Design of metastable oxychalcogenide phases by topochemical (de)intercalation of sulfur in La2O2S2
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
34127660
PubMed Central
PMC8203606
DOI
10.1038/s41467-021-23677-w
PII: 10.1038/s41467-021-23677-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Designing and synthesising new metastable compounds is a major challenge of today's material science. While exploration of metastable oxides has seen decades-long advancement thanks to the topochemical deintercalation of oxygen as recently spotlighted with the discovery of nickelate superconductor, such unique synthetic pathway has not yet been found for chalcogenide compounds. Here we combine an original soft chemistry approach, structure prediction calculations and advanced electron microscopy techniques to demonstrate the topochemical deintercalation/reintercalation of sulfur in a layered oxychalcogenide leading to the design of novel metastable phases. We demonstrate that La2O2S2 may react with monovalent metals to produce sulfur-deintercalated metastable phases La2O2S1.5 and oA-La2O2S whose lamellar structures were predicted thanks to an evolutionary structure-prediction algorithm. This study paves the way to unexplored topochemistry of mobile chalcogen anions.
Institute of Physics ASCR v v i Na Slovance 1999 2 Praha 8 18221 Czechia
Université de Nantes CNRS Institut des Matériaux Jean Rouxel IMN Nantes F 44000 France
Zobrazit více v PubMed
Lerf A. Storylines in intercalation chemistry. Dalton Trans. 2014;43:10276–10291. doi: 10.1039/C4DT00203B. PubMed DOI
Lévy, F. (ed) Intercalated Layered Materials (Reidel Publishing Company, 1979).
Vivanco HK, Rodriguez EE. The intercalation chemistry of layered iron chalcogenide superconductors. J. Solid State Chem. 2016;242:3–21. doi: 10.1016/j.jssc.2016.04.008. DOI
Motter JP, Koski KJ, Cui Y. General strategy for zero-valent intercalation into two-dimensional layered nanomaterials. Chem. Mater. 2014;26:2313–2317. doi: 10.1021/cm500242h. DOI
Cassidy SJ, et al. Layered CeSO and LiCeSO oxide chalcogenides obtained via topotactic oxidative and reductive transformations. Inorg. Chem. 2019;58:3838–3850. doi: 10.1021/acs.inorgchem.8b03485. PubMed DOI
Ranmohotti KGS, Josepha E, Choi J, Zhang J, Wiley JB. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Adv. Mater. 2011;23:442–460. doi: 10.1002/adma.201002274. PubMed DOI
Goodenough JB, Park K-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013;135:1167–1176. doi: 10.1021/ja3091438. PubMed DOI
Hayward MA, Green MA, Rosseinsky MJ, Sloan J. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 1999;121:8843–8854. doi: 10.1021/ja991573i. DOI
Tsujimoto Y, et al. Infinite-layer iron oxide with a square-planar coordination. Nature. 2007;450:1062–1065. doi: 10.1038/nature06382. PubMed DOI
Romero FD, et al. SrFe0.5Ru0.5O2: square-planar Ru2+ in an extended oxide. J. Am. Chem. Soc. 2013;135:1838–1844. doi: 10.1021/ja309798e. PubMed DOI
Kageyama H, et al. Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 2018;9:772. doi: 10.1038/s41467-018-02838-4. PubMed DOI PMC
Li D, et al. Superconductivity in an infinite-layer nickelate. Nature. 2019;572:624–628. doi: 10.1038/s41586-019-1496-5. PubMed DOI
Oganov AR, Glass CW. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 2006;124:244704. doi: 10.1063/1.2210932. PubMed DOI
Oganov AR, Lyakhov AO, Valle M. How evolutionary crystal structure prediction works –and why. Acc. Chem. Res. 2011;44:227–237. doi: 10.1021/ar1001318. PubMed DOI
Gemmi M, et al. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 2019;5:1315–1329. doi: 10.1021/acscentsci.9b00394. PubMed DOI PMC
Sasaki S, et al. A topochemical approach to synthesize layered materials based on the redox reactivity of anionic chalcogen dimers. Angew. Chem. Int. Ed. 2018;57:13618–13623. doi: 10.1002/anie.201807927. PubMed DOI
Sasaki S, et al. Unexplored reactivity of (Sn)2− oligomers with transition metals in low-temperature solid-state reactions. Chem. Commun. 2019;55:6189–6192. doi: 10.1039/C9CC01338E. PubMed DOI
Ostoréro J, Leblanc M. Room-temperature structure of La2O2S2. Acta Cryst. 1990;C46:1376–1378.
