Regional wood chip quality parameters decomposition and price linkage with impact on Polish energy sustainability: Time frequency analysis between 2013 and 2019
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39091953
PubMed Central
PMC11292524
DOI
10.1016/j.heliyon.2024.e33322
PII: S2405-8440(24)09353-8
Knihovny.cz E-resources
- Keywords
- Calorific value, Moisture content, Power plant, Wavelet coherence, Wavelet transform, Wood chip price, Wood chips,
- Publication type
- Journal Article MeSH
The study aims to analyze and decompose the qualitative parameters of wood chips in Poland. The European Green Deal brings the new framework to support sustainability and elimination of emissions. The Wavelet coherence and Wavelet Discrete Decomposition are used for determination of relations among significant qualitative parameters. Thus, the possible uses are discussed. For the obvious relationship between moisture and calorific value there is evidence of strong correlation. The behaviour of these interrelations are different at frequencies in the long and short time. The wood chip price is inter-transmitter from moisture parameter to calorific value in a positive (in-phase) relationship. At both low and high frequencies there is evidence that the variables of moisture and calorific value are highly correlated. The transient effect of linkage is presented at values between 0.1 and 0.3 in coherence map. The empirical findings provide implication for local producers and policymakers.
See more in PubMed
Dong F., Yu B., Hadachin T.…Zhang S., Long R. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 2018;129:187–201. doi: 10.1111/gcbb.12472. DOI
Liu X.-J., Jin X.-B., Luo X.-L., Zhou Y.-K. Multi-scale variations and impact factors of carbon emission intensity in China. Sci. Total Environ. 2023;857 doi: 10.1016/j.scitotenv.2022.159403. PubMed DOI
Huang J., An L., Peng W., Guo L. Identifying the role of green financial development played in carbon intensity: evidence from China. J. Clean. Prod. 2023;408 doi: 10.1016/j.jclepro.2023.136943. DOI
Bibi A., Zhang X., Umar M. The imperativeness of biomass energy consumption to the environmental sustainability of the United States revisited. Environ. Ecol. Stat. 2021;28(4):821–841. doi: 10.1007/s10651-021-00500-9. DOI
Yu B., Fang D., Yu H., Zhao C. Temporal-spatial determinants of renewable energy penetration in electricity production: evidence from EU countries. Renew. Energy. 2021;180:438–451. doi: 10.1016/j.renene.2021.08.079. DOI
Stala-Szlugaj K., Grudziński Z. Import and export of hard coal and their impact on the demand of the power industry in Poland. Inzynieria Mineralna. 2017;2017(2):313–320. doi: 10.29227/IM-2017-02-34. DOI
Kochanek E. The energy transition in the visegrad group countries. Energies. 2021;14(8):2212. doi: 10.3390/en14082212. DOI
Apostu S.A., Gigauri I., Panait M., Martín-Cervantes P.A. Is europe on the way to sustainable development? Compatibility of green environment, economic growth, and circular economy issues international. Journal of Environmental Research and Public Health. 2023;20(2):1078. doi: 10.3390/ijerph20021078. PubMed DOI PMC
Tzelepiet V., Zeneli M., Kourkoumpas D.-S.…Nikolopoulos N., Grammelis P. Biomass availability in europe as an alternative fuel for full conversion of lignite power plants: a critical review. Energies. 2020;13(13):3390. doi: 10.3390/en13133390. DOI
Borowski P.F. Mitigating climate change and the development of green energy versus a return to fossil fuels due to the energy crisis in 2022. Energies. 2022;15(24):9289. doi: 10.3390/en15249289. DOI
Koryś K.A., Latawiec A.E., Grotkiewicz K., Kuboń M. The review of biomass potential for agricultural biogas production in Poland. Sustainability. 2019;11(22):6515. doi: 10.3390/su11226515. DOI
Borowski P.F., Barwicki J. Efficiency of utilization of wastes for green energy production and reduction of pollution in rural areas. Energies. 2023;16(1):13. doi: 10.3390/en16010013. DOI
National energy and climate plans (NECPs). https://energy.ec.europa.eu/topics/energy-strategy/national-energy-and-climate-plans-necps_en. Accesed: November 2023.
