3D Electron Diffraction on Nanoparticles: Minimal Size and Associated Dynamical Effects
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40419477
PubMed Central
PMC12164520
DOI
10.1021/acsnano.5c01764
Knihovny.cz E-zdroje
- Klíčová slova
- crystallography, dynamical refinement, electron diffraction, electron microscopy, oxide nanoparticles,
- Publikační typ
- časopisecké články MeSH
Over the past decade, advances in electron diffraction (ED) have significantly improved the determination and refinement of crystal structures, making it a viable alternative to traditional X-ray diffraction (XRD), especially for very small volumes, such as nanoparticles (NPs). This work evaluates the application of advanced 3D ED techniques to the analysis of isolated NPs, focusing on their efficacy and limitations in terms of crystal size and accuracy of results. Our investigation begins by addressing the challenges of obtaining 3D ED data for NPs, including sample preparation, instrument capabilities, and the choice of 3D ED methods. We find that 3D ED can provide highly accurate structure refinements for crystals in the 50-100 nm range and is also effective for the analysis of NPs as small as 10 nm. While kinematical approximations often provide accurate refinements similar to those obtained from powder XRD, the accuracy depends on the specific data set and may not always align with traditional reliability indicators. Our study shows that dynamical scattering effects, even in tiny crystals, challenge the assumption that they are negligible in thin crystal scenarios. Addressing these effects through full dynamical refinement significantly improves the accuracy and reliability of the structure determination. This report suggests a paradigm shift in viewing dynamic scattering effects not as mere obstacles but as opportunities to explore crystal structures in greater detail on smaller scales. By embracing these complexities, 3D ED can provide precise and reliable structural insights that are critical to the advancement of nanotechnology and materials science.
CRISMAT ENSICAEN CNRS Université de Caen Normandie Université Caen 14050 France
Department of Applied Science and Technology Politecnico di Torino Torino 10129 Italy
Department of Structure Analysis Institute of Physics of the CAS Na Slovance 2 Prague 18200 Czechia
Electron Crystallography Istituto Italiano di Tecnologia Pontedera 56025 Italy
Elettra Sincrotrone Basovizza Trieste 34149 Italy
EMAT University of Antwerp Groenenborgerlaan 171 Antwerp 2020 Belgium
Functional Nanosystems Istituto Italiano di Tecnologia Genova 16163 Italy
Zobrazit více v PubMed
Lah, N. A. C. ; Zubir, M. N. M. ; Samykano, M. A. . Engineered Nanomaterial in Electronics and Electrical Industries. In Handbook of Nanomaterials for Industrial Applications; Elsevier, 2018; pp 324–364.
Ndolomingo M. J., Bingwa N., Meijboom R.. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020;55(15):6195–6241. doi: 10.1007/s10853-020-04415-x. DOI
Ba Z., Han Y., Qiao D., Feng D., Huang G.. Composite Nanoparticles Based on Hydrotalcite as High Performance Lubricant Additives. Ind. Eng. Chem. Res. 2018;57:15225–15233. doi: 10.1021/acs.iecr.8b02831. DOI
Patra J. K., Das G., Fraceto L. F., Campos E. V. R., Rodriguez-Torres M. D. P., Acosta-Torres L. S., Diaz-Torres L. A., Grillo R., Swamy M. K., Sharma S., Habtemariam S., Shin H.-S.. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC
Wong K., Dia S.. Nanotechnology in Batteries. J. Energy Resour. Technol. 2017;139(1):014001. doi: 10.1115/1.4034860. DOI
Savage N., Diallo M. S.. Nanomaterials and Water Purification: Opportunities and Challenges. J. Nanoparticle Res. 2005;7(4–5):331–342. doi: 10.1007/s11051-005-7523-5. DOI
Toso S., Imran M., Mugnaioli E., Moliterni A., Caliandro R., Schrenker N. J., Pianetti A., Zito J., Zaccaria F., Wu Y., Gemmi M., Giannini C., Brovelli S., Infante I., Bals S., Manna L.. Halide Perovskites as Disposable Epitaxial Templates for the Phase-Selective Synthesis of Lead Sulfochloride Nanocrystals. Nat. Commun. 2022;13(1):3976. doi: 10.1038/s41467-022-31699-1. PubMed DOI PMC
Cowley, J. M. Diffraction Physics, 3rd rev. ed.; North-Holland Personal Library; Elsevier: New York, 1995.
