3D Electron Diffraction on Nanoparticles: Minimal Size and Associated Dynamical Effects

. 2025 Jun 10 ; 19 (22) : 20599-20612. [epub] 20250526

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40419477

Over the past decade, advances in electron diffraction (ED) have significantly improved the determination and refinement of crystal structures, making it a viable alternative to traditional X-ray diffraction (XRD), especially for very small volumes, such as nanoparticles (NPs). This work evaluates the application of advanced 3D ED techniques to the analysis of isolated NPs, focusing on their efficacy and limitations in terms of crystal size and accuracy of results. Our investigation begins by addressing the challenges of obtaining 3D ED data for NPs, including sample preparation, instrument capabilities, and the choice of 3D ED methods. We find that 3D ED can provide highly accurate structure refinements for crystals in the 50-100 nm range and is also effective for the analysis of NPs as small as 10 nm. While kinematical approximations often provide accurate refinements similar to those obtained from powder XRD, the accuracy depends on the specific data set and may not always align with traditional reliability indicators. Our study shows that dynamical scattering effects, even in tiny crystals, challenge the assumption that they are negligible in thin crystal scenarios. Addressing these effects through full dynamical refinement significantly improves the accuracy and reliability of the structure determination. This report suggests a paradigm shift in viewing dynamic scattering effects not as mere obstacles but as opportunities to explore crystal structures in greater detail on smaller scales. By embracing these complexities, 3D ED can provide precise and reliable structural insights that are critical to the advancement of nanotechnology and materials science.

Zobrazit více v PubMed

Lah, N. A. C. ; Zubir, M. N. M. ; Samykano, M. A. . Engineered Nanomaterial in Electronics and Electrical Industries. In Handbook of Nanomaterials for Industrial Applications; Elsevier, 2018; pp 324–364.

Ndolomingo M. J., Bingwa N., Meijboom R.. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020;55(15):6195–6241. doi: 10.1007/s10853-020-04415-x. DOI

Ba Z., Han Y., Qiao D., Feng D., Huang G.. Composite Nanoparticles Based on Hydrotalcite as High Performance Lubricant Additives. Ind. Eng. Chem. Res. 2018;57:15225–15233. doi: 10.1021/acs.iecr.8b02831. DOI

Patra J. K., Das G., Fraceto L. F., Campos E. V. R., Rodriguez-Torres M. D. P., Acosta-Torres L. S., Diaz-Torres L. A., Grillo R., Swamy M. K., Sharma S., Habtemariam S., Shin H.-S.. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC

Wong K., Dia S.. Nanotechnology in Batteries. J. Energy Resour. Technol. 2017;139(1):014001. doi: 10.1115/1.4034860. DOI

Savage N., Diallo M. S.. Nanomaterials and Water Purification: Opportunities and Challenges. J. Nanoparticle Res. 2005;7(4–5):331–342. doi: 10.1007/s11051-005-7523-5. DOI

Toso S., Imran M., Mugnaioli E., Moliterni A., Caliandro R., Schrenker N. J., Pianetti A., Zito J., Zaccaria F., Wu Y., Gemmi M., Giannini C., Brovelli S., Infante I., Bals S., Manna L.. Halide Perovskites as Disposable Epitaxial Templates for the Phase-Selective Synthesis of Lead Sulfochloride Nanocrystals. Nat. Commun. 2022;13(1):3976. doi: 10.1038/s41467-022-31699-1. PubMed DOI PMC

Cowley, J. M. Diffraction Physics, 3rd rev. ed.; North-Holland Personal Library; Elsevier: New York, 1995.

