Current Strategies for Selenium and Iodine Biofortification in Crop Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VEGA No. 1/0139/22
Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences under the contracts
PubMed
36432402
PubMed Central
PMC9694821
DOI
10.3390/nu14224717
PII: nu14224717
Knihovny.cz E-zdroje
- Klíčová slova
- biofortification, crops, deficiency, iodine, nutrition, selenium,
- MeSH
- biofortifikace MeSH
- jod * MeSH
- jodidy MeSH
- lidé MeSH
- selen * MeSH
- zemědělské plodiny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- iodized salt MeSH Prohlížeč
- jod * MeSH
- jodidy MeSH
- selen * MeSH
Selenium and iodine are essential trace elements for both humans and animals. Among other things, they have an essential role in thyroid function and the production of important hormones by the thyroid gland. Unfortunately, in many areas, soils are deficient in selenium and iodine, and their amount is insufficient to produce crops with adequate contents to cover the recommended daily intake; thus, deficiencies have an endemic character. With the introduction of iodized table salt in the food industry, the thyroid status of the population has improved, but several areas remain iodine deficient. Furthermore, due to the strong relationship between iodine and selenium in metabolic processes, selenium deficiency often compromises the desired positive impact of salt iodization efforts. Therefore, a considerable number of studies have looked for alternative methods for the simultaneous supplementation of selenium and iodine in foodstuff. In most cases, the subject of these studies is crops; recently, meat has also been a subject of interest. This paper reviews the most recent strategies in agriculture to fortify selenium and iodine in crop plants, their effect on the quality of the plant species used, and the potential impact of food processing on their stability in fortified crops.
Zobrazit více v PubMed
Schomburg L., Köhrle J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res. 2008;52:1235–1246. doi: 10.1002/mnfr.200700465. PubMed DOI
WHO . Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers. 3rd ed. World Health Organisation; Geneva, Switzerland: 2007. p. 97.
Kipp A.P., Strohm D., Brigelius-Flohé R., Schomburg L., Bechthold A., Leschik-Bonnet E., Heseker H. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015;32:195–199. doi: 10.1016/j.jtemb.2015.07.005. PubMed DOI
Hagarová I., Žemberyová M. Determination of selenium in blood serum of children by electrothermal atomic absorption spectrometry. Chem. Listy. 2005;99:34–39.
Hetzel B.S. Iodine: Deficiency Disorders. In: Caballero B., editor. Encyclopedia of Human Nutrition. 2nd ed. Elsevier; Oxford, UK: 2005. pp. 74–82.
Zimmermann M.B., Jooste P.L., Pandav C.S. Iodine-deficiency disorders. Lancet. 2008;372:1251–1262. doi: 10.1016/S0140-6736(08)61005-3. PubMed DOI
Hagarová I., Žemberyová M., Bajčan D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chem. Pap. 2005;59:93–98.
Bujdoš M., Kubová J., Streško V. Problems of selenium fractionation in soils rich in organic matter. Anal. Chim. Acta. 2000;408:103–109. doi: 10.1016/S0003-2670(99)00845-4. DOI
Singh S.S., Hazra K.K., Praharaj C.S., Singh U. Biofortification: Pathway Ahead and Future Challenges. In: Singh U., Praharaj C.S., Singh S.S., Singh N.P., editors. Biofortification of Food Crops. Springer; New Delhi, India: 2016. pp. 479–492.
White P.J., Broadley M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005;10:586–593. doi: 10.1016/j.tplants.2005.10.001. PubMed DOI
Carvalho S.M.P., Vasconcelos M.W. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 2013;54:961–971. doi: 10.1016/j.foodres.2012.12.021. DOI
Shreenath A.P., Ameer M.A., Dooley J. Selenium Deficiency. StatPearls Publishing; Treasure Island, FL, USA: 2022. PubMed
Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G., Hoekstra W.G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science. 1973;179:588. doi: 10.1126/science.179.4073.588. PubMed DOI
Farkašovská I., Žemberyová M. Determination and speciation by AAS techniques of selenium in environmental and biological samples. Chem. Listy. 1999;93:633–638.
Alexander J. Selenium. In: Nordberg G.F., Fowler B.A., Nordberg M., editors. Handbook on the Toxicology of Metals. 4th ed. Academic Press; San Diego, CA, USA: 2015. pp. 1175–1208.
Rayman M.P. Selenium and human health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9. PubMed DOI
Khatiwada S., Subedi A. A Mechanistic Link Between Selenium and Coronavirus Disease 2019 (COVID-19) Curr. Nutr. Rep. 2021;10:125–136. doi: 10.1007/s13668-021-00354-4. PubMed DOI PMC
Schomburg L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19—A Preventable Trigger for Autoimmune Disease. Int. J. Mol. Sci. 2021;22:8532. doi: 10.3390/ijms22168532. PubMed DOI PMC
Varikasuvu S.R., Prasad V.S., Kothapalli J., Manne M. Brain Selenium in Alzheimer’s Disease (BRAIN SEAD Study): A Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2019;189:361–369. doi: 10.1007/s12011-018-1492-x. PubMed DOI
Pereira M.E., Souza J.V., Galiciolli M.E.A., Sare F., Vieira G.S., Kruk I.L., Oliveira C.S. Effects of Selenium Supplementation in Patients with Mild Cognitive Impairment or Alzheimerr’s Disease: A Systematic Review and Meta-Analysis. Nutrients. 2022;14:3205. doi: 10.3390/nu14153205. PubMed DOI PMC
WHO . Trace Elements in Human Nutrition and Health. World Health Organization; Geneva, Switzerland: 1996.
Brasher A.M., Scott Ogle R. Comparative toxicity of selenite and selenate to the amphipodHyalella azteca. Arch. Environ. Contam. Toxicol. 1993;24:182–186. doi: 10.1007/BF01141346. DOI
Nuttall K.L. Evaluating selenium poisoning. Ann. Clin. Lab. Sci. 2006;36:409–420. PubMed
Hagarová I., Nemček L. Selenium in Blood Serum of Healthy European Population. Chem. Listy. 2020;114:329–335.