Gemmi M., Mugnaioli E., Gorelik T. E., Kolb U., Palatinus L., Boullay P., Hovmöller S., Abrahams J. P.. 3D Electron Diffraction: The Nanocrystallography Revolution. ACS Cent. Sci. 2019;5(8):1315–1329. doi: 10.1021/acscentsci.9b00394. PubMed DOI PMC
Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D.. Towards Automated Diffraction Tomography: Part IData Acquisition. Ultramicroscopy. 2007;107(6–7):507–513. doi: 10.1016/j.ultramic.2006.10.007. PubMed DOI
Mugnaioli E., Gorelik T., Kolb U.. Ab Initio Structure Solution from Electron Diffraction Data Obtained by a Combination of Automated Diffraction Tomography and Precession Technique. Ultramicroscopy. 2009;109(6):758–765. doi: 10.1016/j.ultramic.2009.01.011. PubMed DOI
Nederlof I., Van Genderen E., Li Y.-W., Abrahams J. P.. A Medipix Quantum Area Detector Allows Rotation Electron Diffraction Data Collection from Submicrometre Three-Dimensional Protein Crystals. Acta Crystallogr., Sect. D:Biol. Crystallogr. 2013;69(7):1223–1230. doi: 10.1107/S0907444913009700. PubMed DOI PMC
Palatinus L., Petříček V., Corrêa C. A.. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation. Acta Crystallogr., Sect. A:Found. Adv. 2015;71(2):235–244. doi: 10.1107/S2053273315001266. PubMed DOI
Palatinus L., Corrêa C. A., Steciuk G., Jacob D., Roussel P., Boullay P., Klementová M., Gemmi M., Kopeček J., Domeneghetti M. C., Cámara F., Petříček V.. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Tests on Experimental Data. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2015;71(6):740–751. doi: 10.1107/S2052520615017023. PubMed DOI
Nannenga B. L., Shi D., Leslie A. G. W., Gonen T.. High-Resolution Structure Determination by Continuous-Rotation Data Collection in MicroED. Nat. Methods. 2014;11(9):927–930. doi: 10.1038/nmeth.3043. PubMed DOI PMC
Birkel C. S., Mugnaioli E., Gorelik T., Kolb U., Panthöfer M., Tremel W.. Solution Synthesis of a New Thermoelectric Zn 1+ x Sb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography. J. Am. Chem. Soc. 2010;132(28):9881–9889. doi: 10.1021/ja1035122. PubMed DOI
Feyand M., Mugnaioli E., Vermoortele F., Bueken B., Dieterich J. M., Reimer T., Kolb U., de Vos D., Stock N.. Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal–Organic Framework. Angew. Chem., Int. Ed. 2012;51:10373. doi: 10.1002/anie.201204963. PubMed DOI
Mugnaioli E., Andrusenko I., Schüler T., Loges N., Dinnebier R. E., Panthöfer M., Tremel W., Kolb U.. Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction. Angew. Chem., Int. Ed. 2012;51(28):7041–7045. doi: 10.1002/anie.201200845. PubMed DOI
Bhat S., Wiehl L., Molina-Luna L., Mugnaioli E., Lauterbach S., Sicolo S., Kroll P., Duerrschnabel M., Nishiyama N., Kolb U., Albe K., Kleebe H.-J., Riedel R.. High-Pressure Synthesis of Novel Boron Oxynitride B6 N4 O3 with Sphalerite Type Structure. Chem. Mater. 2015;27(17):5907–5914. doi: 10.1021/acs.chemmater.5b01706. DOI
Missen O. P., Mills S. J., Canossa S., Hadermann J., Nénert G., Weil M., Libowitzky E., Housley R. M., Artner W., Kampf A. R., Rumsey M. S., Spratt J., Momma K., Dunstan M. A.. Polytypism in Mcalpineite: A Study of Natural and Synthetic Cu3 TeO6. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2022;78(1):20–32. doi: 10.1107/S2052520621013032. PubMed DOI
Meagher E. P., Lager G. A.. Polyhedral Thermal Expansion in the TiO2 Polymorphs: Refinement of the Crystal Structures of Rutile and Brookite at High Temperature. Can. Miner. 1979;17(1):77–85.