Gemmi M., Mugnaioli E., Gorelik T. E., Kolb U., Palatinus L., Boullay P., Hovmöller S., Abrahams J. P.. 3D Electron Diffraction: The Nanocrystallography Revolution. ACS Cent. Sci. 2019;5(8):1315–1329. doi: 10.1021/acscentsci.9b00394. PubMed DOI PMC

Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D.. Towards Automated Diffraction Tomography: Part IData Acquisition. Ultramicroscopy. 2007;107(6–7):507–513. doi: 10.1016/j.ultramic.2006.10.007. PubMed DOI

Mugnaioli E., Gorelik T., Kolb U.. Ab Initio Structure Solution from Electron Diffraction Data Obtained by a Combination of Automated Diffraction Tomography and Precession Technique. Ultramicroscopy. 2009;109(6):758–765. doi: 10.1016/j.ultramic.2009.01.011. PubMed DOI

Nederlof I., Van Genderen E., Li Y.-W., Abrahams J. P.. A Medipix Quantum Area Detector Allows Rotation Electron Diffraction Data Collection from Submicrometre Three-Dimensional Protein Crystals. Acta Crystallogr., Sect. D:Biol. Crystallogr. 2013;69(7):1223–1230. doi: 10.1107/S0907444913009700. PubMed DOI PMC

Palatinus L., Petříček V., Corrêa C. A.. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation. Acta Crystallogr., Sect. A:Found. Adv. 2015;71(2):235–244. doi: 10.1107/S2053273315001266. PubMed DOI

Palatinus L., Corrêa C. A., Steciuk G., Jacob D., Roussel P., Boullay P., Klementová M., Gemmi M., Kopeček J., Domeneghetti M. C., Cámara F., Petříček V.. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Tests on Experimental Data. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2015;71(6):740–751. doi: 10.1107/S2052520615017023. PubMed DOI

Nannenga B. L., Shi D., Leslie A. G. W., Gonen T.. High-Resolution Structure Determination by Continuous-Rotation Data Collection in MicroED. Nat. Methods. 2014;11(9):927–930. doi: 10.1038/nmeth.3043. PubMed DOI PMC

Birkel C. S., Mugnaioli E., Gorelik T., Kolb U., Panthöfer M., Tremel W.. Solution Synthesis of a New Thermoelectric Zn 1+ x Sb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography. J. Am. Chem. Soc. 2010;132(28):9881–9889. doi: 10.1021/ja1035122. PubMed DOI

Feyand M., Mugnaioli E., Vermoortele F., Bueken B., Dieterich J. M., Reimer T., Kolb U., de Vos D., Stock N.. Automated Diffraction Tomography for the Structure Elucidation of Twinned, Sub-micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal–Organic Framework. Angew. Chem., Int. Ed. 2012;51:10373. doi: 10.1002/anie.201204963. PubMed DOI

Mugnaioli E., Andrusenko I., Schüler T., Loges N., Dinnebier R. E., Panthöfer M., Tremel W., Kolb U.. Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction. Angew. Chem., Int. Ed. 2012;51(28):7041–7045. doi: 10.1002/anie.201200845. PubMed DOI

Bhat S., Wiehl L., Molina-Luna L., Mugnaioli E., Lauterbach S., Sicolo S., Kroll P., Duerrschnabel M., Nishiyama N., Kolb U., Albe K., Kleebe H.-J., Riedel R.. High-Pressure Synthesis of Novel Boron Oxynitride B6 N4 O3 with Sphalerite Type Structure. Chem. Mater. 2015;27(17):5907–5914. doi: 10.1021/acs.chemmater.5b01706. DOI

Missen O. P., Mills S. J., Canossa S., Hadermann J., Nénert G., Weil M., Libowitzky E., Housley R. M., Artner W., Kampf A. R., Rumsey M. S., Spratt J., Momma K., Dunstan M. A.. Polytypism in Mcalpineite: A Study of Natural and Synthetic Cu3 TeO6. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2022;78(1):20–32. doi: 10.1107/S2052520621013032. PubMed DOI

Meagher E. P., Lager G. A.. Polyhedral Thermal Expansion in the TiO2 Polymorphs: Refinement of the Crystal Structures of Rutile and Brookite at High Temperature. Can. Miner. 1979;17(1):77–85.