Ruta D.A., Haider S. Attempted murder by selenium poisoning. Br. Med. J. 1989;299:316–317. doi: 10.1136/bmj.299.6694.316. PubMed DOI PMC
Yang G.Q., Wang S.Z., Zhou R.H., Sun S.Z. Endemic selenium intoxication of humans in China. Am. J. Clin. Nutr. 1983;37:872–881. doi: 10.1093/ajcn/37.5.872. PubMed DOI
Zimmermann M.B. Iodine deficiency. Endocr. Rev. 2009;30:376–408. doi: 10.1210/er.2009-0011. PubMed DOI
Greenspan F.S. Štítná žláza. In: Greenspan F.S., Baxter J.D., editors. Základní a Klinická Endokrinologie. H&H; Praha, Czech Republic: 2003. pp. 174–245.
Hetzel B.S. The Iodine Deficiency Disorders. In: Delange F., Dunn J.T., Glinoer D., editors. Iodine Deficiency in Europe: A Continuing Concern. Springer; Boston, MA, USA: 1993. pp. 25–31.
Furman B.L. xPharm: The Comprehensive Pharmacology Reference. Elsevier; Amsterdam, The Netherlands: 2017. Iodide Salt; pp. 1–3.
Duntas L.H. Environmental factors and autoimmune thyroiditis. Nat. Clin. Pract. Endocrinol. Metab. 2008;4:454–460. doi: 10.1038/ncpendmet0896. PubMed DOI
Davies T.F., Andersen S., Latif R., Nagayama Y., Barbesino G., Brito M., Eckstein A.K., Stagnaro-Green A., Kahaly G.J. Graves’ disease. Nat. Rev. Dis. Primers. 2020;6:52. doi: 10.1038/s41572-020-0184-y. PubMed DOI
Rasmussen L.B., Schomburg L., Köhrle J., Pedersen I.B., Hollenbach B., Hög A., Ovesen L., Perrild H., Laurberg P. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur. J. Endocrinol. 2011;164:585–590. doi: 10.1530/EJE-10-1026. PubMed DOI
Negro R., Greco G., Mangieri T., Pezzarossa A., Dazzi D., Hassan H. The Influence of Selenium Supplementation on Postpartum Thyroid Status in Pregnant Women with Thyroid Peroxidase Autoantibodies. J. Clin. Endocrinol. Metab. 2007;92:1263–1268. doi: 10.1210/jc.2006-1821. PubMed DOI
Gashu D., Stoecker B.J., Adish A., Haki G.D., Bougma K., Aboud F.E., Marquis G.S. Association of serum selenium with thyroxin in severely iodine-deficient young children from the Amhara region of Ethiopia. Eur. J. Clin. Nutr. 2016;70:929–934. doi: 10.1038/ejcn.2016.27. PubMed DOI
Gaitan E. 9 Goitrogens. Best Pract. Res. Clin. Endocrinol. Metab. 1988;2:683–702. doi: 10.1016/S0950-351X(88)80060-0. PubMed DOI
Clements F.W. Naturally occuring goitrogens. Br. Med. Bull. 1960;16:133–137. doi: 10.1093/oxfordjournals.bmb.a069812. PubMed DOI
Arthington J.D., Ranches J. Trace Mineral Nutrition of Grazing Beef Cattle. Animals. 2021;11:2767. doi: 10.3390/ani11102767. PubMed DOI PMC
Lindberg P., Siren M. Fluorometric selenium determinations in the liver of normal pigs and in pigs affected with nutritional muscular dystrophy and liver dystrophy. Acta Vet. Scand. 1965;6:59–64. doi: 10.1186/BF03547067. PubMed DOI
David J.S.E. The effect of prolonged Kale feeding on the thyroid glands of sheep. J. Comp. Pathol. 1976;86:235–241. doi: 10.1016/0021-9975(76)90047-5. PubMed DOI
Arthur J.R., Beckett G.J., Mitchell J.H. The interactions between selenium and iodine deficiencies in man and animals. Nutr. Res. Rev. 1999;12:55–73. doi: 10.1079/095442299108728910. PubMed DOI
Smrkolj P., Pograjc L., Hlastan-Ribič C., Stibilj V. Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem. 2005;90:691–697. doi: 10.1016/j.foodchem.2004.04.028. DOI
Fordyce F. Database of the Iodine Content of Food and Diets Populated with Data from Published Literature. British Geological Survey; Nottingham, UK: 2003.
Dahl L., Johansson L., Julshamn K., Meltzer H.M. The iodine content of Norwegian foods and diets. Public Health Nutr. 2004;7:569–576. doi: 10.1079/PHN2003554. PubMed DOI
Hejtmánková A., Vejdová M., Trnková E. Stanovení jodu v biologickém materiálu metodou HPLC s elektrochemickým detektorem. Chem. Listy. 2005;99:657–660.
Sarwar N., Akhtar M., Kamran M.A., Imran M., Riaz M.A., Kamran K., Hussain S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J. Food Compos. Anal. 2020;93:103615. doi: 10.1016/j.jfca.2020.103615. DOI
Hagarová I., Nemček L. Reliable Quantification of Ultratrace Selenium in Food, Beverages, and Water Samples by Cloud Point Extraction and Spectrometric Analysis. Nutrients. 2022;14:3530. doi: 10.3390/nu14173530. PubMed DOI PMC
Thavarajah D., Thavarajah P., Wejesuriya A., Rutzke M., Glahn R.P., Combs G.F., Vandenberg A. The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: Preliminary results from a 3 year study. Euphytica. 2011;180:123–128. doi: 10.1007/s10681-011-0365-6. DOI
Duborská E., Urík M., Šeda M. Iodine Biofortification of Vegetables Could Improve Iodine Supplementation Status. Agronomy. 2020;10:1574. doi: 10.3390/agronomy10101574. DOI
Müssig K. Iodine-Induced Toxic Effects due to Seaweed Consumption. In: Preedy V.R., Burrow G.N., Watson R., editors. Comprehensive Handbook of Iodine. Academic Press; San Diego, CA, USA: 2009. pp. 897–908.