De La Flor G., Orobengoa D., Tasci E., Perez-Mato J. M., Aroyo M. I.. Comparison of Structures Applying the Tools Available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016;49(2):653–664. doi: 10.1107/S1600576716002569. DOI
Klar P. B., Krysiak Y., Xu H., Steciuk G., Cho J., Zou X., Palatinus L.. Accurate Structure Models and Absolute Configuration Determination Using Dynamical Effects in Continuous-Rotation 3D Electron Diffraction Data. Nat. Chem. 2023;15(6):848–855. doi: 10.1038/s41557-023-01186-1. PubMed DOI PMC
Gemmi, M. ; Palatinus, L. ; Boullay, P. ; Abrahams, J. P. ; Ben Meriem, A. ; Cordero Oyonarte, E. ; Emerson Agbemeh, V. ; Chintakindi, H. ; Faye Diouf, M. D. ; Filipcik, P. ; Gemmrich Hernandez, L. ; van Genderen, E. ; Hadermann, J. ; Hajizadeh, A. ; Jeriga, B. ; Kolb, U. ; Matinyan, S. ; Passuti, S. ; Santucci, M. ; Suresh, A. ; Pérez, O. ; Tai, C.-W. ; Vypritskaia, A. ; Wang, L. ; Xu, H. ; Zou, X. . Round Robin on Structure Refinement Quality with 3D Electron Diffraction Data. IUCrJ 2025. Submitted.
Cichocka M. O., Ångström J., Wang B., Zou X., Smeets S.. High-Throughput Continuous Rotation Electron Diffraction Data Acquisition via Software Automation. J. Appl. Crystallogr. 2018;51(6):1652–1661. doi: 10.1107/S1600576718015145. PubMed DOI PMC
Plana-Ruiz S., Krysiak Y., Portillo J., Alig E., Estradé S., Peiró F., Kolb U.. Fast-ADT: A Fast and Automated Electron Diffraction Tomography Setup for Structure Determination and Refinement. Ultramicroscopy. 2020;211:112951. doi: 10.1016/j.ultramic.2020.112951. PubMed DOI
Yang T., Xu H., Zou X.. Improving Data Quality for Three-Dimensional Electron Diffraction by a Post-Column Energy Filter and a New Crystal Tracking Method. J. Appl. Crystallogr. 2022;55(6):1583–1591. doi: 10.1107/S1600576722009633. PubMed DOI PMC
Petříček V., Palatinus L., Plášil J., Dušek M.. Jana2020 – a New Version of the Crystallographic Computing System Jana. Z. Kristallogr. Cryst. Mater. 2023;238(7–8):271–282. doi: 10.1515/zkri-2023-0005. DOI
Brázda P., Klementová M., Krysiak Y., Palatinus L.. Accurate Lattice Parameters from 3D Electron Diffraction Data. I. Optical Distortions. IUCrJ. 2022;9(6):735–755. doi: 10.1107/S2052252522007904. PubMed DOI PMC
Passuti S., Varignon J., David A., Boullay P.. Scanning Precession Electron Tomography (SPET) for Structural Analysis of Thin Films along Their Thickness. Symmetry. 2023;15(7):1459. doi: 10.3390/sym15071459. DOI
Yang H., Hazen R. M.. Crystal Chemistry of Cation Order–Disorder in Pseudobrookite-Type MgTi2O5. J. Solid State Chem. 1998;138(2):238–244. doi: 10.1006/jssc.1998.7775. DOI
Smeets S., Zou X., Wan W.. Serial Electron Crystallography for Structure Determination and Phase Analysis of Nanocrystalline Materials. J. Appl. Crystallogr. 2018;51(5):1262–1273. doi: 10.1107/S1600576718009500. PubMed DOI PMC
Hogan-Lamarre P., Luo Y., Bücker R., Miller R. J. D., Zou X.. STEM SerialED: Achieving High-Resolution Data for Ab Initio Structure Determination of Beam-Sensitive Nanocrystalline Materials. IUCrJ. 2024;11(1):62–72. doi: 10.1107/S2052252523009661. PubMed DOI PMC
Bücker R., Hogan-Lamarre P., Mehrabi P., Schulz E. C., Bultema L. A., Gevorkov Y., Brehm W., Yefanov O., Oberthür D., Kassier G. H., Dwayne Miller R. J.. Serial Protein Crystallography in an Electron Microscope. Nat. Commun. 2020;11(1):996. doi: 10.1038/s41467-020-14793-0. PubMed DOI PMC
Rauch E. F., Dupuy L.. Rapid Spot Diffraction Patterns Idendification through Template Matching. Arch. Metall. Mater. 2005;50(1):87–99.