De La Flor G., Orobengoa D., Tasci E., Perez-Mato J. M., Aroyo M. I.. Comparison of Structures Applying the Tools Available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016;49(2):653–664. doi: 10.1107/S1600576716002569. DOI

Klar P. B., Krysiak Y., Xu H., Steciuk G., Cho J., Zou X., Palatinus L.. Accurate Structure Models and Absolute Configuration Determination Using Dynamical Effects in Continuous-Rotation 3D Electron Diffraction Data. Nat. Chem. 2023;15(6):848–855. doi: 10.1038/s41557-023-01186-1. PubMed DOI PMC

Gemmi, M. ; Palatinus, L. ; Boullay, P. ; Abrahams, J. P. ; Ben Meriem, A. ; Cordero Oyonarte, E. ; Emerson Agbemeh, V. ; Chintakindi, H. ; Faye Diouf, M. D. ; Filipcik, P. ; Gemmrich Hernandez, L. ; van Genderen, E. ; Hadermann, J. ; Hajizadeh, A. ; Jeriga, B. ; Kolb, U. ; Matinyan, S. ; Passuti, S. ; Santucci, M. ; Suresh, A. ; Pérez, O. ; Tai, C.-W. ; Vypritskaia, A. ; Wang, L. ; Xu, H. ; Zou, X. . Round Robin on Structure Refinement Quality with 3D Electron Diffraction Data. IUCrJ 2025. Submitted.

Cichocka M. O., Ångström J., Wang B., Zou X., Smeets S.. High-Throughput Continuous Rotation Electron Diffraction Data Acquisition via Software Automation. J. Appl. Crystallogr. 2018;51(6):1652–1661. doi: 10.1107/S1600576718015145. PubMed DOI PMC

Plana-Ruiz S., Krysiak Y., Portillo J., Alig E., Estradé S., Peiró F., Kolb U.. Fast-ADT: A Fast and Automated Electron Diffraction Tomography Setup for Structure Determination and Refinement. Ultramicroscopy. 2020;211:112951. doi: 10.1016/j.ultramic.2020.112951. PubMed DOI

Yang T., Xu H., Zou X.. Improving Data Quality for Three-Dimensional Electron Diffraction by a Post-Column Energy Filter and a New Crystal Tracking Method. J. Appl. Crystallogr. 2022;55(6):1583–1591. doi: 10.1107/S1600576722009633. PubMed DOI PMC

Petříček V., Palatinus L., Plášil J., Dušek M.. Jana2020 – a New Version of the Crystallographic Computing System Jana. Z. Kristallogr. Cryst. Mater. 2023;238(7–8):271–282. doi: 10.1515/zkri-2023-0005. DOI

Brázda P., Klementová M., Krysiak Y., Palatinus L.. Accurate Lattice Parameters from 3D Electron Diffraction Data. I. Optical Distortions. IUCrJ. 2022;9(6):735–755. doi: 10.1107/S2052252522007904. PubMed DOI PMC

Passuti S., Varignon J., David A., Boullay P.. Scanning Precession Electron Tomography (SPET) for Structural Analysis of Thin Films along Their Thickness. Symmetry. 2023;15(7):1459. doi: 10.3390/sym15071459. DOI

Yang H., Hazen R. M.. Crystal Chemistry of Cation Order–Disorder in Pseudobrookite-Type MgTi2O5. J. Solid State Chem. 1998;138(2):238–244. doi: 10.1006/jssc.1998.7775. DOI

Smeets S., Zou X., Wan W.. Serial Electron Crystallography for Structure Determination and Phase Analysis of Nanocrystalline Materials. J. Appl. Crystallogr. 2018;51(5):1262–1273. doi: 10.1107/S1600576718009500. PubMed DOI PMC

Hogan-Lamarre P., Luo Y., Bücker R., Miller R. J. D., Zou X.. STEM SerialED: Achieving High-Resolution Data for Ab Initio Structure Determination of Beam-Sensitive Nanocrystalline Materials. IUCrJ. 2024;11(1):62–72. doi: 10.1107/S2052252523009661. PubMed DOI PMC

Bücker R., Hogan-Lamarre P., Mehrabi P., Schulz E. C., Bultema L. A., Gevorkov Y., Brehm W., Yefanov O., Oberthür D., Kassier G. H., Dwayne Miller R. J.. Serial Protein Crystallography in an Electron Microscope. Nat. Commun. 2020;11(1):996. doi: 10.1038/s41467-020-14793-0. PubMed DOI PMC

Rauch E. F., Dupuy L.. Rapid Spot Diffraction Patterns Idendification through Template Matching. Arch. Metall. Mater. 2005;50(1):87–99.

