proteins. Curr. Opin. Struct. Biol. 2015, 32, 102–112. 10.1016/j.sbi.2015.03.008. PubMed DOI PMC
Huang C.-Y.; Getahun Z.; Zhu Y.; Klemke J. W.; DeGrado W. F.; Gai F. Helix Formation via Conformation Diffusion Search. PROC. NATL. ACAD. SCI. U.S.A. 2002, 99, 2788–2793. 10.1073/pnas.052700099. PubMed DOI PMC
Hamm P.; Helbing J.; Bredenbeck J.. Two-Dimensional Infrared Spectroscopy of Photoswitchable Peptides. In Annual Review of Physical Chemistry; Annual Reviews: Palo Alto, CA, 2008; Vol. 59, pp 291–317.
Balakrishnan G.; Weeks C. L.; Ibrahim M.; Soldatova A. V.; Spiro T. G. Protein Dynamics from Time Resolved UV Raman Spectroscopy. Curr. Opin. Struct. Biol. 2008, 18, 623–629. 10.1016/j.sbi.2008.06.001. PubMed DOI PMC
Gallat F.-X.; Laganowsky A.; Wood K.; Gabel F.; van Eijck L.; Wuttke J.; Moulin M.; Haertlein M.; Eisenberg D.; Colletier J.-P.; Zaccai G.; Weik M. Dynamical Coupling of Intrinsically Disordered Proteins and Their Hydration Water: Comparison with Folded Soluble and Membrane Proteins. Biophys. J. 2012, 103, 129–136. 10.1016/j.bpj.2012.05.027. PubMed DOI PMC
Perticaroli S.; Nickels J. D.; Ehlers G.; Mamontov E.; Sokolov A. P. Dynamics and Rigidity in an Intrinsically Disordered Protein, Beta-Casein. J. Phys. Chem. B 2014, 118, 7317–7326. 10.1021/jp503788r. PubMed DOI
Schiro G.; Fichou Y.; Gallat F.-X.; Wood K.; Gabel F.; Moulin M.; Haertlein M.; Heyden M.; Colletier J.-P.; Orecchini A.; et al. Translational Diffusion of Hydration Water Correlates with Functional Motions in Folded and Intrinsically Disordered Proteins. Nat. Commun. 2015, 6, 6490.10.1038/ncomms7490. PubMed DOI PMC
Kuzmenkina E. V.; Heyes C. D.; Nienhaus G. U. Single-Molecule Forster Resonance Energy Transfer Study of Protein Dynamics under Denaturing Conditions. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15471–15476. 10.1073/pnas.0507728102. PubMed DOI PMC
Doose S.; Neuweiler H.; Sauer M. Fluorescence Quenching by Photoinduced Electron Transfer: A Reporter for Conformational Dynamics of Macromolecules. ChemPhysChem 2009, 10, 1389–1398. 10.1002/cphc.200900238. PubMed DOI
Ferreon A. C. M.; Gambin Y.; Lemke E. A.; Deniz A. A. Interplay of Alpha-Synuclein Binding and Conformational Switching Probed by Single-Molecule Fluorescence. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5645–5650. 10.1073/pnas.0809232106. PubMed DOI PMC
Nettels D.; Mueller-Spaeth S.; Kuester F.; Hofmann H.; Haenni D.; Rueegger S.; Reymond L.; Hoffmann A.; Kubelka J.; Heinz B.; et al. Single-Molecule Spectroscopy of the Temperature-Induced Collapse of Unfolded Proteins. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20740–20745. 10.1073/pnas.0900622106. PubMed DOI PMC
Müller-Späth S.; Soranno A.; Hirschfeld V.; Hofmann H.; Rüegger S.; Reymond L.; Nettels D.; Schuler B. From the Cover: Charge Interactions Can Dominate the Dimensions of Intrinsically Disordered Proteins. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 14609–14614. 10.1073/pnas.1001743107. PubMed DOI PMC
Milles S.; Lemke E. A. Single Molecule Study of the Intrinsically Disordered FG-Repeat Nucleoporin 153. Biophys. J. 2011, 101, 1710–1719. 10.1016/j.bpj.2011.08.025. PubMed DOI PMC
Soranno A.; Buchli B.; Nettels D.; Cheng R. R.; Müller-Späth S.; Pfeil S. H.; Hoffmann A.; Lipman E. A.; Makarov D. E.; Schuler B. Quantifying Internal Friction in Unfolded and Intrinsically Disordered Proteins with Single-Molecule Spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17800–17806. 10.1073/pnas.1117368109. PubMed DOI PMC
Schuler B.; Hofmann H. Single-Molecule Spectroscopy of Protein Folding Dynamics–Expanding Scope and Timescales. Curr. Opin. Struct. Biol. 2013, 23, 36–47. 10.1016/j.sbi.2012.10.008. PubMed DOI
Milles S.; Mercadante D.; Aramburu I. V.; Jensen M. R.; Banterle N.; Koehler C.; Tyagi S.; Clarke J.; Shammas S. L.; Blackledge M.; et al. Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors. Cell 2015, 163, 734–745. 10.1016/j.cell.2015.09.047. PubMed DOI PMC
Otosu T.; Ishii K.; Tahara T. Microsecond Protein Dynamics Observed at the Single-Molecule Level. Nat. Commun. 2015, 6, 7685.10.1038/ncomms8685. PubMed DOI PMC
Columbus L.; Hubbell W. L. A New Spin on Protein Dynamics. Trends Biochem. Sci. 2002, 27, 288–295. 10.1016/S0968-0004(02)02095-9. PubMed DOI
Kavalenka A.; Urbancic I.; Belle V.; Rouger S.; Costanzo S.; Kure S.; Fournel A.; Longhi S.; Guigliarelli B.; Strancar J. Conformational Analysis of the Partially Disordered Measles Virus N-TAIL-XD Complex by SDSL EPR Spectroscopy. Biophys. J. 2010, 98, 1055–1064. 10.1016/j.bpj.2009.11.036. PubMed DOI PMC
Chui A. J.; Lopez C. J.; Brooks E. K.; Chua K. C.; Doupey T. G.; Foltz G. N.; Kamel J. G.; Larrosa E.; Sadiki A.; Bridges M. D. Multiple Structural States Exist Throughout the Helical Nucleation Sequence of the Intrinsically Disordered Protein Stathmin, As Reported by Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2015, 54, 1717–1728. 10.1021/bi500894q. PubMed DOI
Gillespie J. R.; Shortle D. Characterization of Long-Range Structure in the Denatured State of Staphylococcal Nuclease. I. Paramagnetic Relaxation Enhancement by Nitroxide Spin Labels. J. Mol. Biol. 1997, 268, 158–169. 10.1006/jmbi.1997.0954. PubMed DOI
Eliezer D.; Yao J.; Dyson H. J.; Wright P. E. Structural and Dynamic Characterization of Partially Folded States of Apomyoglobin and Implications for Protein Folding. Nat. Struct. Biol. 1998, 5, 148–155. 10.1038/nsb0298-148. PubMed DOI
Lindorff-Larsen K.; Kristjansdottir S.; Teilum K.; Fieber W.; Dobson C. M.; Poulsen F. M.; Vendruscolo M. Determination of an Ensemble of Structures Representing the Denatured State of the Bovine Acyl-Coenzyme a Binding Protein. J. Am. Chem. Soc. 2004, 126, 3291–3299. 10.1021/ja039250g. PubMed DOI
Bertoncini C. W.; Jung Y.-S.; Fernandez C. O.; Hoyer W.; Griesinger C.; Jovin T. M.; Zweckstetter M. Release of Long-Range Tertiary Interactions Potentiates Aggregation of Natively Unstructured Alpha-Synuclein. Proc. Natl. Acad. Sci. U.S.A 2005, 102, 1430–1435. 10.1073/pnas.0407146102. PubMed DOI PMC
Kristjansdottir S.; Lindorff-Larsen K.; Fieber W.; Dobson C. M.; Vendruscolo M.; Poulsen F. M. Formation of Native and Non-Native Interactions in Ensembles of Denatured ACBP Molecules from Paramagnetic Relaxation Enhancement Studies. J. Mol. Biol. 2005, 347, 1053–1062. 10.1016/j.jmb.2005.01.009. PubMed DOI
Felitsky D. J.; Lietzow M. A.; Dyson H. J.; Wright P. E. Modeling Transient Collapsed States of an Unfolded Protein to Provide Insights into Early Folding Events. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 6278–6283. 10.1073/pnas.0710641105. PubMed DOI PMC
Clore G. M.; Iwahara J. Theory, Practice, and Applications of Paramagnetic Relaxation Enhancement for the Characterization of Transient Low-Population States of Biological Macromolecules and Their Complexes. Chem. Rev. 2009, 109, 4108–4139. 10.1021/cr900033p. PubMed DOI PMC
Feig M.; Brooks C. L. Recent Advances in the Development and Application of Implicit Solvent Models in Biomolecule Simulations. Curr. Opin. Struct. Biol. 2004, 14, 217–224. 10.1016/j.sbi.2004.03.009. PubMed DOI