Nyga-Lukaszewska H., Aruga K., Stala-Szlugaj K. Energy security of Poland and coal supply: price analysis. Sustainability. 2020;12(6):2541. doi: 10.3390/su12062541. DOI
Szafranko E. Comapartive analysis of renewable energy resources potentially accessible in rural areas. Engineering for Rural Development. 2019;18:1510–1515. doi: 10.22616/ERDev2019.18.N417. DOI
Igliński B., Pietrzak M.B., Kiełkowska U.…Kumar G., Piechota G. The assessment of renewable energy in Poland on the background of the world renewable energy sector. Energy. 2022;261 doi: 10.1016/j.energy.2022.125319. DOI
Wyrwa A., Raczyński M., Kulik M.…Zhang H., Kempka M. Greening of the district heating systems—case study of local systems. Energies. 2022;15(9):3165. doi: 10.3390/en15093165. DOI
Energy Information Administration . 2020. U.S. energy consumption in 2020 increased for renewables, fell for all other fuels 2020.https://www.eia.gov/todayinenergy/detail.php?id=48236 Accesed: November 2023.
Kozakiewicz A., Kulik A., Wilk M. Modernization of the transformers in power plant Belchatow. Przeglad Elektrotechniczny. 2017;93(11):17–20. doi: 10.15199/48.2017.11.04. DOI
Gladysz P., Sowizdzal A., Miecznik M., Hacaga M., Pajak L. Techno-economic assessment of a combined heat and power plant integrated with carbon dioxide removal technology: a case study for central Poland. Energies. 2020;13(11):2841. doi: 10.3390/en13112841. DOI
Chen W.-H., Lin B.-J., Lin Y.-Y.…Pétrissans A., Pétrissans M. Progress in biomass torrefaction: principles, applications, and challenges. Prog. Energy Combust. Sci. 2021;82 doi: 10.1016/j.pecs.2020.100887. DOI
Martens P., Czech H., Orasche J.…Sippula O., Zimmermann R. Brown coal and logwood combustion in a modern heating appliance: the impact of combustion quality and fuel on organic aerosol composition. Environ. Sci. Technol. 2023;57(14):5532–5543. doi: 10.1021/acs.est.2c08787. PubMed DOI
Olczak P., Surma T. Energy productivity potential of offshore wind in Poland and cooperation with onshore wind farm. Appl. Sci. 2023;13(7):4258. doi: 10.3390/app13074258. DOI
Kulpa J., Olczak P., Stecuła K., Sołtysik M. The impact of RES development in Poland on the change of the energy generation profile and reduction of CO2 emissions. Appl. Sci. 2022;12(21) doi: 10.3390/app122111064. DOI
Wieruszewski M., Górna A., Stanula Z., Adamowicz K. Energy use of woody biomass in Poland: its resources and harvesting form. Energies. 2022;15(18):6812. doi: 10.3390/en15186812. DOI
Wieruszewski M., Górna A., Mydlarz K., Adamowicz K. Wood biomass resources in Poland depending on forest structure and industrial processing of wood raw material. Energies. 2022;15(13):4897. doi: 10.3390/en15134897. DOI
Dudziec P., Stachowicz P., Stolarski M.J. Diversity of properties of sawmill residues used as feedstock for energy generation. Renew. Energy. 2023;202:822–833. doi: 10.1016/j.renene.2022.12.002. DOI
Majchrzak M., Szczypa P., Adamowicz K. Supply of wood biomass in Poland in terms of extraordinary threat and energy transition. Energies. 2022;15(15):5381. doi: 10.3390/en15155381. DOI
Wiśniewski G. Produkcja energii elektrycznej z OZE - podsumowanie roku 2021. CIRE.PL Centrum Informacji o Rynku Energii. 2022 https://www.cire.pl/artykuly/opinie/produkcja-energii-elektrycznej-z-oze---podsumowanie-roku-2021. (Accessed 10 April 2023)
Stolarski M.J., Warmiński K., Krzyżaniak M., Olba–Zięty E., Akincza M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020;133 doi: 10.1016/j.rser.2020.110238. DOI
Sefeedpari P., Pudełko R., Jedrejek A., Kozak M., Borzecka M. To what extent is manure produced, distributed, and potentially available for bioenergy? A step toward stimulating circular bio-economy in Poland. Energies. 2020;13(23):6266. doi: 10.3390/en13236266. DOI
Dudek T. The impacts of the energy potential of forest biomass on the local market: an example of South-Eastern Poland. Energies. 2020;13(18):4985. doi: 10.3390/en13184985. DOI
Woch F., Hernik J., Sankowski E.…Pazdan M., Noszczyk T. Evaluating the potential use of forest biomass for renewable energy: a case study with elements of a systems approach. Pol. J. Environ. Stud. 2020;29(1):885–891. doi: 10.15244/pjoes/100670. DOI
Stolarski M.J., Stachowicz P., Sieniawski W., Krzyżaniak M., Olba-Zięty E. Quality and delivery costs of wood chips by railway vs. Road transport. Energies. 2021;14:6877. doi: 10.3390/en14216877. DOI
Statistical Yearbook of Forestry . 2022. Polish Statistical Office.https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-forestry-2022,12,5.html Accessed: August 2023.