Zava T.T., Zava D.T. Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Res. 2011;4:14. doi: 10.1186/1756-6614-4-14. PubMed DOI PMC
Charlton K., Yeatman H., Lucas C., Axford S., Gemming L., Houweling F., Goodfellow A., Ma G. Poor knowledge and practices related to iodine nutrition during pregnancy and lactation in Australian women: Pre- and post-iodine fortification. Nutrients. 2012;4:1317–1327. doi: 10.3390/nu4091317. PubMed DOI PMC
Charlton K., Skeaff S. Iodine fortification: Why, when, what, how, and who? Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:618–624. doi: 10.1097/MCO.0b013e32834b2b30. PubMed DOI
Alfthan G., Eurola M., Ekholm P., Venäläinen E.-R., Root T., Korkalainen K., Hartikainen H., Salminen P., Hietaniemi V., Aspila P., et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 2015;31:142–147. doi: 10.1016/j.jtemb.2014.04.009. PubMed DOI
Ventura M.G., do Carmo Freitas M., Pacheco A., van Meerten T., Wolterbeek H.T. Selenium content in selected Portuguese foodstuffs. Eur. Food Res. Technol. 2006;224:395. doi: 10.1007/s00217-006-0426-6. DOI
Abhay K., Krishnaswamy K. Selenium Content of Common Indian Cereals, Pulses, and Spices. J. Agric. Food Chem. 1997;45:2565–2568. doi: 10.1021/jf960920u. DOI
WHO . Guideline: Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders. World Health Organisation; Geneva, Switzerland: 2014. p. 44. PubMed
Rasmussen L.B., Jørgensen T., Perrild H., Knudsen N., Krejbjerg A., Laurberg P., Pedersen I.B., Bjergved L., Ovesen L. Mandatory iodine fortification of bread and salt increases iodine excretion in adults in Denmark—A 11-year follow-up study. Clin. Nutr. 2014;33:1033–1040. doi: 10.1016/j.clnu.2013.10.024. PubMed DOI
WHO . Recommended Iodine Levels in Salt and Guidelines for Monitoring Their Adequacy and Effectiveness. World Health Organization; Geneva, Switzerland: 1996.
Rana R., Raghuvanshi R.S. Effect of different cooking methods on iodine losses. J. Food Sci. Technol. 2013;50:1212–1216. doi: 10.1007/s13197-011-0436-7. PubMed DOI PMC
White P.J., Broadley M.R. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49–84. doi: 10.1111/j.1469-8137.2008.02738.x. PubMed DOI
Kiferle C., Gonzali S., Holwerda H.T., Ibaceta R.R., Perata P. Tomato fruits: A good target for iodine biofortification. Front. Plant Sci. 2013;4:205. doi: 10.3389/fpls.2013.00205. PubMed DOI PMC
Li R., Liu H.P., Hong C.L., Dai Z.X., Liu J.W., Zhou J., Hu C.Q., Weng H.X. Iodide and iodate effects on the growth and fruit quality of strawberry. J. Sci. Food Agric. 2017;97:230–235. doi: 10.1002/jsfa.7719. PubMed DOI
Li R., Li D.-W., Liu H.-P., Hong C.-L., Song M.-Y., Dai Z.-X., Liu J.-W., Zhou J., Weng H.-X. Enhancing iodine content and fruit quality of pepper (Capsicum annuum L.) through biofortification. Sci. Hortic. 2017;214:165–173. doi: 10.1016/j.scienta.2016.11.030. DOI
Weng H.X., Weng J.K., Yan A.L., Hong C.L., Yong W.B., Qin Y.C. Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil. Biol. Trace Elem. Res. 2008;123:218–228. doi: 10.1007/s12011-008-8094-y. PubMed DOI
Sors T.G., Ellis D.R., Salt D.E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 2005;86:373–389. doi: 10.1007/s11120-005-5222-9. PubMed DOI
White P.J., Bowen H.C., Parmaguru P., Fritz M., Spracklen W.P., Spiby R.E., Meacham M.C., Mead A., Harriman M., Trueman L.J., et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004;55:1927–1937. doi: 10.1093/jxb/erh192. PubMed DOI
Hussain B., Lin Q., Hamid Y., Sanaullah M., Di L., Hashmi M.L.u.R., Khan M.B., He Z., Yang X. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.) Sci. Total Environ. 2020;712:136497. doi: 10.1016/j.scitotenv.2020.136497. PubMed DOI
Praus L., Száková J., Steiner O., Goessler W. Rapeseed (Brassica napus L.) biofortification with selenium: How do sulphate and phosphate influence the efficiency of selenate application into soil? Arch. Agron. Soil Sci. 2019;65:2059–2072. doi: 10.1080/03650340.2019.1592163. DOI
Schiavon M., Berto C., Malagoli M., Trentin A., Sambo P., Dall’Acqua S., Pilon-Smits E.A. Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids. Front. Plant Sci. 2016;7:1371. doi: 10.3389/fpls.2016.01371. PubMed DOI PMC
Pickering I.J., Prince R.C., Salt D.E., George G.N. Quantitative, chemically specific imaging of selenium transformation in plants. Proc. Natl. Acad. Sci. USA. 2000;97:10717–10722. doi: 10.1073/pnas.200244597. PubMed DOI PMC
Hartikainen H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 2005;18:309–318. doi: 10.1016/j.jtemb.2005.02.009. PubMed DOI
Trelease S.F., Trelease H.M. Physiological differentiation in astragalus with reference to selenium. Am. J. Bot. 1939;26:530–535. doi: 10.1002/j.1537-2197.1939.tb09313.x. DOI
Terry N., Zayed A.M., De Souza M.P., Tarun A.S. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000;51:401–432. doi: 10.1146/annurev.arplant.51.1.401. PubMed DOI
Lima L.W., Pilon-Smits E.A.H., Schiavon M. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochim. Biophys. Acta Gen. Subj. 2018;1862:2343–2353. doi: 10.1016/j.bbagen.2018.03.028. PubMed DOI
Wang Y., Böck A., Neuhierl B. Acquisition of selenium tolerance by a selenium non-accumulating Astragalus species via selection. Biofactors. 1999;9:3–10. doi: 10.1002/biof.5520090102. PubMed DOI