Mackerell A. D. Jr; Feig M.; Brooks C. L. 3rd Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1415. 10.1002/jcc.20065. PubMed DOI
Showalter S. A.; Bruschweiler R. Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks: Application to the AMBER99SB Force Field. J. Chem. Theory Comput. 2007, 3, 961–975. 10.1021/ct7000045. PubMed DOI
Best R. B.; Zhu X.; Shim J.; Lopes P. E. M.; Mittal J.; Feig M.; MacKerell A. D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Phi, Psi and Side-Chain Chi(1) and Chi(2) Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. 10.1021/ct300400x. PubMed DOI PMC
Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; shaw D. E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins 2010, 78, 1950–1958. 10.1002/prot.22711. PubMed DOI PMC
Cerutti D. S.; Swope W. C.; Rice J. E.; Case D. A. Ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins. J. Chem. Theory Comput. 2014, 10, 4515–4534. 10.1021/ct500643c. PubMed DOI PMC
Levy R. M.; Karplus M.; McCammon J. A. Molecular Dynamics Studies of NMR Relaxation in Proteins. Biophys. J. 1980, 32, 628–630. 10.1016/S0006-3495(80)84998-8. PubMed DOI PMC
Bruschweiler R.; Roux B.; Blackledge M.; Griesinger C.; Karplus M.; Ernst R. Influence Of Rapid Intramolecular Motion On Nmr Cross-Relaxation Rates - A Molecular-Dynamics Study Of Antamanide In Solution. J. Am. Chem. Soc. 1992, 114, 2289–2302. 10.1021/ja00033a002. DOI
Hornak V.; Abel R.; Okur A.; Strockbine B.; Roitberg A.; Simmerling C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins 2006, 65, 712–725. 10.1002/prot.21123. PubMed DOI PMC
Beauchamp K. A.; Lin Y.-S.; Das R.; Pande V. S. Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements. J. Chem. Theory Comput. 2012, 8, 1409–1414. 10.1021/ct2007814. PubMed DOI PMC
Piana S.; Donchev A. G.; Robustelli P.; Shaw D. E. Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States. J. Phys. Chem. B 2015, 119, 5113–5123. 10.1021/jp508971m. PubMed DOI
Zapletal V.; Mládek A.; Melková K.; Louša P.; Nomilner E.; Jasenáková Z.; Kubán V.; Makovická M.; Laníková A.; Žídek L.; et al. Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions. Biophys. J. 2020, 118, 1621–1633. 10.1016/j.bpj.2020.02.019. PubMed DOI PMC
Palmer A. NMR Characterization of the Dynamics of Biomacromolecules. Chem. Rev. 2004, 104, 3623–3640. 10.1021/cr030413t. PubMed DOI
Alexandrescu A.; Shortlet D. Backbone Dynamics of a Highly Disordered 131-Residue Fragment of Staphylococcal Nuclease. J. Mol. Biol. 1994, 242, 527–546. 10.1006/jmbi.1994.1598. PubMed DOI
Farrow N.; Zhang O.; Formankay J.; Kay L. Comparison of the Backbone Dynamics of a Folded and an Unfolded Sh3 Domain Existing in Equilibrium in Aqueous Buffer. Biochemistry 1995, 34, 868–878. 10.1021/bi00003a021. PubMed DOI
Frank M.; Clore G.; Gronenborn A. Structural and Dynamic Characterization of the Urea Denatured State of the Immunoglobulin Binding Domain of Streptococcal Protein-G by Multidimensional Heteronuclear Nmr-Spectroscopy. Protein Sci. 1995, 4, 2605–2615. 10.1002/pro.5560041218. PubMed DOI PMC
Buck M.; Schwalbe H.; Dobson C. M. Main-Chain Dynamics of a Partially Folded Protein: 15N NMR Relaxation Measurements of Hen Egg White Lysozyme Denatured in Trifluoroethanol. J. Mol. Biol. 1996, 257, 669–683. 10.1006/jmbi.1996.0193. PubMed DOI
Brutscher B.; Brüschweiler R.; Ernst R. R. Backbone Dynamics and Structural Characterization of the Partially Folded A State of Ubiquitin by 1H, 13C, and 15N Nuclear Magnetic Resonance Spectroscopy. Biochemistry 1997, 36, 13043–13053. 10.1021/bi971538t. PubMed DOI
Schwalbe H.; Fiebig K. M.; Buck M.; Jones J. A.; Grimshaw S. B.; Spencer A.; Glaser S. J.; Smith L. J.; Dobson C. M. Structural and Dynamical Properties of a Denatured Protein. Heteronuclear 3D NMR Experiments and Theoretical Simulations of Lysozyme in 8 M Urea. Biochemistry 1997, 36, 8977–8991. 10.1021/bi970049q. PubMed DOI
Buevich A. V.; Baum J. Dynamics of Unfolded Proteins: Incorporation of Distributions of Correlation Times in the Model Free Analysis of NMR Relaxation Data. J. Am. Chem. Soc. 1999, 121, 8671–8672. 10.1021/ja9910412. DOI
Yang D. W.; Mok Y. K.; Muhandiram D. R.; Forman-Kay J. D.; Kay L. E. H-1-C-13 Dipole-Dipole Cross-Correlated Spin Relaxation as a Probe of Dynamics in Unfolded Proteins: Application to the DrkN SH3 Domain. J. Am. Chem. Soc. 1999, 121, 3555–3556. 10.1021/ja9900914. DOI
Tollinger M.; Skrynnikov N. R.; Mulder F. a. A.; Forman-Kay J. D.; Kay L. E. Slow Dynamics in Folded and Unfolded States of an SH3 Domain. J. Am. Chem. Soc. 2001, 123, 11341–11352. 10.1021/ja011300z. PubMed DOI
Yao J.; Chung J.; Eliezer D.; Wright P. E.; Dyson H. J. NMR Structural and Dynamic Characterization of the Acid-Unfolded State of Apomyoglobin Provides Insights into the Early Events in Protein Folding. Biochemistry 2001, 40, 3561–3571. 10.1021/bi002776i. PubMed DOI
Ochsenbein F.; Neumann J. M.; Guittet E.; Van Heijenoort C. Dynamical Characterization of Residual and Non-Native Structures in a Partially Folded Protein by N-15 NMR Relaxation Using a Model Based on a Distribution of Correlation Times. Protein Sci. 2002, 11, 957–964. 10.1110/ps.4000102. PubMed DOI PMC
Klein-Seetharaman J.; Oikawa M.; Grimshaw S. B.; Wirmer J.; Duchardt E.; Ueda T.; Imoto T.; Smith L. J.; Dobson C. M.; Schwalbe H. Long-Range Interactions within a Nonnative Protein. Science 2002, 295, 1719–1722. 10.1126/science.1067680. PubMed DOI
Choy W. Y.; Shortle D.; Kay L. E. Side Chain Dynamics in Unfolded Protein States: An NMR Based H-2 Spin Relaxation Study of Delta 131 Delta. J. Am. Chem. Soc. 2003, 125, 1748–1758. 10.1021/ja021179b. PubMed DOI
Wirmer J.; Peti W.; Schwalbe H. Motional Properties of Unfolded Ubiquitin: A Model for a Random Coil Protein. J. Biomol. NMR 2006, 35, 175–186. 10.1007/s10858-006-9026-9. PubMed DOI
Le Duff C. S.; Whittaker S. B.-M.; Radford S. E.; Moore G. R. Characterisation of the Conformational Properties of Urea-Unfolded Im7: Implications for the Early Stages of Protein Folding. J. Mol. Biol. 2006, 364, 824–835. 10.1016/j.jmb.2006.09.037. PubMed DOI
Houben K.; Blanchard L.; Blackledge M.; Marion D. Intrinsic Dynamics of the Partly Unstructured PX Domain from the Sendai Virus RNA Polymerase Cofactor P. Biophys. J. 2007, 93, 2830–2844. 10.1529/biophysj.107.108829. PubMed DOI PMC
Ebert M.-O.; Bae S.-H.; Dyson H. J.; Wright P. E. NMR Relaxation Study of the Complex Formed between CBP and the Activation Domain of the Nuclear Hormone Receptor Coactivator ACTR. Biochemistry 2008, 47, 1299–1308. 10.1021/bi701767j. PubMed DOI
Modig K.; Poulsen F. M. Model-Independent Interpretation of NMR Relaxation Data for Unfolded Proteins: The Acid-Denatured State of ACBP. J. Biomol. NMR 2008, 42, 163–177. 10.1007/s10858-008-9280-0. PubMed DOI
Silvers R.; Sziegat F.; Tachibana H.; Segawa S.; Whittaker S.; Günther U. L.; Gabel F.; Huang J.; Blackledge M.; Wirmer-Bartoschek J.; et al. Modulation of Structure and Dynamics by Disulfide Bond Formation in Unfolded States. J. Am. Chem. Soc. 2012, 134, 6846–6854. 10.1021/ja3009506. PubMed DOI