GUS . Statistics Poland; Warszawa, Polska: 2022. Statistical Yearbook of Forestry 2022; p. 360.https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-forestry-2022,12,5.html
Mola-Yudego B., Arevalo J., Díaz-Yáñez O.…Khanam T., Selkimäki M. Reviewing wood biomass potentials for energy in Europe: the role of forests and fast growing plantations. Biofuels. 2017;8(4):401–410. doi: 10.1080/17597269.2016.1271627. DOI
Jenicek L., Neskudla M., Malatak J., Velebil J., Passian L. Spruce and barley elemental and stochiometric analysis affected by the impact of pellet production and torrefaction. Acta Technol. Agric. 2021;24(4):166–172. doi: 10.2478/ata-2021-0028. DOI
Malat’áková J., Jankovský M., Malat’Ák J., Velebil J., Gendek A., Aniszewska M. Evaluation of small-scale gasification for chp for wood from salvage logging in the Czech Republic. Forests. 2021;12(11):1448. doi: 10.3390/f12111448. DOI
Weber K., Quicker P. Properties of biochar. Fuel. 2018;217:240–261. doi: 10.1016/j.fuel.2017.12.054. DOI
Gürdil G.A.K., Malaták J., Selvi K.C., Pinar Y. Biomass utilization for thermal energy. Ama, Agric. Mech. Asia, Afr. Lat. Am. 2009;40(2):80–85.
Gendek A., Aniszewska M., Owoc D., Velebil J., Krilek J. Physico-mechanical and energy properties of pellets made from ground walnut shells, coniferous tree cones and their mixtures. Renew. Energy. 2023;211:248–258. doi: 10.1016/j.renene.2023.04.122. DOI
Gendek A., Nurek T., Zychowicz W., Moskalik T. Effects of intentional reduction in moisture content of forest wood chips during transport on truckload price. Bioresources. 2018;13(2):4310–4322. doi: 10.15376/biores.13.2.4310-4322. DOI
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. An overview of the chemical composition of biomass. Fuel. 2010;89(2010):913–933. doi: 10.1016/j.fuel.2009.10.022. DOI
Yang Y.B., Ryu C., Khor A.…Sharifi V.N., Swithenbank J. Effect of fuel properties on biomass combustion. Part II. Modelling approach - identification of the controlling factors. Fuel. 2005;84(16):2116–2130. doi: 10.1016/j.fuel.2005.04.023. DOI
Malaťák J., Gendek A., Aniszewska M., Velebil J. Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel. 2020;276 doi: 10.1016/j.fuel.2020.118001. DOI
Malaťák J., Jankovský M., Malaťáková J., Velebil J., Gendek A., Aniszewska M. Substituting solid fossil fuels with torrefied timber products. Materials. 2023;16(24):7569. doi: 10.3390/ma16247569. PubMed DOI PMC
Bożym M., Gendek A., Siemiątkowski G., Aniszewska M., Malaťák J. Assessment of the composition of forest waste in terms of its further use. Materials. 2021;14(4):1–17. doi: 10.3390/ma14040973. 973. PubMed DOI PMC
Malaták J., Jevic P., Gürdil G.A.K., Selvi K.C. Biomass heat-emission characteristics of energy plants. AMA, Agricultural Mechanization in Asia, Africa and Latin. America. 2009;39(4):9–13. https://www.webofscience.com/wos/woscc/full-record/WOS:000265109600002