Fan B, Chlique C, M.-Conanec O, Zhang X, Fan X. Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100% J. Phys. Chem. C. 2012;116:11652–11657. doi: 10.1021/jp3016744. DOI
Larquet, C. & Carenco, S. Metal oxysulfides: from bulk compounds to nanomaterials. Front. Chem. 8, 179 (2020). PubMed PMC
Morosin B. La2O2S structure refinement and crystal field. Acta Cryst. 1973;B29:2647–2648. doi: 10.1107/S0567740873007284. DOI
Driss D, et al. Crystal structure and chemical bonding in the mixed anion compound BaSF. Dalton Trans. 2017;46:16244–16250. doi: 10.1039/C7DT03611F. PubMed DOI
Xu G, et al. Synthesis and optical properties of Eu3+ ion-doped La2O2S2 via a solid state reaction method using La2O2SO4 as a raw material. Ceram. Int. 2018;44:19070–19076. doi: 10.1016/j.ceramint.2018.06.250. DOI
Li YF, Xiao B, Gao YM, Cheng YH. Theoretical study of anisotropic structural, electronic, mechanical and thermodynamic properties of rare-earth (R = Y, La) oxysulfides. Comp. Mater. Sci. 2016;125:154–167. doi: 10.1016/j.commatsci.2016.08.050. DOI
Dai Q, et al. Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals. J. Phys. Chem. C. 2008;112:19399–19404. doi: 10.1021/jp808343f. DOI
Steudel R. Properties of sulfur-sulfur bonds. Angew. Chem. Int. Ed. Engl. 1975;14:655–720. doi: 10.1002/anie.197506551. DOI
Vincent R, Midgley PA. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy. 1994;53:271–282. doi: 10.1016/0304-3991(94)90039-6. DOI
Kolb U, Gorelik T, Kübel C, Otten MT, Hubert D. Towards automated diffraction tomography: part I—data acquisition. Ultramicroscopy. 2007;107:507–513. doi: 10.1016/j.ultramic.2006.10.007. PubMed DOI
Palatinus L, et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Cryst. 2019;B75:512–522. PubMed
Palatinus L, Chapuis G. SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: general features. Z. Krist. – Cryst. Mater. 2014;229:345–352.
Palatinus L, et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Cryst. 2015;B71:740–751. PubMed
Palatinus L, Petříček V, Corrêa CA. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Cryst. 2015;A71:235–244. PubMed
Cheary RW, Coelho AA. Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations. J. Appl. Cryst. 1998;31:851–861. doi: 10.1107/S0021889898006876. DOI
Stephens PW. Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Cryst. 1999;32:281–289. doi: 10.1107/S0021889898006001. DOI
Barthel J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy. 2018;193:1–11. doi: 10.1016/j.ultramic.2018.06.003. PubMed DOI
Frueh AJ. The crystallography of silver sulfide, Ag2S. Z. F.ür. Krist. – Cryst. Mater. 1958;110:136–144.
Trahan J, Goodrich RG, Watkins SF. X-ray diffraction measurements on metallic and semiconducting hexagonal NiS. Phys. Rev. B. 1970;2:2859–2863. doi: 10.1103/PhysRevB.2.2859. DOI