Sziegat F.; Silvers R.; Hähnke M.; Jensen M. R.; Blackledge M.; Wirmer-Bartoschek J.; Schwalbe H. Disentangling the Coil: Modulation of Conformational and Dynamic Properties by Site-Directed Mutation in the Non-Native State of Hen Egg White Lysozyme. Biochemistry 2012, 51, 3361–3372. 10.1021/bi300222f. PubMed DOI
Konrat R. NMR Contributions to Structural Dynamics Studies of Intrinsically Disordered Proteins. J. Magn. Reson. 2014, 241, 74–85. 10.1016/j.jmr.2013.11.011. PubMed DOI PMC
Kurzbach D.; Schwarz T. C.; Platzer G.; Hoefler S.; Hinderberger D.; Konrat R. Compensatory Adaptations of Structural Dynamics in an Intrinsically Disordered Protein Complex. Angew. Chem., Int. Ed. 2014, 53, 3840–3843. 10.1002/anie.201308389. DOI
Prompers J. J.; Bruschweiler R. General Framework for Studying the Dynamics of Folded and Nonfolded Proteins by NMR Relaxation Spectroscopy and MD Simulation. J. Am. Chem. Soc. 2002, 124, 4522–4534. 10.1021/ja012750u. PubMed DOI
Xue Y.; Skrynnikov N. R. Motion of a Disordered Polypeptide Chain as Studied by Paramagnetic Relaxation Enhancements, 15N Relaxation, and Molecular Dynamics Simulations: How Fast Is Segmental Diffusion in Denatured Ubiquitin?. J. Am. Chem. Soc. 2011, 133, 14614–14628. 10.1021/ja201605c. PubMed DOI
Lindorff-Larsen K.; Trbovic N.; Maragakis P.; Piana S.; Shaw D. E. Structure and Dynamics of an Unfolded Protein Examined by Molecular Dynamics Simulation. J. Am. Chem. Soc. 2012, 134, 3787–3791. 10.1021/ja209931w. PubMed DOI
Robustelli P.; Trbovic N.; Friesner R. A.; Palmer A. G. Conformational Dynamics of the Partially Disordered Yeast Transcription Factor GCN4. J. Chem. Theory Comput. 2013, 9, 5190–5200. 10.1021/ct400654r. DOI
Markwick P. R. L.; Bouvignies G.; Salmon L.; McCammon J. A.; Nilges M.; Blackledge M. Toward a Unified Representation of Protein Structural Dynamics in Solution. J. Am. Chem. Soc. 2009, 131, 16968–16975. 10.1021/ja907476w. PubMed DOI PMC
Rauscher S.; Gapsys V.; Gajda M. J.; Zweckstetter M.; de Groot B. L.; Grubmüller H. Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment. J. Chem. Theory Comput. 2015, 11, 5513–5524. 10.1021/acs.jctc.5b00736. PubMed DOI
Pietrek L. M.; Stelzl L. S.; Hummer G. Hierarchical Ensembles of Intrinsically Disordered Proteins at Atomic Resolution in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 725–737. 10.1021/acs.jctc.9b00809. PubMed DOI
Fawzi N. L.; Phillips A. H.; Ruscio J. Z.; Doucleff M.; Wemmer D. E.; Head-Gordon T. Structure and Dynamics of the A Ss(21–30) Peptide from the Interplay of NMR Experiments and Molecular Simulations. J. Am. Chem. Soc. 2008, 130, 6145–6158. 10.1021/ja710366c. PubMed DOI PMC
Shrestha U. R.; Smith J. C.; Petridis L. Full Structural Ensembles of Intrinsically Disordered Proteins from Unbiased Molecular Dynamics Simulation. Commun. Biol. 2021, 4, 243–250. 10.1038/s42003-021-01759-1. PubMed DOI PMC
Best R. B.; Buchete N.-V.; Hummer G. Are Current Molecular Dynamics Force Fields Too Helical?. Biophys. J. 2008, 95, L07–09. 10.1529/biophysj.108.132696. PubMed DOI PMC
Salvi N.; Abyzov A.; Blackledge M. Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation. J. Phys. Chem. Lett. 2016, 7, 2483–2489. 10.1021/acs.jpclett.6b00885. PubMed DOI
Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; de Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC
Vitalis A.; Pappu R. V. ABSINTH: A New Continuum Solvation Model for Simulations of Polypeptides in Aqueous Solutions. J. Comput. Chem. 2009, 30, 673–699. 10.1002/jcc.21005. PubMed DOI PMC
Best R. B.; Hummer G. Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides. J. Phys. Chem. B 2009, 113, 9004–9015. 10.1021/jp901540t. PubMed DOI PMC
Mercadante D.; Milles S.; Fuertes G.; Svergun D. I.; Lemke E. A.; Gräter F. Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields. J. Phys. Chem. B 2015, 119, 7975–7984. 10.1021/acs.jpcb.5b03440. PubMed DOI
Ye W.; Ji D.; Wang W.; Luo R.; Chen H.-F. Test and Evaluation of Ff99IDPs Force Field for Intrinsically Disordered Proteins. J. Chem. Inf. Model. 2015, 55, 1021–1029. 10.1021/acs.jcim.5b00043. PubMed DOI PMC
Carr H. Y.; Purcell E. M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630–638. 10.1103/PhysRev.94.630. DOI
Meiboom S.; Gill D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958, 29, 688–691. 10.1063/1.1716296. DOI
Forsén S.; Hoffman R. A. Study of Moderately Rapid Chemical Exchange Reactions by Means of Nuclear Magnetic Double Resonance. J. Chem. Phys. 1963, 39, 2892–2901. 10.1063/1.1734121. DOI
Kopple K.; Wang Y.; Cheng A.; Bhandary K. Conformations Of Cyclic Octapeptides.5. Crystal-Structure Of Cyclo(Cys-Gly-Pro-Phe)2 And Rotating Frame Relaxation (T1-Rho) Nmr-Studies Of Internal Mobility In Cyclic Octapeptides. J. Am. Chem. Soc. 1988, 110, 4168–4176. 10.1021/ja00221a012. DOI
Palmer A. G.; Massi F. Characterization of the Dynamics of Biomacromolecules Using Rotating-Frame Spin Relaxation NMR Spectroscopy. Chem. Rev. 2006, 106, 1700–1719. 10.1021/cr0404287. PubMed DOI
Baldwin A. J.; Kay L. E. NMR Spectroscopy Brings Invisible Protein States into Focus. Nat. Chem. Biol. 2009, 5, 808–814. 10.1038/nchembio.238. PubMed DOI
Tompa P.; Schad E.; Tantos A.; Kalmar L. Intrinsically Disordered Proteins: Emerging Interaction Specialists. Curr. Opin. Struct. Biol. 2015, 35, 49–59. 10.1016/j.sbi.2015.08.009. PubMed DOI
Papaleo E.; Saladino G.; Lambrughi M.; Lindorff-Larsen K.; Gervasio F. L.; Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem. Rev. 2016, 116, 6391–6423. 10.1021/acs.chemrev.5b00623. PubMed DOI
Delaforge E.; Milles S.; Huang J.-R.; Bouvier D.; Jensen M. R.; Sattler M.; Hart D. J.; Blackledge M. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions. Front. Mol. Biosci. 2016, 3, 54.10.3389/fmolb.2016.00054. PubMed DOI PMC
Das R. K.; Pappu R. V. Conformations of Intrinsically Disordered Proteins Are Influenced by Linear Sequence Distributions of Oppositely Charged Residues. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 13392–13397. 10.1073/pnas.1304749110. PubMed DOI PMC
Wang J.; Choi J.-M.; Holehouse A. S.; Lee H. O.; Zhang X.; Jahnel M.; Maharana S.; Lemaitre R.; Pozniakovsky A.; Drechsel D.; et al. Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell 2018, 174, 688–699. 10.1016/j.cell.2018.06.006. PubMed DOI PMC
Choi J.-M.; Holehouse A. S.; Pappu R. V. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annu. Rev. Biophys. 2020, 49, 107–133. 10.1146/annurev-biophys-121219-081629. PubMed DOI PMC
Fawzi N. L.; Parekh S. H.; Mittal J. Biophysical Studies of Phase Separation Integrating Experimental and Computational Methods. Curr. Opin. Struct. Biol. 2021, 70, 78–86. 10.1016/j.sbi.2021.04.004. PubMed DOI PMC
Saar K. L.; Morgunov A. S.; Qi R.; Arter W. E.; Krainer G.; Lee A. A.; Knowles T. P. J. Learning the Molecular Grammar of Protein Condensates from Sequence Determinants and Embeddings. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e201905311810.1073/pnas.2019053118. PubMed DOI PMC