Nimitpaitoon T., Sajjakulnukit B., Prangbang P. The effect of storage conditions on the characteristics of various types of biomass. International Journal of Advanced and Applied Sciences. 2023;10(5):130–139. doi: 10.21833/ijaas.2023.05.016. DOI
Röser D., Mola-Yudego B., Sikanen L., Prinz R., Gritten D., Emer B., Väätäinen K., Erkkilä A. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations. Biomass Bioenergy. 2011;35:4238–4247. doi: 10.1016/j.biombioe.2011.07.011. DOI
Silveira D.J., Durigan A., Monteiro T., Sgarbiero I.M., Silva D.A. Influence of storage time and log length on the distribution of wood chip size. Bioresources. 2023;18(3):4510–4518. doi: 10.15376/biores.18.3.4510-4518. DOI
Jha S., Okolie J.A., Nanda S., Dalai A.K. A review of biomass resources and thermochemical conversion technologies. Chem. Eng. Technol. 2022;45(5):791–799. doi: 10.1002/ceat.202100503. DOI
Cermak M., Malatakova J., Malatak J., Krepl V., Aniszewska M., Gendek A. Analysis of the price relationship between coal and wood chip for the Czech Republic. Sylwean. 2022;166(11):733–750. doi: 10.26202/sylwan.2022073. DOI
Malaták J., Jevic P., Gürdil G.A.K., Selvi K.C. Biomass heat-emission characteristics of energy plants. Ama, Agric. Mech. Asia, Afr. Lat. Am. 2009;39(4):9–13. https://www.webofscience.com/wos/woscc/full-record/WOS:000265109600002
Fit for 55: delivering the EU's 2030 Climate Target on the way to climate neutrality: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels 14.7.2021, COM (2021) 550 final. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550.
2019. The European Green Deal: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels 11.12.2019, COM (2019) 640 final.https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
Brożyna J., Strielkowski W., Zpěvák A. Evaluating the chances of implementing the “Fit for 55” green transition package in the V4 countries. Energies. 2023;16(6):2764. doi: 10.3390/en16062764. DOI
Rybak A., Rybak A., Joostberens J. The impact of removing coal from Poland's energy mix on selected aspects of the country's energy security. Sustainability. 2023;15(4):3457. doi: 10.3390/su15043457. DOI
Chłopek Z., Lasocki J., Melka M., Szczepański K. Equivalent carbon dioxide emission in useful energy generation in the heat-generating plant – application of the carbon footprint methodology. Journal of Ecological Engineering. 2021;22(2):144–154. doi: 10.12911/22998993/130891. DOI
Bluszcz A. Decoupling economic growth from emissions in Poland on the background of EU countries. IOP Conf. Ser. Earth Environ. Sci. 2019;221(1) doi: 10.1088/1755-1315/221/1/012119. DOI
Zoll M. Energy governance in the republic of Poland (book chapter) Handbook of Energy Governance in Europe. 2022;2:923–958.
Widera M. Genetic classification of Polish lignite deposits: a review. Int. J. Coal Geol. 2016;158:107–118. doi: 10.1016/j.coal.2016.03.004. DOI
GUS . Statistics Poland; Warsaw. Poland: 2020. Statistical Yearbook of Forestry 2020.https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-forestry-2020,12,3.html On line: 11.11.2022.