Rauch E. F., Portillo J., Nicolopoulos S., Bultreys D., Rouvimov S., Moeck P.. Automated Nanocrystal Orientation and Phase Mapping in the Transmission Electron Microscope on the Basis of Precession Electron Diffraction. Z. Kristallogr. 2010;225(2–3):103–109. doi: 10.1524/zkri.2010.1205. DOI
Palatinus L., Brázda P., Jelínek M., Hrdá J., Steciuk G., Klementová M.. Specifics of the Data Processing of Precession Electron Diffraction Tomography Data and Their Implementation in the Program PETS2.0. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2019;75(4):512–522. doi: 10.1107/S2052520619007534. PubMed DOI
Kandiel T. A., Feldhoff A., Robben L., Dillert R., Bahnemann D. W.. Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts. Chem. Mater. 2010;22(6):2050–2060. doi: 10.1021/cm903472p. DOI
Calatayud D. G., Jardiel T., Peiteado M., Rodríguez C. F., Espino Estévez M. R., Doña Rodríguez J. M., Palomares F. J., Rubio F., Fernández-Hevia D., Caballero A. C.. Highly Photoactive Anatase Nanoparticles Obtained Using Trifluoroacetic Acid as an Electron Scavenger and Morphological Control Agent. J. Mater. Chem. A. 2013;1(45):14358. doi: 10.1039/c3ta12970e. DOI
Horn M., Schwerdtfeger C. F., Meagher E. P.. Refinement of the Structure of Anatase at Several Temperatures. Z. Kristallogr. 1972;136(3–4):273–281. doi: 10.1524/zkri.1972.136.3-4.273. DOI
Guizzardi M., Ghini M., Villa A., Rebecchi L., Li Q., Mancini G., Marangi F., Ross A. M., Zhu X., Kriegel I., Scotognella F.. Near-Infrared Plasmon-Induced Hot Electron Extraction Evidence in an Indium Tin Oxide Nanoparticle/Monolayer Molybdenum Disulfide Heterostructure. J. Phys. Chem. Lett. 2022;13(42):9903–9909. doi: 10.1021/acs.jpclett.2c02358. PubMed DOI PMC
González G. B., Cohen J. B., Hwang J.-H., Mason T. O., Hodges J. P., Jorgensen J. D.. Neutron Diffraction Study on the Defect Structure of Indium–Tin–Oxide. J. Appl. Phys. 2001;89(5):2550–2555. doi: 10.1063/1.1341209. DOI
Selvamani T., Anandan S., Asiri A. M., Maruthamuthu P., Ashokkumar M.. Preparation of MgTi2O5 Nanoparticles for Sonophotocatalytic Degradation of Triphenylmethane Dyes. Ultrason. Sonochem. 2021;75:105585. doi: 10.1016/j.ultsonch.2021.105585. PubMed DOI PMC
Smeets, S. ; Wang, B. ; Hogenbirk, E. . Instamatic-Dev/Instamatic: 1.7.0, 2021.
Rodríguez-Carvajal J.. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B. 1993;192(1–2):55–69. doi: 10.1016/0921-4526(93)90108-I. DOI
Roisnel T., Rodríquez-Carvajal J.. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. Mater. Sci. Forum. 2001;378–381:118–123. doi: 10.4028/www.scientific.net/MSF.378-381.118. DOI
Momma K., Izumi F.. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011;44(6):1272–1276. doi: 10.1107/S0021889811038970. DOI
Järvinen M.. Application of Symmetrized Harmonics Expansion to Correction of the Preferred Orientation Effect. J. Appl. Crystallogr. 1993;26(4):525–531. doi: 10.1107/S0021889893001219. DOI
Palatinus L., Chapuis G.. SUPERFLIP – a Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007;40(4):786–790. doi: 10.1107/S0021889807029238. DOI