Neuhierl B., Thanbichler M., Lottspeich F., Böck A. A Family of S-Methylmethionine-dependent Thiol/Selenol Methyltransferases: Role in slenium tolerance and evolutionary relation. J. Biol. Chem. 1999;274:5407–5414. doi: 10.1074/jbc.274.9.5407. PubMed DOI
Hawrylak-Nowak B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. 2013;70:149–157. doi: 10.1007/s10725-013-9788-5. DOI
Eustice D.C., Kull F.J., Shrift A. Selenium toxicity: Aminoacylation and Peptide bond formation with selenomethionine. Plant Physiol. 1981;67:1054–1058. doi: 10.1104/pp.67.5.1054. PubMed DOI PMC
de Oliveira V.C., Faquin V., Andrade F.R., Carneiro J.P., da Silva Júnior E.C., de Souza K.R.D., Pereira J., Guilherme L.R.G. Physiological and Physicochemical Responses of Potato to Selenium Biofortification in Tropical Soil. Potato Res. 2019;62:315–331. doi: 10.1007/s11540-019-9413-8. DOI
Lyons G. Selenium in cereals: Improving the efficiency of agronomic biofortification in the UK. Plant Soil. 2010;332:1–4. doi: 10.1007/s11104-010-0282-9. DOI
Lyons G.H., Genc Y., Soole K., Stangoulis J.C.R., Liu F., Graham R.D. Selenium increases seed production in Brassica. Plant Soil. 2009;318:73–80. doi: 10.1007/s11104-008-9818-7. DOI
Hegedüsová A., Mezeyová I., Hegedűs O., Musilová J., Paulen O. Selenium content increasing in the seeds of garden pea after foliar biofortification. Potravin. Slovak J. Food Sci. 2015;9:435–441. doi: 10.5219/559. DOI
Seppänen M., Turakainen M., Hartikainen H. Selenium effects on oxidative stress in potato. Plant Sci. 2003;165:311–319. doi: 10.1016/S0168-9452(03)00085-2. DOI
Zayed A.M., Terry N. Selenium Volatilization in Roots and Shoots: Effects of Shoot Removal and Sulfate Level. J. Plant Physiol. 1994;143:8–14. doi: 10.1016/S0176-1617(11)82090-0. DOI
Terry N., Carlson C., Raab T.K., Zayed A.M. Rates of Selenium Volatilization among Crop Species. J. Environ. Qual. 1992;21:341–344. doi: 10.2134/jeq1992.00472425002100030006x. DOI
Martens D.A., Suarez D.L. Mineralization of Selenium-Containing Amino Acids in Two California Soils. Soil Sci. Soc. Am. J. 1997;61:1685–1694. doi: 10.2136/sssaj1997.03615995006100060021x. DOI
De Angeli A., Monachello D., Ephritikhine G., Frachisse J.M., Thomine S., Gambale F., Barbier-Brygoo H. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature. 2006;442:939–942. doi: 10.1038/nature05013. PubMed DOI
White P.J., Broadley M.R. Chloride in Soils and its Uptake and Movement within the Plant: A Review. Ann. Bot. 2001;88:967–988. doi: 10.1006/anbo.2001.1540. DOI
Rakoczy-Lelek R., Smoleń S., Grzanka M., Ambroziak K., Pitala J., Skoczylas Ł., Liszka-Skoczylas M., Kardasz H. Effectiveness of Foliar Biofortification of Carrot With Iodine and Selenium in a Field Condition. Front. Plant Sci. 2021;12:656283. doi: 10.3389/fpls.2021.656283. PubMed DOI PMC
Mackowiak C.L., Grossl P.R., Cook K.L. Iodine toxicity in a plant-solution system with and without humic acid. Plant Soil. 2005;269:141–150. doi: 10.1007/s11104-004-0401-6. DOI
Zhu Y.G., Huang Y.Z., Hu Y., Liu Y.X. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: Effects of iodine species and solution concentrations. Environ. Int. 2003;29:33–37. doi: 10.1016/S0160-4120(02)00129-0. PubMed DOI
Voogt W., Holwerda H.T., Khodabaks R. Biofortification of lettuce (Lactuca sativa L.) with iodine: The effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Sci. Food Agric. 2010;90:906–913. doi: 10.1002/jsfa.3902. PubMed DOI
Duborská E., Urík M., Kubová J. Interaction with soil enhances the toxic effect of iodide and iodate on barley (Hordeum vulgare L.) compared to artificial culture media during initial growth stage. Arch. Agron. Soil Sci. 2018;64:46–57. doi: 10.1080/03650340.2017.1328104. DOI
Watanabe I., Tensho K. Further study on iodine toxicity in relation to “Reclamation Akagare” disease of lowland rice. Soil Sci. Plant Nutr. 1970;16:192–194. doi: 10.1080/00380768.1970.10432839. DOI
Kiferle C., Martinelli M., Salzano A.M., Gonzali S., Beltrami S., Salvadori P.A., Hora K., Holwerda H.T., Scaloni A., Perata P. Evidences for a Nutritional Role of Iodine in Plants. Front. Plant Sci. 2021;12:616868. doi: 10.3389/fpls.2021.616868. PubMed DOI PMC
Leyva R., Sánchez-Rodríguez E., Ríos J.J., Rubio-Wilhelmi M.M., Romero L., Ruiz J.M., Blasco B. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci. 2011;181:195–202. doi: 10.1016/j.plantsci.2011.05.007. PubMed DOI
Medrano Macías J., López Caltzontzit M.G., Rivas Martínez E.N., Narváez Ortiz W.A., Benavides Mendoza A., Martínez Lagunes P. Enhancement to Salt Stress Tolerance in Strawberry Plants by Iodine Products Application. Agronomy. 2021;11:602. doi: 10.3390/agronomy11030602. DOI
Kato S., Wachi T., Yoshihira K., Nakagawa T., Ishikawa A., Takagi D., Tezuka A., Yoshida H., Yoshida S., Sekimoto H., et al. Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci. 2013;4:227. doi: 10.3389/fpls.2013.00227. PubMed DOI PMC
Duborská E., Urík M., Bujdoš M., Kubová J. Aging and Substrate Type Effects on Iodide and Iodate Accumulation by Barley (Hordeum vulgare L.) Water Air Soil Pollut. 2016;227:407. doi: 10.1007/s11270-016-3112-8. DOI
Dudova J., Bujdoš M. Study of Selenium Sorption on Iron Oxide Hydroxides. Chem. Listy. 2015;109:770–774.