Rauch E. F., Portillo J., Nicolopoulos S., Bultreys D., Rouvimov S., Moeck P.. Automated Nanocrystal Orientation and Phase Mapping in the Transmission Electron Microscope on the Basis of Precession Electron Diffraction. Z. Kristallogr. 2010;225(2–3):103–109. doi: 10.1524/zkri.2010.1205. DOI

Palatinus L., Brázda P., Jelínek M., Hrdá J., Steciuk G., Klementová M.. Specifics of the Data Processing of Precession Electron Diffraction Tomography Data and Their Implementation in the Program PETS2.0. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2019;75(4):512–522. doi: 10.1107/S2052520619007534. PubMed DOI

Kandiel T. A., Feldhoff A., Robben L., Dillert R., Bahnemann D. W.. Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts. Chem. Mater. 2010;22(6):2050–2060. doi: 10.1021/cm903472p. DOI

Calatayud D. G., Jardiel T., Peiteado M., Rodríguez C. F., Espino Estévez M. R., Doña Rodríguez J. M., Palomares F. J., Rubio F., Fernández-Hevia D., Caballero A. C.. Highly Photoactive Anatase Nanoparticles Obtained Using Trifluoroacetic Acid as an Electron Scavenger and Morphological Control Agent. J. Mater. Chem. A. 2013;1(45):14358. doi: 10.1039/c3ta12970e. DOI

Horn M., Schwerdtfeger C. F., Meagher E. P.. Refinement of the Structure of Anatase at Several Temperatures. Z. Kristallogr. 1972;136(3–4):273–281. doi: 10.1524/zkri.1972.136.3-4.273. DOI

Guizzardi M., Ghini M., Villa A., Rebecchi L., Li Q., Mancini G., Marangi F., Ross A. M., Zhu X., Kriegel I., Scotognella F.. Near-Infrared Plasmon-Induced Hot Electron Extraction Evidence in an Indium Tin Oxide Nanoparticle/Monolayer Molybdenum Disulfide Heterostructure. J. Phys. Chem. Lett. 2022;13(42):9903–9909. doi: 10.1021/acs.jpclett.2c02358. PubMed DOI PMC

González G. B., Cohen J. B., Hwang J.-H., Mason T. O., Hodges J. P., Jorgensen J. D.. Neutron Diffraction Study on the Defect Structure of Indium–Tin–Oxide. J. Appl. Phys. 2001;89(5):2550–2555. doi: 10.1063/1.1341209. DOI

Selvamani T., Anandan S., Asiri A. M., Maruthamuthu P., Ashokkumar M.. Preparation of MgTi2O5 Nanoparticles for Sonophotocatalytic Degradation of Triphenylmethane Dyes. Ultrason. Sonochem. 2021;75:105585. doi: 10.1016/j.ultsonch.2021.105585. PubMed DOI PMC

Smeets, S. ; Wang, B. ; Hogenbirk, E. . Instamatic-Dev/Instamatic: 1.7.0, 2021.

Rodríguez-Carvajal J.. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B. 1993;192(1–2):55–69. doi: 10.1016/0921-4526(93)90108-I. DOI

Roisnel T., Rodríquez-Carvajal J.. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. Mater. Sci. Forum. 2001;378–381:118–123. doi: 10.4028/www.scientific.net/MSF.378-381.118. DOI

Momma K., Izumi F.. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011;44(6):1272–1276. doi: 10.1107/S0021889811038970. DOI

Järvinen M.. Application of Symmetrized Harmonics Expansion to Correction of the Preferred Orientation Effect. J. Appl. Crystallogr. 1993;26(4):525–531. doi: 10.1107/S0021889893001219. DOI

Palatinus L., Chapuis G.. SUPERFLIP – a Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007;40(4):786–790. doi: 10.1107/S0021889807029238. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...