A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29636474
PubMed Central
PMC5893616
DOI
10.1038/s41467-018-03875-9
PII: 10.1038/s41467-018-03875-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hardfacing alloys provide strong, wear-resistant and corrosion-resistant coatings for extreme environments such as those within nuclear reactors. Here, we report an ultra-high-strength Fe-Cr-Ni silicide phase, named π-ferrosilicide, within a hardfacing Fe-based alloy. Electron diffraction tomography has allowed the determination of the atomic structure of this phase. Nanohardness testing indicates that the π-ferrosilicide phase is up to 2.5 times harder than the surrounding austenite and ferrite phases. The compressive strength of the π-ferrosilicide phase is exceptionally high and does not yield despite loading in excess of 1.6 GPa. Such a high-strength silicide phase could not only provide a new type of strong, wear-resistant and corrosion-resistant Fe-based coating, replacing more costly and hazardous Co-based alloys for nuclear applications, but also lead to the development of a new class of high-performance silicide-strengthened stainless steels, no longer reliant on carbon for strengthening.
Interface Analysis Centre University of Bristol Bristol BS8 1TL UK
Rolls Royce plc Derby DE24 8BJ UK
School of Materials The University of Manchester Oxford Road Manchester M13 9PL UK
Wood plc 601 Faraday Street Birchwood Park Warrington WA3 6GN UK
Zobrazit více v PubMed
Riddihough M. Stellite as a wear-resistant material. Tribology. 1970;3:211–215. doi: 10.1016/0041-2678(70)90058-8. DOI
Ocken H. The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt-and nickel-base alloys. Surf. Coat. Technol. 1995;76-77:456–461. doi: 10.1016/0257-8972(95)02573-1. DOI
Burdett WB. Development of cobalt free wear resistant alloys for nuclear applications. Surf. Eng. 1992;8:131–135. doi: 10.1179/sur.1992.8.2.131. DOI
Vikström J. Galling resistance of hardfacing alloys replacing Stellite. Wear. 1994;179:143–146. doi: 10.1016/0043-1648(94)90232-1. DOI
Burdett, W. B. Stainless steel alloy. US patent 5,660,939 (1997).
Frenk A, Kurz W. Microstructural effects on the sliding wear resistance of a cobalt-based alloy. Wear. 1994;174:81–91. doi: 10.1016/0043-1648(94)90089-2. DOI
Devine TM. The mechanism of sensitization of austenitic stainless steel. Corros. Sci. 1990;30:135–151. doi: 10.1016/0010-938X(90)90068-G. DOI
Atamert S, Stekly J. Microstructure, wear resistance, and stability of cobalt based and alternative iron based hardfacing alloys. Surf. Eng. 1993;9:231–240. doi: 10.1179/sur.1993.9.3.231. DOI
Shiels SA, Wilson WL, Rosengarth KW, Wire GL. Laboratory evaluation of low cobalt wear materials for nuclear applications. West Mifflin, PA, United States): Westinghouse Electric Corp.; 1994.
Steffens, -Ing. H.-D. D., Lebkuchner-Neugebauer, J. & Wielage, B. Hot Isostatic Pressing. Heißisostatisches Pressen. Materwiss. Werksttech.21, 28–31 (1990).
Loh NL, Sia KY. An overview of hot isostatic pressing. J. Mater. Process. Technol. 1992;30:45–65. doi: 10.1016/0924-0136(92)90038-T. DOI
Sulley, J. & Stewart, D. HIPed hard facings for nuclear applications: materials, key potential defects and mitigating quality control measures, 2016. 24th International Conference on Nuclear Engineering V001T03A034–V001T03A034 (The American Society of Mechanical Engineers (ASME), Charlotte, North Carolina, USA, 2016). 10.1115/ICONE24-61106
Kolb U, Gorelik T, Mugnaioli E. Automated diffraction tomography combined with electron precession: a new tool for ab initio nanostructure analysis. MRS Proc. 2009;1184:1184–GG01–05. doi: 10.1557/PROC-1184-GG01-05. DOI
Kolb U, Mugnaioli E, Gorelik TE. Automated electron diffraction tomography–a new tool for nano crystal structure analysis. Cryst. Res. Technol. 2011;46:542–554. doi: 10.1002/crat.201100036. PubMed DOI
Kolb U, Gorelik T, Kübel C, Otten MT, Hubert D. Towards automated diffraction tomography: part I—data acquisition. Ultramicroscopy. 2007;107:507–513. doi: 10.1016/j.ultramic.2006.10.007. PubMed DOI
Kolb U, Gorelik T, Otten MT. Towards automated diffraction tomography. Part II—cell parameter determination. Ultramicroscopy. 2008;108:763–772. doi: 10.1016/j.ultramic.2007.12.002. PubMed DOI
Jiang J, Jorda JL, Yu J, Baumes LA, Mugnaioli E. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science. 2011;333:1131–1134. doi: 10.1126/science.1208652. PubMed DOI
Palatinus L, et al. Structure refinement from precession electron diffraction data. Acta Crystallogr. A. 2013;69:171–188. doi: 10.1107/S010876731204946X. PubMed DOI
Palatinus L, et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2015;71:740–751. doi: 10.1107/S2052520615017023. PubMed DOI
Palatinus L, Petříček V, Corrêa CA. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. A Found. Adv. 2015;71:235–244. doi: 10.1107/S2053273315001266. PubMed DOI
Palatinus, L. PETS–Program For Analysis Of Electron Diffraction Data. (Institute of Physics, Prague, 2011).
Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: general features. Z. für Krist. Cryst. Mater. 2017;229:1–8.
Zhang WW, Xu HH, Liang JL, Xiong W, Du Y. Phase equilibria of the Fe–Ni–Si system at 850° C. J. Alloy. Compd. 2009;481:509–514. doi: 10.1016/j.jallcom.2009.03.026. DOI
Takeda S, Iwama Y, Sakakura A. On the equilibrium diagram of Fe-Ni-Si system and the ternary compound σ-phase appearing in this system. Nippon Kinzoku Gakkaishi. 1960;24:534–538.
Borusevich, L. K., Gladyshevskii, E. I., YuB, K. & Rozum, S. N. Visn. Lvivskogo Derzh. Univ. Ser. Khim.8, 83–87 (1965).
Ackerbauer S, Krendelsberger N, Weitzer F, Hiebl K. The constitution of the ternary system Fe–Ni–Si. Intermetallics. 2009;17:414–420. doi: 10.1016/j.intermet.2008.11.016. DOI
Daymond MR, Priesmeyer HG. Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modelling. Acta Mater. 2002;50:1613–1626. doi: 10.1016/S1359-6454(02)00026-5. DOI
Colaço R, Vilar R. A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear. 2003;254:625–634. doi: 10.1016/S0043-1648(03)00185-6. DOI
Hughes H. A new silicide in a 12 per cent chromium steel. Nature. 1959;183:1543–1544. doi: 10.1038/1831543a0. DOI
Bruker AXS. TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data–User’s Manual. (Bruker AXS GmbH, Karlsruhe, 2008).
Ro CU, et al. Heterogeneity assessment in individual CaCO3−CaSO4 particles using ultrathin window electron probe X-ray microanalysis. Anal. Chem. 2001;73:4574–4583. doi: 10.1021/ac010438x. PubMed DOI
Williams, D. B. & Carter, C. B. Transmission Electron Microscopy. (Springer, New York city, NY, 1996).
Vincent R, Midgley PA. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy. 1994;53:271–282. doi: 10.1016/0304-3991(94)90039-6. DOI
Gorelik TE, Stewart AA, Kolb U. Structure solution with automated electron diffraction tomography data: different instrumental approaches. J. Microsc. 2011;244:325–331. doi: 10.1111/j.1365-2818.2011.03550.x. PubMed DOI
Mugnaioli E, Gorelik T, Kolb U. ‘Ab initio’ structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy. 2009;109:758–765. doi: 10.1016/j.ultramic.2009.01.011. PubMed DOI
Palatinus L, et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science. 2017;355:166–169. doi: 10.1126/science.aak9652. PubMed DOI
Klementová M, Karlík M, Novák P, Palatinus L. Structure determination of a new phase Ni8Ti5 by electron diffraction tomography. Intermetallics. 2017;85:110–116. doi: 10.1016/j.intermet.2017.02.003. DOI
Santisteban JR, Daymond MR, James JA. ENGIN-X: a third-generation neutron strain scanner. J. Appl. Crystallogr. 2006;39:812–825. doi: 10.1107/S0021889806042245. DOI
Larson, A. C. & Dreele, Von, R. B. Generalised Structure Analysis System (Los Alamos National Laboratory, New Mexico, 1994).
Toby BH. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 2001;34:210–213. doi: 10.1107/S0021889801002242. DOI
Hodeau, J.-L. et al. Nine-crystal multianalyzer stage for high-resolution powder diffraction between 6 keV and 40 keV. In Proc. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. 3448, 353–361 (SPIE, San Diego, California, USA, 1998).
Akhtar J, Durrani SK. Determination of gaseous elements in metals and metal powders. J. Chem. Soc. Pak. 1996;18:14–18.
Momma K, Izumi F. IUCr. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
3D Electron Diffraction: The Nanocrystallography Revolution