Mittag T.; Orlicky S.; Choy W.-Y.; Tang X.; Lin H.; Sicheri F.; Kay L. E.; Tyers M.; Forman-Kay J. D. Dynamic Equilibrium Engagement of a Polyvalent Ligand with a Single-Site Receptor. Proc. Natl. Acad. Sci. U.S.A 2008, 105, 17772–17777. 10.1073/pnas.0809222105. PubMed DOI PMC
Selenko P.; Frueh D. P.; Elsaesser S. J.; Haas W.; Gygi S. P.; Wagner G. In Situ Observation of Protein Phosphorylation by High-Resolution NMR Spectroscopy. Nat. Struct. Mol. Biol. 2008, 15, 321–329. 10.1038/nsmb.1395. PubMed DOI
Theillet F.-X.; Rose H. M.; Liokatis S.; Binolfi A.; Thongwichian R.; Stuiver M.; Selenko P. Site-Specific NMR Mapping and Time-Resolved Monitoring of Serine and Threonine Phosphorylation in Reconstituted Kinase Reactions and Mammalian Cell Extracts. Nat. Protoc. 2013, 8, 1416–1432. 10.1038/nprot.2013.083. PubMed DOI
Savastano A.; Flores D.; Kadavath H.; Biernat J.; Mandelkow E.; Zweckstetter M. Disease-Associated Tau Phosphorylation Hinders Tubulin Assembly within Tau Condensates. Ang. Chem., Int. Ed. 2021, 60, 726–730. 10.1002/anie.202011157. DOI
Salvi N.; Salmon L.; Blackledge M. Dynamic Descriptions of Highly Flexible Molecules from NMR Dipolar Couplings: Physical Basis and Limitations. J. Am. Chem. Soc. 2017, 139, 5011–5014. 10.1021/jacs.7b01566. PubMed DOI
Saupe A.; Englert G. High-Resolution Nuclear Magnetic Resonance Spectra of Orientated Molecules. Phys. Rev. Lett. 1963, 11, 462–464. 10.1103/PhysRevLett.11.462. DOI
Bernado P.; Blanchard L.; Timmins P.; Marion D.; Ruigrok R. W. H.; Blackledge M. A Structural Model for Unfolded Proteins from Residual Dipolar Couplings and Small-Angle x-Ray Scattering. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17002–17007. 10.1073/pnas.0506202102. PubMed DOI PMC
Ozenne V.; Bauer F.; Salmon L.; Huang J.-R.; Jensen M. R.; Segard S.; Bernadó P.; Charavay C.; Blackledge M. Flexible-Meccano: A Tool for the Generation of Explicit Ensemble Descriptions of Intrinsically Disordered Proteins and Their Associated Experimental Observables. Bioinformatics 2012, 28, 1463–1470. 10.1093/bioinformatics/bts172. PubMed DOI
Motácková V.; Sanderová H.; Zídek L.; Novácek J.; Padrta P.; Svenková A.; Korelusová J.; Jonák J.; Krásný L.; Sklenár V. Solution Structure of the N-Terminal Domain of Bacillus Subtilis Delta Subunit of RNA Polymerase and Its Classification Based on Structural Homologs. Proteins 2010, 78, 1807–1810. 10.1002/prot.22708. PubMed DOI
Rabatinová A.; Šanderová H.; Jirát Matejčková J.; Korelusová J.; Sojka L.; Barvík I.; Papoušková V.; Sklenár V.; Žídek L.; Krásný L. The δ Subunit of RNA Polymerase Is Required for Rapid Changes in Gene Expression and Competitive Fitness of the Cell. J. Bacteriol. 2013, 195, 2603–2611. 10.1128/JB.00188-13. PubMed DOI PMC
Papouskova V.; Kaderavek P.; Otrusinova O.; Rabatinova A.; Sanderova H.; Novacek J.; Krasny L.; Sklenar V.; Zidek L. Structural Study of the Partially Disordered Full-Length Delta Subunit of RNA Polymerase from Bacillus Subtilis. Chembiochem 2013, 14, 1772–1779. 10.1002/cbic.201300226. PubMed DOI
Kubán V.; Srb P.; Štégnerová H.; Padrta P.; Zachrdla M.; Jasenáková Z.; Šanderová H.; Vítovská D.; Krásný L.; Koval’ T.; et al. Quantitative Conformational Analysis of Functionally Important Electrostatic Interactions in the Intrinsically Disordered Region of Delta Subunit of Bacterial RNA Polymerase. J. Am. Chem. Soc. 2019, 141, 16817–16828. 10.1021/jacs.9b07837. PubMed DOI
Abragam A.The Principles of Nuclear Magnetism; Clarendon Press, 1994; pp 289–305.
Goldman M.Quantum Description of High-Resolution NMR in Liquids; Clarendon Press, 1988; pp 231–250.
Peng J. W.; Wagner G. Mapping of the Spectral Densities of N-H Bond Motions in Eglin c Using Heteronuclear Relaxation Experiments. Biochemistry 1992, 31, 8571–8586. 10.1021/bi00151a027. PubMed DOI
Peng J. W.; Wagner G. Frequency Spectrum of NH Bonds in Eglin c from Spectral Density Mapping at Multiple Fields. Biochemistry 1995, 34, 16733–16752. 10.1021/bi00051a023. PubMed DOI
Farrow N.; Zhang O.; Szabo A.; Torchia D.; Kay L. Spectral Density-Function Mapping Using N-15 Relaxation Data Exclusively. J. Biomol. NMR 1995, 6, 153–162. 10.1007/BF00211779. PubMed DOI
Ishima R.; Nagayama K. Protein Backbone Dynamics Revealed by Quasi Spectral Density Function Analysis of Amide N-15 Nuclei. Biochemistry 1995, 34, 3162–3171. 10.1021/bi00010a005. PubMed DOI
Ishima R.; Yamasaki K.; Nagayama K. Application of the Quasi-Spectral Density Function of (15)N Nuclei to the Selection of a Motional Model for Model-Free Analysis. J. Biomol. NMR 1995, 6, 423–426. 10.1007/BF00197640. PubMed DOI
Kaderavek P.; Zapletal V.; Rabatinova A.; Krasny L.; Sklenar V.; Zidek L. Spectral Density Mapping Protocols for Analysis of Molecular Motions in Disordered Proteins. J. Biomol. NMR 2014, 58, 193–207. 10.1007/s10858-014-9816-4. PubMed DOI
Halle B.; Wennerström H. Interpretation of Magnetic Resonance Data from Water Nuclei in Heterogeneous Systems. J. Chem. Phys. 1981, 75, 1928–1943. 10.1063/1.442218. DOI
Lipari G.; Szabo A. Model-Free Approach To The Interpretation Of Nuclear Magnetic-Resonance Relaxation In Macromolecules.1. Theory And Range Of Validity. J. Am. Chem. Soc. 1982, 104, 4546–4559. 10.1021/ja00381a009. DOI
Lipari G.; Szabo A. Model-Free Approach To The Interpretation Of Nuclear Magnetic-Resonance Relaxation In Macromolecules.2. Analysis Of Experimental Results. J. Am. Chem. Soc. 1982, 104, 4559–4570. 10.1021/ja00381a010. DOI
Clore G.; Szabo A.; Bax A.; Kay L.; Driscoll P.; Gronenborn A. Deviations from the Simple 2-Parameter Model-Free Approach to the Interpretation of N-15 Nuclear Magnetic-Relaxation of Proteins. J. Am. Chem. Soc. 1990, 112, 4989–4991. 10.1021/ja00168a070. DOI
Halle B. The Physical Basis of Model-Free Analysis of NMR Relaxation Data from Proteins and Complex Fluids. J. Chem. Phys. 2009, 131, 224507.10.1063/1.3269991. PubMed DOI
Farrow N. A.; Zhang O. W.; FormanKay J. D.; Kay L. E. Characterization of the Backbone Dynamics of Folded and Denatured States of an SH3 Domain. Biochemistry 1997, 36, 2390–2402. 10.1021/bi962548h. PubMed DOI
Yang D.; Kay L. E. Contributions to Conformational Entropy Arising from Bond Vector Fluctuations Measured from NMR-Derived Order Parameters: Application to Protein Folding. J. Mol. Biol. 1996, 263, 369–382. 10.1006/jmbi.1996.0581. PubMed DOI
Yang D.; Mok Y.-K.; Forman-Kay J. D.; Farrow N. A.; Kay L. E. Contributions to Protein Entropy and Heat Capacity from Bond Vector Motions Measured by NMR Spin Relaxation1. J. Mol. Biol. 1997, 272, 790–804. 10.1006/jmbi.1997.1285. PubMed DOI
Ochsenbein F.; Guerois R.; Neumann J.-M.; Sanson A.; Guittet E.; van Heijenoort C. 15N NMR Relaxation as a Probe for Helical Intrinsic Propensity: The Case of the Unfolded D2 Domain of Annexin I. J. Biomol NMR 2001, 19, 3–18. 10.1023/A:1008390606077. PubMed DOI
Cole K. S.; Cole R. H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. 10.1063/1.1750906. DOI
Bovey F. A.; Mirau P. A.. NMR of Polymers; Academic Press, 1996; pp 361–376.