Golubkina N., Moldovan A., Kekina H., Kharchenko V., Sekara A., Vasileva V., Skrypnik L., Tallarita A., Caruso G. Joint Biofortification of Plants with Selenium and Iodine: New Field of Discoveries. Plants. 2021;10:1352. doi: 10.3390/plants10071352. PubMed DOI PMC
Saini H.S., Attieh J.M., Hanson A.D. Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction. Plant Cell Environ. 1995;18:1027–1033. doi: 10.1111/j.1365-3040.1995.tb00613.x. PubMed DOI
Attieh J.M., Hanson A.D., Saini H.S. Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J. Biol. Chem. 1995;270:9250–9257. doi: 10.1074/jbc.270.16.9250. PubMed DOI
Carlessi M., Mariotti L., Giaume F., Fornara F., Perata P., Gonzali S. Targeted knockout of the gene OsHOL1 removes methyl iodide emissions from rice plants. Sci. Rep. 2021;11:17010. doi: 10.1038/s41598-021-95198-x. PubMed DOI PMC
Landini M., Gonzali S., Kiferle C., Tonacchera M., Agretti P., Dimida A., Vitti P., Alpi A., Pinchera A., Perata P. Metabolic engineering of the iodine content in Arabidopsis. Sci. Rep. 2012;2:338. doi: 10.1038/srep00338. PubMed DOI PMC
WHO . Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption, 25–29 January 2010, Rome, Italy. World Health Organization; Geneva, Switzerland: 2011.
Barbosa V., Maulvault A.L., Anacleto P., Santos M., Mai M., Oliveira H., Delgado I., Coelho I., Barata M., Araújo-Luna R., et al. Enriched feeds with iodine and selenium from natural and sustainable sources to modulate farmed gilthead seabream (Sparus aurata) and common carp (Cyprinus carpio) fillets elemental nutritional value. Food Chem. Toxicol. 2020;140:111330. doi: 10.1016/j.fct.2020.111330. PubMed DOI
Granby K., Amlund H., Valente L.M.P., Dias J., Adoff G., Sousa V., Marques A., Sloth J.J., Larsen B.K. Growth performance, bioavailability of toxic and essential elements and nutrients, and biofortification of iodine of rainbow trout (Onchorynchus mykiss) fed blends with sugar kelp (Saccharina latissima) Food Chem. Toxicol. 2020;141:111387. doi: 10.1016/j.fct.2020.111387. PubMed DOI
Grabež V., Coll-Brasas E., Fulladosa E., Hallenstvedt E., Håseth T.T., Øverland M., Berg P., Egelandsdal B. Seaweed Inclusion in Finishing Lamb Diet Promotes Changes in Micronutrient Content and Flavour-Related Compounds of Raw Meat and Dry-Cured Leg (Fenalår) Foods. 2022;11:1043. doi: 10.3390/foods11071043. PubMed DOI PMC
Khan A.Z., Kumbhar S., Liu Y., Hamid M., Pan C., Nido S.A., Parveen F., Huang K. Dietary Supplementation of Selenium-Enriched Probiotics Enhances Meat Quality of Broiler Chickens (Gallus gallus domesticus) Raised Under High Ambient Temperature. Biol. Trace Elem. Res. 2018;182:328–338. doi: 10.1007/s12011-017-1094-z. PubMed DOI
Skrivan M., Dlouha G., Mašata O., Ševčíková S. Effect of dietary selenium on lipid oxidation, selenium and vitamin E content in the meat of broiler chickens. Czech J. Anim. Sci. 2008;53:306–311. doi: 10.17221/358-CJAS. DOI
Duborska E., Kubova J., Matus P. Factors Affecting Iodine Mobility in Soils. Chem. Listy. 2016;110:625–629.