Manzone M. Vol. 119. 2018. pp. 22–30. (Performance Evaluation of Different Techniques for Firewood Storage in Southern Europe Biomass and Bioenergy). DOI
Moskalik T., Gendek A. Production of chips from logging residues and their quality for energy: a review of European literature. Forests. 2019;10:262. doi: 10.3390/f10030262. DOI
Gendek A., Aniszewska M., Malaťák J., Velebil J. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenergy. 2018;117:173–179. doi: 10.1016/j.biombioe.2018.07.025. DOI
Ciechanowska M. The share of renewable energy in Polish energy mix, compared to other countries. Nafta Gaz. 2022;2022(12):892–900. doi: 10.18668/NG.2022.12.07. DOI
Gendek A., Nurek T. Variability of energy woodchips and their economic effects. Folia Forestalia Polonica, Series A. 2016;58(2):62–71. doi: 10.1515/ffp-2016-0007. DOI
Malaťák J., Velebil J., Malaťáková J., Passian L., Bradna J., Tamelová B., Gendek A., Aniszewska M. Reducing emissions from combustion of grape residues in mixtures with herbaceous biomass. Materials. 2022;15:7288. doi: 10.3390/ma15207288. PubMed DOI PMC
ISO 18134-3:2015 . first ed. International Organization for Standardization; Geneva, Switzerland: 2015. Solid Biofuels — Determination of Moisture Content — Oven Dry Method — Part 3: Moisture in General Analysis Sample.
ISO 18122:2022 . second ed. International Organization for Standardization; Geneva, Switzerland: 2022. Solid Biofuels — Determination of Ash Content.
ISO 1928:2009 . first ed. International Organization for Standardization; Geneva, Switzerland: 2009. Solid Mineral Fuels — Determination of Gross Calorific Value by the Bomb Calorimetric Method and Calculation of Net Calorific Value.
ISO 16993:2016 . second ed. International Organization for Standardization; Geneva, Switzerland: 2016. Solid Biofuels — Conversion of Analytical Results from One Basis to Another.
Meteomodel.pl . Historyczne Dane Pomiarowe. 2019. Dane meteorologiczne.https://meteomodel.pl/dane/historyczne-dane-pomiarowe/ On-line:
Kristoufek L., Janda K., Zilberman D. Comovements of ethanol-related prices: evidence from Brazil and the USA. GCB Bioenergy. 2016;8:346–356. doi: 10.1111/gcbb.12260. DOI
Muchebve E., Nakamura Y., Kamiya H. Use of wavelet techniques in the study of seawater flux dynamics in coastal lakes. Intech. 2018 doi: 10.5772/intechopen.75177. DOI
Cohen M.X. A better way to define and describe Morlet wavelets for time-frequency analysis. Neuroimage. 2019;199:81–86. doi: 10.1016/j.neuroimage.2019.05.048. PubMed DOI
Kassouri Y., Bilgili F., Kuşkaya S. A wavelet-based model of world oil shocks interaction with CO2 emissions in the US. Environ. Sci. Pol. 2022;127(8282):280–292. doi: 10.1016/j.envsci.2021.10.020. DOI
Rubbaniy G., Khalid, Awais A., Faisal M.R., Ali S. Are ESG stocks safe-haven during COVID-19? Stud. Econ. Finance. 2022;39(2):239–255. doi: 10.2139/ssrn.3779430. DOI
Bilgili F., Kuşkaya S., Gençoğlu P., Kassouri Y., Garang A.P.M. The co-movements between geothermal energy usage and CO2 emissions through high and low frequency cycles. Environ. Sci. Pollut. Res. Int. 2021;28(45):63723–63738. doi: 10.1007/s11356-020-11000-x. PubMed DOI
Omane-Adjepong M., Ababio K.A., Alagidede I.P. Time-frequency analysis of behaviourally classified financial asset markets. Res. Int. Bus. Finance. 2019;50:54–69. doi: 10.1016/j.ribaf.2019.04.012. DOI
Torrence C., Compo G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998;79(1):61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. DOI
Grinsted A., Moore J.C., Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 2004;11(5/6):561–566. doi: 10.5194/npg-11-561-2004. DOI
Torrence C., Compo G.P. 2004. Wavelet Online: analysis.https://math.ucr.edu/home/baez/ecological/el_nino/wavelet_nino.pdf Accessed: April 2023.