Cho M.-K.; Kim H.-Y.; Bernado P.; Fernandez C. O.; Blackledge M.; Zweckstetter M. Amino Acid Bulkiness Defines the Local Conformations and Dynamics of Natively Unfolded Alpha-Synuclein and Tau. J. Am. Chem. Soc. 2007, 129, 3032.10.1021/ja067482k. PubMed DOI
Parigi G.; Rezaei-Ghaleh N.; Giachetti A.; Becker S.; Fernandez C.; Blackledge M.; Griesinger C.; Zweckstetter M.; Luchinat C. Long-Range Correlated Dynamics in Intrinsically Disordered Proteins. J. Am. Chem. Soc. 2014, 136, 16201–16209. 10.1021/ja506820r. PubMed DOI
Bae S.-H.; Dyson H. J.; Wright P. E. Prediction of the Rotational Tumbling Time for Proteins with Disordered Segments. J. Am. Chem. Soc. 2009, 131, 6814–6821. 10.1021/ja809687r. PubMed DOI PMC
Walsh J. D.; Meier K.; Ishima R.; Gronenborn A. M. NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats. Biophys. J. 2010, 99, 2636–2646. 10.1016/j.bpj.2010.08.036. PubMed DOI PMC
Amoros D.; Ortega A.; Garcia de la Torre J. Prediction of Hydrodynamic and Other Solution Properties of Partially Disordered Proteins with a Simple, Coarse-Grained Model. J. Chem. Theory Comput. 2013, 9, 1678–1685. 10.1021/ct300948u. PubMed DOI
Rezaei-Ghaleh N.; Klama F.; Munari F.; Zweckstetter M. Predicting the Rotational Tumbling of Dynamic Multidomain Proteins and Supramolecular Complexes. Angew. Chem., Int. Ed. Engl. 2013, 52, 11410–11414. 10.1002/anie.201305094. PubMed DOI
Sugase K.; Dyson H. J.; Wright P. E. Mechanism of Coupled Folding and Binding of an Intrinsically Disordered Protein. Nature 2007, 447, 1021-U11.10.1038/nature05858. PubMed DOI
Hilser V. J.; Thompson E. B. Intrinsic Disorder as a Mechanism to Optimize Allosteric Coupling in Proteins. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 8311–8315. 10.1073/pnas.0700329104. PubMed DOI PMC
Kiefhaber T.; Bachmann A.; Jensen K. S. Dynamics and Mechanisms of Coupled Protein Folding and Binding Reactions. Curr. Opin. Struct. Biol. 2012, 22, 21–29. 10.1016/j.sbi.2011.09.010. PubMed DOI
Marsh J. A.; Teichmann S. A.; Forman-Kay J. D. Probing the Diverse Landscape of Protein Flexibility and Binding. Curr. Opin. Struct. Biol. 2012, 22, 643–650. 10.1016/j.sbi.2012.08.008. PubMed DOI
Rogers J. M.; Steward A.; Clarke J. Folding and Binding of an Intrinsically Disordered Protein: Fast, but Not “Diffusion-Limited.. J. Am. Chem. Soc. 2013, 135, 1415–1422. 10.1021/ja309527h. PubMed DOI PMC
Iesmantavicius V.; Dogan J.; Jemth P.; Teilum K.; Kjaergaard M. Helical Propensity in an Intrinsically Disordered Protein Accelerates Ligand Binding. Angew. Chem., Int. Ed. 2014, 53, 1548–1551. 10.1002/anie.201307712. DOI
Rogers J. M.; Wong C. T.; Clarke J. Coupled Folding and Binding of the Disordered Protein PUMA Does Not Require Particular Residual Structure. J. Am. Chem. Soc. 2014, 136, 5197–5200. 10.1021/ja4125065. PubMed DOI PMC
Rogers J. M.; Oleinikovas V.; Shammas S. L.; Wong C. T.; De Sancho D.; Baker C. M.; Clarke J. Interplay between Partner and Ligand Facilitates the Folding and Binding of an Intrinsically Disordered Protein. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 15420–15425. 10.1073/pnas.1409122111. PubMed DOI PMC
Flock T.; Weatheritt R. J.; Latysheva N. S.; Babu M. M. Controlling Entropy to Tune the Functions of Intrinsically Disordered Regions. Curr. Opin. Struct. Biol. 2014, 26, 62–72. 10.1016/j.sbi.2014.05.007. PubMed DOI
Schneider R.; Maurin D.; Communie G.; Kragelj J.; Hansen D. F.; Ruigrok R. W. H.; Jensen M. R.; Blackledge M. Visualizing the Molecular Recognition Trajectory of an Intrinsically Disordered Protein Using Multinuclear Relaxation Dispersion NMR. J. Am. Chem. Soc. 2015, 137, 1220–1229. 10.1021/ja511066q. PubMed DOI
Gianni S.; Dogan J.; Jemth P. Coupled Binding and Folding of Intrinsically Disordered Proteins: What Can We Learn from Kinetics?. Curr. Opin. Struct. Biol. 2016, 36, 18–24. 10.1016/j.sbi.2015.11.012. PubMed DOI
Khan S. N.; Charlier C.; Augustyniak R.; Salvi N.; Déjean V.; Bodenhausen G.; Lequin O.; Pelupessy P.; Ferrage F. Distribution of Pico- and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation. Biophys. J. 2015, 109, 988–999. 10.1016/j.bpj.2015.06.069. PubMed DOI PMC
Gill M. L.; Byrd R. A.; Palmer A. G. III Dynamics of GCN4 Facilitate DNA Interaction: A Model-Free Analysis of an Intrinsically Disordered Region. Phys. Chem. Chem. Phys. 2016, 18, 5839–5849. 10.1039/C5CP06197K. PubMed DOI PMC
Brady J. P.; Farber P. J.; Sekhar A.; Lin Y.-H.; Huang R.; Bah A.; Nott T. J.; Chan H. S.; Baldwin A. J.; Forman-Kay J. D.; et al. Structural and Hydrodynamic Properties of an Intrinsically Disordered Region of a Germ Cell-Specific Protein on Phase Separation. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E8194–E8203. 10.1073/pnas.1706197114. PubMed DOI PMC
Ryan V. H.; Dignon G. L.; Zerze G. H.; Chabata C. V.; Silva R.; Conicella A. E.; Amaya J.; Burke K. A.; Mittal J.; Fawzi N. L. Mechanistic View of HnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Mol. Cell 2018, 69, 465–479. 10.1016/j.molcel.2017.12.022. PubMed DOI PMC
Murthy A. C.; Dignon G. L.; Kan Y.; Zerze G. H.; Parekh S. H.; Mittal J.; Fawzi N. L. Molecular Interactions Underlying Liquid–liquid Phase Separation of the FUS Low-Complexity Domain. Nat. Struct. Mol. Biol. 2019, 26, 637–648. 10.1038/s41594-019-0250-x. PubMed DOI PMC
Theillet F.-X.; Binolfi A.; Bekei B.; Martorana A.; Rose H. M.; Stuiver M.; Verzini S.; Lorenz D.; van Rossum M.; Goldfarb D.; Selenko P. Structural Disorder of Monomeric α-Synuclein Persists in Mammalian Cells. Nature 2016, 530, 45–50. 10.1038/nature16531. PubMed DOI
Abyzov A.; Salvi N.; Schneider R.; Maurin D.; Ruigrok R. W. H.; Jensen M. R.; Blackledge M. Identification of Dynamic Modes in an Intrinsically Disordered Protein Using Temperature-Dependent NMR Relaxation. J. Am. Chem. Soc. 2016, 138, 6240–6251. 10.1021/jacs.6b02424. PubMed DOI
Lewandowski J. R.; Halse M. E.; Blackledge M.; Emsley L. Protein Dynamics. Direct Observation of Hierarchical Protein Dynamics. Science 2015, 348, 578–581. 10.1126/science.aaa6111. PubMed DOI
Kimmich R.; Anoardo E. Field-Cycling NMR Relaxometry. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 44, 257–320. 10.1016/j.pnmrs.2004.03.002. DOI
Bryant R. G.; Korb J. P. Nuclear Magnetic Resonance and Spin Relaxation in Biological Systems. Magn. Reson. Imaging 2005, 23, 167–173. 10.1016/j.mri.2004.11.026. PubMed DOI
Rouse P. J. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 1953, 21, 1272.10.1063/1.1699180. DOI
Young W. S.; Brooks C. L. III A Microscopic View of Helix Propagation: N and C-Terminal Helix Growth in Alanine Helices. J. Mol. Biol. 1996, 259, 560–572. 10.1006/jmbi.1996.0339. PubMed DOI
Mikhonin A. V.; Asher S. A. Direct UV Raman Monitoring of 310-Helix and π-Bulge Premelting during α-Helix Unfolding. J. Am. Chem. Soc. 2006, 128, 13789–13795. 10.1021/ja062269+. PubMed DOI
Best R. B.; Mittal J. Balance between α and β Structures in Ab Initio Protein Folding. J. Phys. Chem. B 2010, 114, 8790–8798. 10.1021/jp102575b. PubMed DOI
Adamski W.; Salvi N.; Maurin D.; Magnat J.; Milles S.; Jensen M. R.; Abyzov A.; Moreau C. J.; Blackledge M. A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy. J. Am. Chem. Soc. 2019, 141, 17817–17829. 10.1021/jacs.9b09002. PubMed DOI
Theillet F.-X.; Binolfi A.; Frembgen-Kesner T.; Hingorani K.; Sarkar M.; Kyne C.; Li C.; Crowley P. B.; Gierasch L.; Pielak G. J.; et al. Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs). Chem. Rev. 2014, 114, 6661–6714. 10.1021/cr400695p. PubMed DOI PMC