Bujdoš M., Muľová A., Kubová J., Medveď J. Selenium fractionation and speciation in rocks, soils, waters and plants in polluted surface mine environment. Environ. Geol. 2005;47:353–360. doi: 10.1007/s00254-004-1157-2. DOI
Idrees M., Alam S., Farooq M., Wakeel A. Selenium Nutrition for Yield Enhancement and Grain Biofortification of Wheat through Different Application Methods. Int. J. Agric. Biol. 2018;20:1701–1709. doi: 10.17957/IJAB/15.0649. DOI
Izydorczyk G., Ligas B., Mikula K., Witek-Krowiak A., Moustakas K., Chojnacka K. Biofortification of edible plants with selenium and iodine—A systematic literature review. Sci. Total Environ. 2021;754:141983. doi: 10.1016/j.scitotenv.2020.141983. PubMed DOI
Broadley M., Alcock J., Alford J., Cartwright P., Foot I., Fairweather-Tait S., Hart D., Hurst R., Knott P., McGrath S., et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil. 2010;332:5–18. doi: 10.1007/s11104-009-0234-4. DOI
Jiang X.M., Cao X.Y., Jiang J.Y., Tai M., James D.W., Rakeman M.A., Dou Z.H., Mamette M., Amette K., Zhang M.L., et al. Dynamics of environmental supplementation of iodine: ‘Four years’ experience of iodination of irrigation water in Hotien, Xinjiang, China. Arch. Environ. Health. 1997;52:399–408. doi: 10.1080/00039899709602218. PubMed DOI
de Oliveira V.C., Faquin V., Guimarães K.C., Andrade F.R., Pereira J., Guilherme L.R.G. Agronomic biofortification of carrot with selenium. Cienc. Agrotecnol. 2018;42:138–147. doi: 10.1590/1413-70542018422031217. DOI
Germ M., Stibilj V., Šircelj H., Jerše A., Kroflič A., Golob A., Maršić N.K. Biofortification of common buckwheat microgreens and seeds with different forms of selenium and iodine. J. Sci. Food Agric. 2019;99:4353–4362. doi: 10.1002/jsfa.9669. PubMed DOI
Ducsay L., Ložek O., Marček M., Varényiová M., Hozlár P., Lošák T. Possibility of selenium biofortification of winter wheat grain. Plant Soil Environ. 2016;62:379–383. doi: 10.17221/324/2016-PSE. DOI
Li X., Wu Y., Li B., Yang Y., Yang Y. Selenium Accumulation Characteristics and Biofortification Potentiality in Turnip (Brassica rapa var. rapa) Supplied with Selenite or Selenate. Front. Plant Sci. 2017;8:2207. doi: 10.3389/fpls.2017.02207. PubMed DOI PMC
Lidon F.C., Oliveira K., Galhano C., Guerra M., Ribeiro M.M., Pelica J., Pataco I., Ramalho J.C., Leitão A.E., Almeida A.S., et al. Selenium biofortification of rice through foliar application with selenite and selenate. Exp. Agric. 2019;55:528–542. doi: 10.1017/S0014479718000157. DOI
Golubkina N., Kekina H., Caruso G. Yield, Quality and Antioxidant Properties of Indian Mustard (Brassica juncea L.) in Response to Foliar Biofortification with Selenium and Iodine. Plants. 2018;7:80. doi: 10.3390/plants7040080. PubMed DOI PMC
Zahedi S.M., Hosseini M.S., Daneshvar Hakimi Meybodi N., Teixeira da Silva J.A. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S. Afr. J. Bot. 2019;124:350–358. doi: 10.1016/j.sajb.2019.05.019. DOI
Wang Q., Yu Y., Li J., Wan Y., Huang Q., Guo Y., Li H. Effects of Different Forms of Selenium Fertilizers on Se Accumulation, Distribution, and Residual Effect in Winter Wheat-Summer Maize Rotation System. J. Agric. Food Chem. 2017;65:1116–1123. doi: 10.1021/acs.jafc.6b05149. PubMed DOI
Leija-Martínez P., Benavides-Mendoza A., Cabrera-De La Fuente M., Robledo-Olivo A., Ortega-Ortíz H., Sandoval-Rangel A., González-Morales S. Lettuce Biofortification with Selenium in Chitosan-Polyacrylic Acid Complexes. Agronomy. 2018;8:275. doi: 10.3390/agronomy8120275. DOI
Bañuelos G.S., Arroyo I., Pickering I.J., Yang S.I., Freeman J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015;166:603–608. doi: 10.1016/j.foodchem.2014.06.071. PubMed DOI
Bañuelos G.S., Arroyo I.S., Dangi S.R., Zambrano M.C. Continued Selenium Biofortification of Carrots and Broccoli Grown in Soils Once Amended with Se-enriched S. pinnata. Front. Plant Sci. 2016;7:1251. doi: 10.3389/fpls.2016.01251. PubMed DOI PMC
Jiang Y., El Mehdawi A.F., Tripti, Lima L.W., Stonehouse G., Fakra S.C., Hu Y., Qi H., Pilon-Smits E.A.H. Characterization of Selenium Accumulation, Localization and Speciation in Buckwheat–Implications for Biofortification. Front. Plant Sci. 2018;9:1583. doi: 10.3389/fpls.2018.01583. PubMed DOI PMC
Hong C.L., Weng H.X., Qin Y.C., Yan A.L., Xie L.L. Transfer of iodine from soil to vegetables by applying exogenous iodine. Agron. Sustain. Dev. 2008;28:575–583. doi: 10.1051/agro:2008033. DOI
Weng H., Hong C., Xia T., Bao L., Liu H., Li D. Iodine biofortification of vegetable plants—An innovative method for iodine supplementation. Chin. Sci. Bull. 2013;58:2066–2072. doi: 10.1007/s11434-013-5709-2. DOI
Smoleń S., Skoczylas Ł., Ledwożyw-Smoleń I., Rakoczy R., Kopeć A., Piątkowska E., Bieżanowska-Kopeć R., Koronowicz A., Kapusta-Duch J. Biofortification of Carrot (Daucus carota L.) with Iodine and Selenium in a Field Experiment. Front. Plant Sci. 2016;7:730. doi: 10.3389/fpls.2016.00730. PubMed DOI PMC
Lawson P.G., Daum D., Czauderna R., Meuser H., Hartling J.W. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015;6:450. doi: 10.3389/fpls.2015.00450. PubMed DOI PMC
