A new electron diffraction approach for structure refinement applied to Ca3Mn2O7
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
EP/J009229/1
Engineering and Physical Sciences Research Council
18-09265S
Grantová Agentura České Republiky
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33944798
PubMed Central
PMC8127389
DOI
10.1107/s2053273321001546
PII: S2053273321001546
Knihovny.cz E-zdroje
- Klíčová slova
- CBED, Ca3Mn2O7, LACBED, digital diffraction, electron diffraction,
- Publikační typ
- časopisecké články MeSH
The digital large-angle convergent-beam electron diffraction (D-LACBED) technique is applied to Ca3Mn2O7 for a range of temperatures. Bloch-wave simulations are used to examine the effects that changes in different parameters have on the intensity in D-LACBED patterns, and atomic coordinates, thermal atomic displacement parameters and apparent occupancy are refined to achieve a good fit between simulation and experiment. The sensitivity of the technique to subtle changes in structure is demonstrated. Refined structures are in good agreement with previous determinations of Ca3Mn2O7 and show the decay of anti-phase oxygen octahedral tilts perpendicular to the c axis of the A21am unit cell with increasing temperature, as well as the robustness of oxygen octahedral tilts about the c axis up to ∼400°C. The technique samples only the zero-order Laue zone and is therefore insensitive to atom displacements along the electron-beam direction. For this reason it is not possible to distinguish between in-phase and anti-phase oxygen octahedral tilting about the c axis using the [110] data collected in this study.
Zobrazit více v PubMed
Bansal, D., Niedziela, J. L., He, X., Lanigan-Atkins, T., Said, A., Alatas, A., Abernathy, D. L., Ren, Y., Gao, B., Cheong, S.-W. & Delaire, O. (2019). Phys. Rev. B, 100, 214304.
Beanland, R., Evans, K., Römer, R. A. & Hubert, A. J. M. (2019). Felix: Bloch wave method diffraction pattern simulation software. https://github.com/RudoRoemer/Felix.
Beanland, R., Thomas, P. J., Woodward, D. I., Thomas, P. A. & Roemer, R. A. (2013). Acta Cryst. A69, 427–434. PubMed PMC
Bendersky, L. A., Chen, R. J., Fawcett, I. D. & Greenblatt, M. (2001). J. Solid State Chem. 157, 309–323.
Bendersky, L. A., Greenblatt, M. & Chen, R. (2003). J. Solid State Chem. 174, 418–423.
Benedek, N. A. & Fennie, C. J. (2011). Phys. Rev. Lett. 106, 107204. PubMed
Bird, D. M. & King, Q. A. (1990). Acta Cryst. A46, 202–208.
Buxton, B. F., Eades, J. A., Steeds, J. W. & Rackham, G. M. (1976). Philos. Trans. R. Soc. London Ser. A, 281, 171–194.
Chen, B. H., Sun, T. L., Liu, X. Q., Zhu, X. L., Tian, H. & Chen, X. M. (2020). Appl. Phys. Lett. 116, 042903.
Fawcett, I. D., Sunstrom, J. E., Greenblatt, M., Croft, M. & Ramanujachary, K. V. (1998). Chem. Mater. 10, 3643–3651.
Gao, B., Huang, F.-T., Wang, Y., Kim, J.-W., Wang, L., Lim, S.-J. & Cheong, S.-W. (2017). Appl. Phys. Lett. 110, 222906.
Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmoller, S. & Abrahams, J. P. (2019). ACS Cent. Sci. 5, 1315–1329. PubMed PMC
Guiblin, N., Grebille, D., Leligny, H. & Martin, C. (2002). Acta Cryst. C58, i3–i5. PubMed
Hubert, A. J. M., Römer, R. & Beanland, R. (2019). Ultramicroscopy, 198, 1–9. PubMed
Jansen, J., Tang, D., Zandbergen, H. W. & Schenk, H. (1998). Acta Cryst. A54, 91–101.
Kirkland, E. J. (2010). Advanced Computing in Electron Microscopy. New York: Springer.
Koch, C. T. (2011). Ultramicroscopy, 111, 828–840. PubMed
Lobanov, M. V., Greenblatt, M., Caspi, E., Jorgensen, J. D., Sheptyakov, D. V., Toby, B. H., Botez, C. E. & Stephens, P. W. (2004). J. Phys. Condens. Matter, 16, 5339–5348.
Nakashima, P. N. H., Smith, A. E., Etheridge, J. & Muddle, B. C. (2011). Science, 331, 1583–1586. PubMed
Ogata, Y., Tsuda, K., Akishige, Y. & Tanaka, M. (2004). Acta Cryst. A60, 525–531. PubMed
Palatinus, L., Corrêa, C. A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M. C., Cámara, F. & Petříček, V. (2015a). Acta Cryst. B71, 740–751. PubMed
Palatinus, L., Petříček, V. & Corrêa, C. A. (2015b). Acta Cryst. A71, 235–244. PubMed
Piessens, R., de Doncker-Kapenga, E. & Überhuber, C. (1983). Quadpack: A Subroutine Package for Automatic Integration. Berlin: Springer.
Senn, M. S., Bombardi, A., Murray, C. A., Vecchini, C., Scherillo, A., Luo, X. & Cheong, S. W. (2015). Phys. Rev. Lett. 114, 035701. PubMed
Spence, J. C. H., Zuo, J. M. & Hoier, R. (1989). Phys. Rev. Lett. 63, 1119. PubMed
Tanaka, M., Saito, R., Ueno, K. & Harada, Y. (1980). J. Electron Microsc. 29, 408–412.
Tsuda, K. & Tanaka, M. (1995). Acta Cryst. A51, 7–19.
Vincent, R. & Midgley, P. A. (1994). Ultramicroscopy, 53, 271–282.
Wolff, A. M., Young, I. D., Sierra, R. G., Brewster, A. S., Martynowycz, M. W., Nango, E., Sugahara, M., Nakane, T., Ito, K., Aquila, A., Bhowmick, A., Biel, J. T., Carbajo, S., Cohen, A. E., Cortez, S., Gonzalez, A., Hino, T., Im, D., Koralek, J. D., Kubo, M., Lazarou, T. S., Nomura, T., Owada, S., Samelson, A. J., Tanaka, T., Tanaka, R., Thompson, E. M., van den Bedem, H., Woldeyes, R. A., Yumoto, F., Zhao, W., Tono, K., Boutet, S., Iwata, S., Gonen, T., Sauter, N. K., Fraser, J. S. & Thompson, M. C. (2020). IUCrJ, 7, 306–323. PubMed PMC
Xu, C., Ge, J.-Y., Feng, Z., Chen, F., Kang, B., Zhang, J. & Cao, S. (2019). Ceram. Int. 45, 20613–20625.
Ye, F., Wang, J., Sheng, J., Hoffmann, C., Gu, T., Xiang, H. J., Tian, W., Molaison, J. J., dos Santos, A. M., Matsuda, M., Chakoumakos, B. C., Fernandez-Baca, J. A., Tong, X., Gao, B., Kim, J. W. & Cheong, S.-W. (2018). Phys. Rev. B, 97, 041112.
Zuo, J. & Spence, J. C. H. (2017). Advanced Transmission Electron Microscopy. New York: Springer-Verlag.
Zuo, J. M. (1998). Mater. Trans. JIM, 39, 938–946.