Gruebele M.; Pielak G. J. Dynamical Spectroscopy and Microscopy of Proteins in Cells. Curr. Opin. Struct. Biol. 2021, 70, 1–7. 10.1016/j.sbi.2021.02.001. PubMed DOI
Selenko P.; Serber Z.; Gadea B.; Ruderman J.; Wagner G. Quantitative NMR Analysis of the Protein G B1 Domain in Xenopus Laevis Egg Extracts and Intact Oocytes. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11904–11909. 10.1073/pnas.0604667103. PubMed DOI PMC
Li C.; Charlton L. M.; Lakkavaram A.; Seagle C.; Wang G.; Young G. B.; Macdonald J. M.; Pielak G. J. Differential Dynamical Effects of Macromolecular Crowding on an Intrinsically Disordered Protein and a Globular Protein: Implications for in-Cell NMR Spectroscopy. J. Am. Chem. Soc. 2008, 130, 6310–6311. 10.1021/ja801020z. PubMed DOI PMC
Ito Y.; Selenko P. Cellular Structural Biology. Curr. Opin. Struct. Biol. 2010, 20, 640–648. 10.1016/j.sbi.2010.07.006. PubMed DOI
Smith A. E.; Zhang Z.; Pielak G. J.; Li C. NMR Studies of Protein Folding and Binding in Cells and Cell-like Environments. Curr. Opin. Struct. Biol. 2015, 30, 7–16. 10.1016/j.sbi.2014.10.004. PubMed DOI
Majumder S.; Xue J.; DeMott C. M.; Reverdatto S.; Burz D. S.; Shekhtman A. Probing Protein Quinary Interactions by In-Cell Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2015, 54, 2727–2738. 10.1021/acs.biochem.5b00036. PubMed DOI PMC
Luchinat E.; Banci L. In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation. Acc. Chem. Res. 2018, 51, 1550–1557. 10.1021/acs.accounts.8b00147. PubMed DOI
Guseman A. J.; Perez Goncalves G. M.; Speer S. L.; Young G. B.; Pielak G. J. Protein Shape Modulates Crowding Effects. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 10965–10970. 10.1073/pnas.1810054115. PubMed DOI PMC
Zimmerman S. B.; Trach S. O. Estimation of Macromolecule Concentrations and Excluded Volume Effects for the Cytoplasm of Escherichia Coli. J. Mol. Biol. 1991, 222, 599–620. 10.1016/0022-2836(91)90499-V. PubMed DOI
Ellis R. J. Macromolecular Crowding: Obvious but Underappreciated. Trends Biochem. Sci. 2001, 26, 597–604. 10.1016/S0968-0004(01)01938-7. PubMed DOI
Zeskind B. J.; Jordan C. D.; Timp W.; Trapani L.; Waller G.; Horodincu V.; Ehrlich D. J.; Matsudaira P. Nucleic Acid and Protein Mass Mapping by Live-Cell Deep-Ultraviolet Microscopy. Nat. Methods 2007, 4, 567–569. 10.1038/nmeth1053. PubMed DOI
Cohen R. D.; Pielak G. J. A Cell Is More than the Sum of Its (Dilute) Parts: A Brief History of Quinary Structure. Protein Sci. 2017, 26, 403–413. 10.1002/pro.3092. PubMed DOI PMC
Davey N. E. The Functional Importance of Structure in Unstructured Protein Regions. Curr. Opin. Struct. Biol. 2019, 56, 155–163. 10.1016/j.sbi.2019.03.009. PubMed DOI
von Bülow S.; Siggel M.; Linke M.; Hummer G. Dynamic Cluster Formation Determines Viscosity and Diffusion in Dense Protein Solutions. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 9843–9852. 10.1073/pnas.1817564116. PubMed DOI PMC
Wei M.-T.; Elbaum-Garfinkle S.; Holehouse A. S.; Chen C. C.-H.; Feric M.; Arnold C. B.; Priestley R. D.; Pappu R. V.; Brangwynne C. P. Phase Behaviour of Disordered Proteins Underlying Low Density and High Permeability of Liquid Organelles. Nat. Chem. 2017, 9, 1118–1125. 10.1038/nchem.2803. PubMed DOI PMC
Brangwynne C. P.; Eckmann C. R.; Courson D. S.; Rybarska A.; Hoege C.; Gharakhani J.; Jülicher F.; Hyman A. A. Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation. Science 2009, 324, 1729–1732. 10.1126/science.1172046. PubMed DOI
Alberti S.; Gladfelter A.; Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019, 176, 419–434. 10.1016/j.cell.2018.12.035. PubMed DOI PMC
Schuler B.; Eaton W. A. Protein Folding Studied by Single-Molecule FRET. Curr. Opin. Struct. Biol. 2008, 18, 16–26. 10.1016/j.sbi.2007.12.003. PubMed DOI PMC
Echeverria I.; Makarov D. E.; Papoian G. A. Concerted Dihedral Rotations Give Rise to Internal Friction in Unfolded Proteins. J. Am. Chem. Soc. 2014, 136, 8708–8713. 10.1021/ja503069k. PubMed DOI
König I.; Zarrine-Afsar A.; Aznauryan M.; Soranno A.; Wunderlich B.; Dingfelder F.; Stüber J. C.; Plückthun A.; Nettels D.; Schuler B. Single-Molecule Spectroscopy of Protein Conformational Dynamics in Live Eukaryotic Cells. Nat. Methods 2015, 12, 773–779. 10.1038/nmeth.3475. PubMed DOI
König I.; Soranno A.; Nettels D.; Schuler B. Impact of In-Cell and In-Vitro Crowding on the Conformations and Dynamics of an Intrinsically Disordered Protein. Ang. Chem., Int. Ed. 2021, 60, 10724–10729. 10.1002/anie.202016804. DOI
Paudel B. P.; Fiorini E.; Börner R.; Sigel R. K. O.; Rueda D. S. Optimal Molecular Crowding Accelerates Group II Intron Folding and Maximizes Catalysis. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 11917–11922. 10.1073/pnas.1806685115. PubMed DOI PMC
McConkey E. H. Molecular Evolution, Intracellular Organization, and the Quinary Structure of Proteins. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 3236–3240. 10.1073/pnas.79.10.3236. PubMed DOI PMC
Monteith W. B.; Cohen R. D.; Smith A. E.; Guzman-Cisneros E.; Pielak G. J. Quinary Structure Modulates Protein Stability in Cells. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 1739–1742. 10.1073/pnas.1417415112. PubMed DOI PMC
Danielsson J.; Mu X.; Lang L.; Wang H.; Binolfi A.; Theillet F.-X.; Bekei B.; Logan D. T.; Selenko P.; Wennerström H.; et al. Thermodynamics of Protein Destabilization in Live Cells. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 12402–12407. 10.1073/pnas.1511308112. PubMed DOI PMC
Song X.; Lv T.; Chen J.; Wang J.; Yao L. Characterization of Residue Specific Protein Folding and Unfolding Dynamics in Cells. J. Am. Chem. Soc. 2019, 141, 11363–11366. 10.1021/jacs.9b04435. PubMed DOI
Sakai T.; Tochio H.; Tenno T.; Ito Y.; Kokubo T.; Hiroaki H.; Shirakawa M. In-Cell NMR Spectroscopy of Proteins inside Xenopus Laevis Oocytes. J. Biomol. NMR 2006, 36, 179–188. 10.1007/s10858-006-9079-9. PubMed DOI
Bodart J.-F.; Wieruszeski J.-M.; Amniai L.; Leroy A.; Landrieu I.; Rousseau-Lescuyer A.; Vilain J.-P.; Lippens G. NMR Observation of Tau in Xenopus Oocytes. J. Magn. Reson. 2008, 192, 252–257. 10.1016/j.jmr.2008.03.006. PubMed DOI
Wang Q.; Zhuravleva A.; Gierasch L. M. Exploring Weak, Transient Protein–Protein Interactions in Crowded in Vivo Environments by in-Cell Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2011, 50, 9225–9236. 10.1021/bi201287e. PubMed DOI PMC
Waudby C. A.; Mantle M. D.; Cabrita L. D.; Gladden L. F.; Dobson C. M.; Christodoulou J. Rapid Distinction of Intracellular and Extracellular Proteins Using NMR Diffusion Measurements. J. Am. Chem. Soc. 2012, 134, 11312–11315. 10.1021/ja304912c. PubMed DOI
Dedmon M. M.; Patel C. N.; Young G. B.; Pielak G. J. FlgM Gains Structure in Living Cells. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12681–12684. 10.1073/pnas.202331299. PubMed DOI PMC
Ye Y.; Liu X.; Zhang Z.; Wu Q.; Jiang B.; Jiang L.; Zhang X.; Liu M.; Pielak G. J.; Li C. 19F NMR Spectroscopy as a Probe of Cytoplasmic Viscosity and Weak Protein Interactions in Living Cells. Chem. Eur. J. 2013, 19, 12705–12710. 10.1002/chem.201301657. PubMed DOI
Sekhar A.; Latham M. P.; Vallurupalli P.; Kay L. E. Viscosity-Dependent Kinetics of Protein Conformational Exchange: Microviscosity Effects and the Need for a Small Viscogen. J. Phys. Chem. B 2014, 118, 4546–4551. 10.1021/jp501583t. PubMed DOI
Roos M.; Ott M.; Hofmann M.; Link S.; Rössler E.; Balbach J.; Krushelnitsky A.; Saalwächter K. Coupling and Decoupling of Rotational and Translational Diffusion of Proteins under Crowding Conditions. J. Am. Chem. Soc. 2016, 138, 10365–10372. 10.1021/jacs.6b06615. PubMed DOI