Smoleń S., Kowalska I., Skoczylas Ł., Tabaszewska M., Pitala J., Mrożek J., Kováčik P. Effectiveness of enriching lettuce with iodine using 5-iodosalicylic and 3,5-diiodosalicylic acids and the chemical composition of plants depending on the type of soil in a pot experiment. Food Chem. 2022;382:132347. doi: 10.1016/j.foodchem.2022.132347. PubMed DOI
Reis H.P.G., Barcelos J.P.d.Q., Junior E.F., Santos E.F., Silva V.M., Moraes M.F., Putti F.F., Reis A.R.d. Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. J. Cereal Sci. 2018;79:508–515. doi: 10.1016/j.jcs.2018.01.004. DOI
Ramkissoon C., Degryse F., da Silva R.C., Baird R., Young S.D., Bailey E.H., McLaughlin M.J. Improving the efficacy of selenium fertilizers for wheat biofortification. Sci. Rep. 2019;9:19520. doi: 10.1038/s41598-019-55914-0. PubMed DOI PMC
Mobini M., Khoshgoftarmanesh A.H., Ghasemi S. Biofortification of onion bulb with selenium at different levels of sulfate. J. Plant Nutr. 2019;42:269–277. doi: 10.1080/01904167.2018.1554678. DOI
Golubkina N., Moldovan A., Fedotov M., Kekina H., Kharchenko V., Folmanis G., Alpatov A., Caruso G. Iodine and Selenium Biofortification of Chervil Plants Treated with Silicon Nanoparticles. Plants. 2021;10:2528. doi: 10.3390/plants10112528. PubMed DOI PMC
Smoleń S., Kowalska I., Skoczylas Ł., Liszka-Skoczylas M., Grzanka M., Halka M., Sady W. The effect of salicylic acid on biofortification with iodine and selenium and the quality of potato cultivated in the NFT system. Sci. Hortic. 2018;240:530–543. doi: 10.1016/j.scienta.2018.06.060. DOI
Smoleń S., Kowalska I., Kováčik P., Halka M., Sady W. Biofortification of Six Varieties of Lettuce (Lactuca sativa L.) With Iodine and Selenium in Combination with the Application of Salicylic Acid. Front. Plant Sci. 2019;10:143. doi: 10.3389/fpls.2019.00143. PubMed DOI PMC
Smoleń S., Wierzbińska J., Sady W., Kołton A., Wiszniewska A., Liszka-Skoczylas M. Iodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.) Sci. Hortic. 2015;188:89–96. doi: 10.1016/j.scienta.2015.03.023. DOI
Smoleń S., Ledwożyw-Smoleń I., Sady W. The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.) Plant Soil. 2016;402:129–143. doi: 10.1007/s11104-015-2785-x. DOI
Matulová M., Bujdoš M., Miglierini M.B., Mitróová Z., Kubovčíková M., Urík M. The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface—A three-step process with an unexpected desorption phase. Chem. Geol. 2020;556:119852. doi: 10.1016/j.chemgeo.2020.119852. DOI
Matulová M., Urík M., Bujdoš M., Duborská E., Cesnek M., Miglierini M.B. Selenite sorption onto goethite: Isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chem. Pap. 2019;73:2975–2985. doi: 10.1007/s11696-019-00847-1. DOI
Farkas B., Vojtková H., Bujdoš M., Kolenčík M., Šebesta M., Matulová M., Duborská E., Danko M., Kim H., Kučová K., et al. Fungal mobilization of selenium in the presence of hausmannite and ferric oxyhydroxides. J. Fungi. 2021;7:810. doi: 10.3390/jof7100810. PubMed DOI PMC
Ban-nai T., Muramatsu Y., Amachi S. Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures. Chemosphere. 2006;65:2216–2222. doi: 10.1016/j.chemosphere.2006.05.047. PubMed DOI
Amachi S., Kasahara M., Hanada S., Kamagata Y., Shinoyama H., Fujii T., Muramatsu Y. Microbial Participation in Iodine Volatilization from Soils. Environ. Sci. Technol. 2003;37:3885–3890. doi: 10.1021/es0210751. PubMed DOI
Duborská E., Urík M., Bujdoš M. Comparison of Iodide and Iodate Accumulation and Volatilization by Filamentous Fungi during Static Cultivation. Water Air Soil Pollut. 2017;228:225. doi: 10.1007/s11270-017-3407-4. DOI
Yang D., Hu C., Wang X., Shi G., Li Y., Fei Y., Song Y., Zhao X. Microbes: A potential tool for selenium biofortification. Metallomics. 2021;13:mfab054. doi: 10.1093/mtomcs/mfab054. PubMed DOI
Acuña J.J., Jorquera M.A., Barra P.J., Crowley D.E., de la Luz Mora M. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol. Fertil. Soils. 2013;49:175–185. doi: 10.1007/s00374-012-0705-2. DOI
Durán P., Acuña J.J., Armada E., López-Castillo O.M., Cornejo P., Mora M.L., Azcón R. Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. J. Soil Sci. Plant Nutr. 2016;16:211–225. doi: 10.4067/S0718-95162016005000017. DOI
Yasin M., El-Mehdawi A.F., Anwar A., Pilon-Smits E.A.H., Faisal M. Microbial-enhanced Selenium and Iron Biofortification of Wheat (Triticum aestivum L.)—Applications in Phytoremediation and Biofortification. Int. J. Phytoremediat. 2015;17:341–347. doi: 10.1080/15226514.2014.922920. PubMed DOI
Yasin M., El-Mehdawi A.F., Pilon-Smits E.A., Faisal M. Selenium-fortified wheat: Potential of microbes for biofortification of selenium and other essential nutrients. Int. J. Phytoremediat. 2015;17:777–786. doi: 10.1080/15226514.2014.987372. PubMed DOI
Lidon F.C., Oliveira K., Ribeiro M.M., Pelica J., Pataco I., Ramalho J.C., Leitão A.E., Almeida A.S., Campos P.S., Ribeiro-Barros A.I., et al. Selenium biofortification of rice grains and implications on macronutrients quality. J. Cereal Sci. 2018;81:22–29. doi: 10.1016/j.jcs.2018.03.010. DOI