Torrence C., Webster P.J. Interdecadal changes in the ENSO–monsoon system. J. Clim. 1999;12(8):2679–2690. doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2. DOI
Torrence C., Compo G.P. A practical guide to wavelet analysis. Bulletin of the American Meteorological society. 1998;79(1):61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
Jiang Z., Yoon S.-M. Dynamic co-movement between oil and stock markets in oil-importing and oil-exporting countries: two types of wavelet analysis. Energy Econ. 2020;90(C) doi: 10.1016/j.eneco.2020.104835. Elsevier. DOI
Daubechies I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988;41(7):909–996. doi: 10.1002/cpa.3160410705. DOI
Yang L., Cai X.J., Zhang H., Hamori S. Interdependence of foreign exchange markets: a wavelet coherence analysis. Econ. Modell. 2016;55:6–14. doi: 10.1016/j.econmod.2016.01.022. DOI
Stolarski M.J., Dudziec P., Krzyżaniak M., Olba‐zięty E. Solid biomass energy potential as a development opportunity for rural communities. Energies. 2021;14(12):3398. doi: 10.3390/en14123398. DOI
Kraszkiewicz A. Influence of geometrical features of solid biofuels on the implementation of the combustion process. Combust. Sci. Technol. 2023;195(10):2456–2473. doi: 10.1080/00102202.2021.2020263. DOI
Malaťák J., Velebil J., Malaťáková J., Passian L., Bradna J., Tamelová B., Gendek A., Aniszewska M. Reducing emissions from combustion of grape residues in mixtures with herbaceous biomass. Materials. 2022;15:7288. doi: 10.3390/ma15207288. PubMed DOI PMC
Nurek T., Gendek A., Roman K., Dąbrowska M. The effect of temperature and moisture on the chosen parameters of briquettes made of shredded logging residues. Biomass and Bioenergy. 2019;130:105368. doi: 10.1016/j.biombioe.2019.105368. DOI
Barontini M., Scarfone A., Spinelli R., Gallucci F., Santangelo E., Acampora A.…Pari L. Storage dynamics and fuel quality of poplar chips. Biomass and Bioenergy. 2014;62:17–25. doi: 10.1016/j.biombioe.2014.01.022. DOI
Friedl A., Padouvas E., Rotter H., Varmuza K. Prediction of heating values of biomass fuel from elemental composition. Analytica chimica acta. 2005;544(1–2):191–198. doi: 10.1016/j.aca.2005.01.041. DOI
Szyba M., Mikulik J. Energy production from biodegradable waste as an example of the circular economy. Energies. 2022;15(4):1269. doi: 10.3390/en15041269. DOI
Simla T., Stanek W., Czarnowska L. Thermo-ecological cost of electricity generated in wind turbine systems. Journal of Energy Resources Technology, Transactions of the ASME. 2019;141(3) doi: 10.1115/1.4041612. DOI
Tomaszewski K. The Polish road to the new Euripean Green Deal-challenges and threats to the national energy policy. Polityka Energetyczna – Energy Policy Journal. 2020;23(2):5–18. doi: 10.33223/epj/123411. DOI
Hielscher S., Wittmayer J.M., Dańkowska A. Social movements in energy transitions: the politics of fossil fuel energy pathways in the United Kingdom, The Netherlands and Poland. Extr. Ind. Soc. 2022;10 doi: 10.1016/j.exis.2022.101073. DOI
Brauers H., Oei P.Y. The political economy of coal in Poland:drivers and barriers for a shift away from fossil fuels. Energy Pol. 2020;144 doi: 10.1016/j.enpol.2020.111621. DOI
Zhou K., Zhou K., Tang J. A wavelet neural network informed by time-domain signal preprocessing for bearing remaining useful life prediction. Appl. Math. Model. 2023;122:220–241. doi: 10.1016/j.apm.2023.05.042. DOI
Roy A., Soni A., Deb S. A wavelet-based methodology to compare the impact of pandemic versus Russia-Ukraine conflict on crude oil sector and its interconnectedness with other energy and non-energy markets. Energy Econ. 2023;124(8) doi: 10.1016/j.eneco.2023.106830. DOI