Bai J.; Liu M.; Pielak G. J.; Li C. Macromolecular and Small Molecular Crowding Have Similar Effects on α-Synuclein Structure. ChemPhysChem 2017, 18, 55–58. 10.1002/cphc.201601097. PubMed DOI
Leeb S.; Yang F.; Oliveberg M.; Danielsson J. Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR. J. Phys. Chem. B 2020, 124, 10698–10707. 10.1021/acs.jpcb.0c08274. PubMed DOI PMC
Persson E.; Halle B. Cell Water Dynamics on Multiple Time Scales. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 6266–6271. 10.1073/pnas.0709585105. PubMed DOI PMC
Kimmich R.; Fatkullin N. Self-Diffusion Studies by Intra- and Inter-Molecular Spin-Lattice Relaxometry Using Field-Cycling: Liquids, Plastic Crystals, Porous Media, and Polymer Segments. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 101, 18–50. 10.1016/j.pnmrs.2017.04.001. PubMed DOI
Korb J.-P. Multiscale Nuclear Magnetic Relaxation Dispersion of Complex Liquids in Bulk and Confinement. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 104, 12–55. 10.1016/j.pnmrs.2017.11.001. PubMed DOI
Cukier R. I. Diffusion of Brownian Spheres in Semidilute Polymer Solutions. Macromolecules 1984, 17, 252–255. 10.1021/ma00132a023. DOI
Barshtein G.; Almagor A.; Yedgar S.; Gavish B. Inhomogeneity of Viscous Aqueous-Solutions. Phys. Rev. E 1995, 52, 555–557. 10.1103/PhysRevE.52.555. DOI
Lavalette D.; Tétreau C.; Tourbez M.; Blouquit Y. Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment. Biophys. J. 1999, 76, 2744–2751. 10.1016/S0006-3495(99)77427-8. PubMed DOI PMC
Szymański J.; Patkowski A.; Wilk A.; Garstecki P.; Holyst R. Diffusion and Viscosity in a Crowded Environment: From Nano- to Macroscale. J. Phys. Chem. B 2006, 110, 25593–25597. 10.1021/jp0666784. PubMed DOI
Sekhar A.; Vallurupalli P.; Kay L. E. Defining a Length Scale for Millisecond-Timescale Protein Conformational Exchange. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11391–11396. 10.1073/pnas.1303273110. PubMed DOI PMC
Kalwarczyk T.; Sozanski K.; Ochab-Marcinek A.; Szymanski J.; Tabaka M.; Hou S.; Holyst R. Motion of Nanoprobes in Complex Liquids within the Framework of the Length-Scale Dependent Viscosity Model. Adv. Colloid Interface Sci. 2015, 223, 55–63. 10.1016/j.cis.2015.06.007. PubMed DOI
Wisniewska A.; Sozanski K.; Kalwarczyk T.; Kedra-Krolik K.; Holyst R. Scaling Equation for Viscosity of Polymer Mixtures in Solutions with Application to Diffusion of Molecular Probes. Macromolecules 2017, 50, 4555–4561. 10.1021/acs.macromol.7b00545. DOI
Qin S.; Zhou H.-X. Protein Folding, Binding, and Droplet Formation in Cell-like Conditions. Curr. Opin. Struct. Biol. 2017, 43, 28–37. 10.1016/j.sbi.2016.10.006. PubMed DOI PMC
Luh L. M.; Hänsel R.; Löhr F.; Kirchner D. K.; Krauskopf K.; Pitzius S.; Schäfer B.; Tufar P.; Corbeski I.; Güntert P.; et al. Molecular Crowding Drives Active Pin1 into Nonspecific Complexes with Endogenous Proteins Prior to Substrate Recognition. J. Am. Chem. Soc. 2013, 135, 13796–13803. 10.1021/ja405244v. PubMed DOI
Salvi N.; Abyzov A.; Blackledge M. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins. Angew. Chem.. Int. Ed. 2017, 56, 14020–14024. 10.1002/anie.201706740. DOI
Abascal J. L. F.; Vega C. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.10.1063/1.2121687. PubMed DOI
Chandrasekhar I.; Clore G.; Szabo A.; Gronenborn A.; Brooks B. A 500-Ps Molecular-Dynamics Simulation Study of Interleukin-1-Beta in Water - Correlation with Nuclear-Magnetic-Resonance Spectroscopy and Crystallography. J. Mol. Biol. 1992, 226, 239–250. 10.1016/0022-2836(92)90136-8. PubMed DOI
Salmon L.; Pierce L.; Grimm A.; Roldan J.-L. O.; Mollica L.; Jensen M. R.; van Nuland N.; Markwick P. R. L.; McCammon J. A.; Blackledge M. Multi-Timescale Conformational Dynamics of the SH3 Domain of CD2-Associated Protein Using NMR Spectroscopy and Accelerated Molecular Dynamics. Angew. Chem., Int. Ed. 2012, 51, 6103–6106. 10.1002/anie.201202026. DOI
Salvi N.; Abyzov A.; Blackledge M. Solvent-Dependent Segmental Dynamics in Intrinsically Disordered Proteins. Sci. Adv. 2019, 5, eaax234810.1126/sciadv.aax2348. PubMed DOI PMC
Fung H. Y. J.; Birol M.; Rhoades E. IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr. Opin. Str. Biol. 2018, 49, 36–43. 10.1016/j.sbi.2017.12.007. DOI
Ivarsson Y.; Jemth P. Affinity and Specificity of Motif-Based Protein-Protein Interactions. Curr. Opin. Struct. Biol. 2019, 54, 26–33. 10.1016/j.sbi.2018.09.009. PubMed DOI
Milles S.; Salvi N.; Blackledge M.; Jensen M. R. Characterization of Intrinsically Disordered Proteins and Their Dynamic Complexes: From in Vitro to Cell-like Environments. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 79–100. 10.1016/j.pnmrs.2018.07.001. PubMed DOI
Bugge K.; Brakti I.; Fernandes C. B.; Dreier J. E.; Lundsgaard J. E.; Olsen J. G.; Skriver K.; Kragelund B. B. Interactions by Disorder - A Matter of Context. Front. Mol. Biosci. 2020, 7, 110.10.3389/fmolb.2020.00110. PubMed DOI PMC
Dyson H. J.; Wright P. E. NMR Illuminates Intrinsic Disorder. Curr. Opin. Struct. Biol. 2021, 70, 44–52. 10.1016/j.sbi.2021.03.015. PubMed DOI PMC
Schneider R.; Blackledge M.; Jensen M. R. Elucidating Binding Mechanisms and Dynamics of Intrinsically Disordered Protein Complexes Using NMR Spectroscopy. Curr. Opin. Struct. Biol. 2019, 54, 10–18. 10.1016/j.sbi.2018.09.007. PubMed DOI
Xie M.; Hansen A. L.; Yuan J.; Brüschweiler R. Residue-Specific Interactions of an Intrinsically Disordered Protein with Silica Nanoparticles and Their Quantitative Prediction. J. Phys. Chem. C Nanomater Interfaces 2016, 120, 24463–24468. 10.1021/acs.jpcc.6b08213. PubMed DOI PMC
Xie M.; Li D.-W.; Yuan J.; Hansen A. L.; Brüschweiler R. Quantitative Binding Behavior of Intrinsically Disordered Proteins to Nanoparticle Surfaces at Individual Residue Level. Chemistry 2018, 24, 16997–17001. 10.1002/chem.201804556. PubMed DOI
Xie M.; Yu L.; Bruschweiler-Li L.; Xiang X.; Hansen A. L.; Brüschweiler R. Functional Protein Dynamics on Uncharted Time Scales Detected by Nanoparticle-Assisted NMR Spin Relaxation. Sci. Adv. 2019, 5, eaax556010.1126/sciadv.aax5560. PubMed DOI PMC
Vallurupalli P.; Bouvignies G.; Kay L. E. Studying “Invisible” Excited Protein States in Slow Exchange with a Major State Conformation. J. Am. Chem. Soc. 2012, 134, 8148–8161. 10.1021/ja3001419. PubMed DOI
Fawzi N. L.; Ying J.; Ghirlando R.; Torchia D. A.; Clore G. M. Atomic-Resolution Dynamics on the Surface of Amyloid-β Protofibrils Probed by Solution NMR. Nature 2011, 480, 268–272. 10.1038/nature10577. PubMed DOI PMC
Montelione G. T.; Wagner G. 2D Chemical Exchange NMR Spectroscopy by Proton-Detected Heteronuclear Correlation. J. Am. Chem. Soc. 1989, 111, 3096–3098. 10.1021/ja00190a072. DOI
Wider G.; Neri D.; Wüthrich K. Studies of Slow Conformational Equilibria in Macromolecules by Exchange of Heteronuclear Longitudinal 2-Spin-Order in a 2D Difference Correlation Experiment. J. Biomol. NMR 1991, 1, 93–98. 10.1007/BF01874572. DOI
Jensen M. R.; Houben K.; Lescop E.; Blanchard L.; Ruigrok R. W. H.; Blackledge M. Quantitative Conformational Analysis of Partially Folded Proteins from Residual Dipolar Couplings: Application to the Molecular Recognition Element of Sendai Virus Nucleoprotein. J. Am. Chem. Soc. 2008, 130, 8055–8061. 10.1021/ja801332d. PubMed DOI
Fonin A. V.; Darling A. L.; Kuznetsova I. M.; Turoverov K. K.; Uversky V. N. Intrinsically Disordered Proteins in Crowded Milieu: When Chaos Prevails within the Cellular Gumbo. Cell. Mol. Life Sci. 2018, 75, 3907–3929. 10.1007/s00018-018-2894-9. PubMed DOI PMC