Golubkina N.A., Folmanis G.E., Tananaev I.G., Krivenkov L.V., Kosheleva O.V., Soldatenko A.V. Comparative Evaluation of Spinach Biofortification with Selenium Nanoparticles and Ionic Forms of the Element. Nanotechnol. Russ. 2017;12:569–576. doi: 10.1134/S1995078017050032. DOI
Halka M., Smoleń S., Czernicka M., Klimek-Chodacka M., Pitala J., Tutaj K. Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiol. Biochem. 2019;144:35–48. doi: 10.1016/j.plaphy.2019.09.028. PubMed DOI
Lyons G. Biofortification of Cereals with Foliar Selenium and Iodine Could Reduce Hypothyroidism. Front. Plant Sci. 2018;9:730. doi: 10.3389/fpls.2018.00730. PubMed DOI PMC
Zou C., Du Y., Rashid A., Ram H., Savasli E., Pieterse P.J., Ortiz-Monasterio I., Yazici A., Kaur C., Mahmood K., et al. Simultaneous Biofortification of Wheat with Zinc, Iodine, Selenium, and Iron through Foliar Treatment of a Micronutrient Cocktail in Six Countries. J. Agric. Food Chem. 2019;67:8096–8106. doi: 10.1021/acs.jafc.9b01829. PubMed DOI
Cakmak I., Marzorati M., Van den Abbeele P., Hora K., Holwerda H.T., Yazici M.A., Savasli E., Neri J., Du Laing G. Fate and Bioaccessibility of Iodine in Food Prepared from Agronomically Biofortified Wheat and Rice and Impact of Cofertilization with Zinc and Selenium. J. Agric. Food Chem. 2020;68:1525–1535. doi: 10.1021/acs.jafc.9b05912. PubMed DOI
Prom-u-thai C., Rashid A., Ram H., Zou C., Guilherme L.R.G., Corguinha A.P.B., Guo S., Kaur C., Naeem A., Yamuangmorn S., et al. Simultaneous Biofortification of Rice with Zinc, Iodine, Iron and Selenium Through Foliar Treatment of a Micronutrient Cocktail in Five Countries. Front. Plant Sci. 2020;11:589835. doi: 10.3389/fpls.2020.589835. PubMed DOI PMC
Germ M., Kacjan-Maršić N., Kroflič A., Jerše A., Stibilj V., Golob A. Significant Accumulation of Iodine and Selenium in Chicory (Cichorium intybus L. var. foliosum Hegi) Leaves after Foliar Spraying. Plants. 2020;9:1766. doi: 10.3390/plants9121766. PubMed DOI PMC
Smoleń S., Baranski R., Ledwożyw-Smoleń I., Skoczylas Ł., Sady W. Combined biofortification of carrot with iodine and selenium. Food Chem. 2019;300:125202. doi: 10.1016/j.foodchem.2019.125202. PubMed DOI
Sahin O. Combined biofortification of soilless grown lettuce with iodine, selenium and zinc and its effect on essential and non-essential elemental composition. J. Plant Nutr. 2021;44:673–678. doi: 10.1080/01904167.2020.1849300. DOI
Smoleń S., Kowalska I., Czernicka M., Halka M., Kęska K., Sady W. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata) Front. Plant Sci. 2016;7:1553. doi: 10.3389/fpls.2016.01553. PubMed DOI PMC
Golob A., Kroflič A., Jerše A., Kacjan Maršić N., Šircelj H., Stibilj V., Germ M. Response of Pumpkin to Different Concentrations and Forms of Selenium and Iodine, and their Combinations. Plants. 2020;9:899. doi: 10.3390/plants9070899. PubMed DOI PMC
Budke C., Dierend W., Schön H.-G., Hora K., Mühling K.H., Daum D. Iodine Biofortification of Apples and Pears in an Orchard Using Foliar Sprays of Different Composition. Front. Plant Sci. 2021;12:638671. doi: 10.3389/fpls.2021.638671. PubMed DOI PMC
Tonacchera M., Dimida A., De Servi M., Frigeri M., Ferrarini E., De Marco G., Grasso L., Agretti P., Piaggi P., Aghini-Lombardi F., et al. Iodine Fortification of Vegetables Improves Human Iodine Nutrition: In Vivo Evidence for a New Model of Iodine Prophylaxis. J. Clin. Endocrinol. Metab. 2013;98:E694–E697. doi: 10.1210/jc.2012-3509. PubMed DOI
Li R., Li D.W., Yan A.L., Hong C.L., Liu H.P., Pan L.H., Song M.Y., Dai Z.X., Ye M.L., Weng H.X. The bioaccessibility of iodine in the biofortified vegetables throughout cooking and simulated digestion. J. Food Sci. Technol. 2018;55:366–375. doi: 10.1007/s13197-017-2946-4. PubMed DOI PMC
Sun G.-X., Van de Wiele T., Alava P., Tack F.M.G., Du Laing G. Bioaccessibility of selenium from cooked rice as determined in a simulator of the human intestinal tract (SHIME) J. Sci. Food Agric. 2017;97:3540–3545. doi: 10.1002/jsfa.8208. PubMed DOI
Hu L., Fan H., Wu D., Wan J., Wang X., Huang R., Liu W., Shen F. Assessing bioaccessibility of Se and I in dual biofortified radish seedlings using simulated in vitro digestion. Food Res. Int. 2019;119:701–708. doi: 10.1016/j.foodres.2018.10.049. PubMed DOI
Golob A., Novak T., Maršić N.K., Šircelj H., Stibilj V., Jerše A., Kroflič A., Germ M. Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes) and increases their contents in tubers. Plant Physiol. Biochem. 2020;150:234–243. doi: 10.1016/j.plaphy.2020.02.044. PubMed DOI
Puccinelli M., Malorgio F., Incrocci L., Rosellini I., Pezzarossa B. Effects of Individual and Simultaneous Selenium and Iodine Biofortification of Baby-Leaf Lettuce Plants Grown in Two Different Hydroponic Systems. Horticulturae. 2021;7:590. doi: 10.3390/horticulturae7120590. DOI
Cerretani L., Comandini P., Fumanelli D., Scazzina F., Chiavaro E. Evaluation of iodine content and stability in recipes prepared with biofortified potatoes. Int. J. Food Sci. Nutr. 2014;65:797–802. doi: 10.3109/09637486.2014.917155. PubMed DOI