Breindel L.; Burz D. S.; Shekhtman A. Interaction Proteomics by Using In-Cell NMR Spectroscopy. J. Proteomics 2019, 191, 202–211. 10.1016/j.jprot.2018.02.006. PubMed DOI PMC
Zosel F.; Soranno A.; Buholzer K. J.; Nettels D.; Schuler B. Depletion Interactions Modulate the Binding between Disordered Proteins in Crowded Environments. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 13480–13489. 10.1073/pnas.1921617117. PubMed DOI PMC
Kim Y. C.; Bhattacharya A.; Mittal J. Macromolecular Crowding Effects on Coupled Folding and Binding. J. Phys. Chem. B 2014, 118, 12621–12629. 10.1021/jp508046y. PubMed DOI
Maldonado A. Y.; Burz D. S.; Reverdatto S.; Shekhtman A. Fate of Pup inside the Mycobacterium Proteasome Studied by In-Cell NMR. PLoS One 2013, 8, e7457610.1371/journal.pone.0074576. PubMed DOI PMC
Binolfi A.; Limatola A.; Verzini S.; Kosten J.; Theillet F.-X.; Rose H. M.; Bekei B.; Stuiver M.; van Rossum M.; Selenko P. Intracellular Repair of Oxidation-Damaged α-Synuclein Fails to Target C-Terminal Modification Sites. Nat. Commun. 2016, 7, 10251.10.1038/ncomms10251. PubMed DOI PMC
Zhang S.; Wang C.; Lu J.; Ma X.; Liu Z.; Li D.; Liu Z.; Liu C. In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau. Int. J. Mol. Sci. 2019, 20, e9010.3390/ijms20010090. DOI
Yuwen T.; Brady J. P.; Kay L. E. Probing Conformational Exchange in Weakly Interacting, Slowly Exchanging Protein Systems via Off-Resonance R1ρ Experiments: Application to Studies of Protein Phase Separation. J. Am. Chem. Soc. 2018, 140, 2115–2126. 10.1021/jacs.7b09576. PubMed DOI
Hough L. E.; Dutta K.; Sparks S.; Temel D. B.; Kamal A.; Tetenbaum-Novatt J.; Rout M. P.; Cowburn D. The Molecular Mechanism of Nuclear Transport Revealed by Atomic-Scale Measurements. Elife 2015, 4, e10027.10.7554/eLife.10027. PubMed DOI PMC
Raveh B.; Karp J. M.; Sparks S.; Dutta K.; Rout M. P.; Sali A.; Cowburn D. Slide-and-Exchange Mechanism for Rapid and Selective Transport through the Nuclear Pore Complex. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, e248910.1073/pnas.1522663113. PubMed DOI PMC
Milles S.; Jensen M. R.; Lazert C.; Guseva S.; Ivashchenko S.; Communie G.; Maurin D.; Gerlier D.; Ruigrok R. W. H.; Blackledge M. An Ultraweak Interaction in the Intrinsically Disordered Replication Machinery Is Essential for Measles Virus Function. Sci. Adv. 2018, 4, eaat777810.1126/sciadv.aat7778. PubMed DOI PMC
Guseva S.; Milles S.; Jensen M. R.; Schoehn G.; Ruigrok R. W.; Blackledge M. Structure, Dynamics and Phase Separation of Measles Virus RNA Replication Machinery. Curr. Opin. Virol. 2020, 41, 59–67. 10.1016/j.coviro.2020.05.006. PubMed DOI
Longhi S.; Bloyet L.-M.; Gianni S.; Gerlier D. How Order and Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins Orchestrate the Molecular Interplay of Transcription and Replication. Cell. Mol. Life Sci. 2017, 74, 3091–3118. 10.1007/s00018-017-2556-3. PubMed DOI PMC
Chang C.; Hou M.-H.; Chang C.-F.; Hsiao C.-D.; Huang T. The SARS Coronavirus Nucleocapsid Protein–Forms and Functions. Antiviral Res. 2014, 103, 39–50. 10.1016/j.antiviral.2013.12.009. PubMed DOI PMC
Savastano A.; Ibáñez de Opakua A.; Rankovic M.; Zweckstetter M. Nucleocapsid Protein of SARS-CoV-2 Phase Separates into RNA-Rich Polymerase-Containing Condensates. Nat. Commun. 2020, 11, 6041.10.1038/s41467-020-19843-1. PubMed DOI PMC
Guseva S.; Perez L. M.; Camacho-Zarco A.; Bessa L. M.; Salvi N.; Malki A.; Maurin D.; Blackledge M. 1H, 13C and 15N Backbone Chemical Shift Assignments of the n-Terminal and Central Intrinsically Disordered Domains of SARS-CoV-2 Nucleoprotein. Biomol. NMR Assign. 2021, 15, 255–260. 10.1007/s12104-021-10014-x. PubMed DOI PMC
Schiavina M.; Pontoriero L.; Uversky V. N.; Felli I. C.; Pierattelli R. The Highly Flexible Disordered Regions of the SARS-CoV-2 Nucleocapsid N Protein within the 1–248 Residue Construct: Sequence-Specific Resonance Assignments through NMR. Biomol. NMR Assign. 2021, 15, 219–227. 10.1007/s12104-021-10009-8. PubMed DOI PMC
Cubuk J.; Alston J. J.; Incicco J. J.; Singh S.; Stuchell-Brereton M. D.; Ward M. D.; Zimmerman M. I.; Vithani N.; Griffith D.; Wagoner J. A.; et al. The SARS-CoV-2 Nucleocapsid Protein Is Dynamic, Disordered, and Phase Separates with RNA. Nat. Commun. 2021, 12, 1936.10.1038/s41467-021-21953-3. PubMed DOI PMC
Bessa L. M.; Guseva S.; Camacho-Zarco A. R.; Salvi N.; Maurin D.; Perez L. M.; Botova M.; Malki A.; Nanao M.; Jensen M. R. The Intrinsically Disordered SARS-CoV-2 Nucleoprotein in Dynamic Complex with Its Viral Partner Nsp3a. Sci. Adv. 2022, 8, eabm403410.1126/sciadv.abm4034. PubMed DOI PMC
Delaforge E.; Milles S.; Bouvignies G.; Bouvier D.; Boivin S.; Salvi N.; Maurin D.; Martel A.; Round A.; Lemke E. A.; et al. Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin α. J. Am. Chem. Soc. 2015, 137, 15122–15134. 10.1021/jacs.5b07765. PubMed DOI
Boivin S.; Cusack S.; Ruigrok R. W. H.; Hart D. J. Influenza A Virus Polymerase: Structural Insights into Replication and Host Adaptation Mechanisms. J. Biol. Chem. 2010, 285, 28411–28417. 10.1074/jbc.R110.117531. PubMed DOI PMC
Long J. S.; Giotis E. S.; Moncorgé O.; Frise R.; Mistry B.; James J.; Morisson M.; Iqbal M.; Vignal A.; Skinner M. A.; Barclay W. S. Species Difference in ANP32A Underlies Influenza A Virus Polymerase Host Restriction. Nature 2016, 529, 101–104. 10.1038/nature16474. PubMed DOI PMC
Camacho-Zarco A. R.; Kalayil S.; Maurin D.; Salvi N.; Delaforge E.; Milles S.; Jensen M. R.; Hart D. J.; Cusack S.; Blackledge M. Molecular Basis of Host-Adaptation Interactions between Influenza Virus Polymerase PB2 Subunit and ANP32A. Nat. Commun. 2020, 11, 3656.10.1038/s41467-020-17407-x. PubMed DOI PMC
Borgia A.; Borgia M. B.; Bugge K.; Kissling V. M.; Heidarsson P. O.; Fernandes C. B.; Sottini A.; Soranno A.; Buholzer K. J.; Nettels D.; et al. Extreme Disorder in an Ultrahigh-Affinity Protein Complex. Nature 2018, 555, 61–66. 10.1038/nature25762. PubMed DOI PMC
Sottini A.; Borgia A.; Borgia M. B.; Bugge K.; Nettels D.; Chowdhury A.; Heidarsson P. O.; Zosel F.; Best R. B.; Kragelund B. B.; et al. Polyelectrolyte Interactions Enable Rapid Association and Dissociation in High-Affinity Disordered Protein Complexes. Nat. Commun. 2020, 11, 5736.10.1038/s41467-020-18859-x. PubMed DOI PMC
Kragelj J.; Palencia A.; Nanao M. H.; Maurin D.; Bouvignies G.; Blackledge M.; Jensen M. R. Structure and Dynamics of the MKK7-JNK Signaling Complex. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 3409–3414. 10.1073/pnas.1419528112. PubMed DOI PMC
Delaforge E.; Kragelj J.; Tengo L.; Palencia A.; Milles S.; Bouvignies G.; Salvi N.; Blackledge M.; Jensen M. R. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy. J. Am. Chem. Soc. 2018, 140, 1148–1158. 10.1021/jacs.7b12407. PubMed DOI
Kragelj J.; Orand T.; Delaforge E.; Tengo L.; Blackledge M.; Palencia A.; Jensen M. R. Enthalpy-Entropy Compensation in the Promiscuous Interaction of an Intrinsically Disordered Protein with Homologous Protein Partners. Biomolecules 2021, 11, 1204.10.3390/biom11081204. PubMed DOI PMC
Charlier C.; Bouvignies G.; Pelupessy P.; Walrant A.; Marquant R.; Kozlov M.; De Ioannes P.; Bolik-Coulon N.; Sagan S.; Cortes P.; et al. Structure and Dynamics of an Intrinsically Disordered Protein Region That Partially Folds upon Binding by Chemical-Exchange NMR. J. Am. Chem. Soc. 2017, 139, 12219–12227. 10.1021/jacs.7b05823. PubMed DOI