A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications

. 2018 Apr 10 ; 9 (1) : 1374. [epub] 20180410

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29636474
Odkazy

PubMed 29636474
PubMed Central PMC5893616
DOI 10.1038/s41467-018-03875-9
PII: 10.1038/s41467-018-03875-9
Knihovny.cz E-zdroje

Hardfacing alloys provide strong, wear-resistant and corrosion-resistant coatings for extreme environments such as those within nuclear reactors. Here, we report an ultra-high-strength Fe-Cr-Ni silicide phase, named π-ferrosilicide, within a hardfacing Fe-based alloy. Electron diffraction tomography has allowed the determination of the atomic structure of this phase. Nanohardness testing indicates that the π-ferrosilicide phase is up to 2.5 times harder than the surrounding austenite and ferrite phases. The compressive strength of the π-ferrosilicide phase is exceptionally high and does not yield despite loading in excess of 1.6 GPa. Such a high-strength silicide phase could not only provide a new type of strong, wear-resistant and corrosion-resistant Fe-based coating, replacing more costly and hazardous Co-based alloys for nuclear applications, but also lead to the development of a new class of high-performance silicide-strengthened stainless steels, no longer reliant on carbon for strengthening.

Zobrazit více v PubMed

Riddihough M. Stellite as a wear-resistant material. Tribology. 1970;3:211–215. doi: 10.1016/0041-2678(70)90058-8. DOI

Ocken H. The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt-and nickel-base alloys. Surf. Coat. Technol. 1995;76-77:456–461. doi: 10.1016/0257-8972(95)02573-1. DOI

Burdett WB. Development of cobalt free wear resistant alloys for nuclear applications. Surf. Eng. 1992;8:131–135. doi: 10.1179/sur.1992.8.2.131. DOI

Vikström J. Galling resistance of hardfacing alloys replacing Stellite. Wear. 1994;179:143–146. doi: 10.1016/0043-1648(94)90232-1. DOI

Burdett, W. B. Stainless steel alloy. US patent 5,660,939 (1997).

Frenk A, Kurz W. Microstructural effects on the sliding wear resistance of a cobalt-based alloy. Wear. 1994;174:81–91. doi: 10.1016/0043-1648(94)90089-2. DOI

Devine TM. The mechanism of sensitization of austenitic stainless steel. Corros. Sci. 1990;30:135–151. doi: 10.1016/0010-938X(90)90068-G. DOI

Atamert S, Stekly J. Microstructure, wear resistance, and stability of cobalt based and alternative iron based hardfacing alloys. Surf. Eng. 1993;9:231–240. doi: 10.1179/sur.1993.9.3.231. DOI

Shiels SA, Wilson WL, Rosengarth KW, Wire GL. Laboratory evaluation of low cobalt wear materials for nuclear applications. West Mifflin, PA, United States): Westinghouse Electric Corp.; 1994.

Steffens, -Ing. H.-D. D., Lebkuchner-Neugebauer, J. & Wielage, B. Hot Isostatic Pressing. Heißisostatisches Pressen. Materwiss. Werksttech.21, 28–31 (1990).

Loh NL, Sia KY. An overview of hot isostatic pressing. J. Mater. Process. Technol. 1992;30:45–65. doi: 10.1016/0924-0136(92)90038-T. DOI

Sulley, J. & Stewart, D. HIPed hard facings for nuclear applications: materials, key potential defects and mitigating quality control measures, 2016. 24th International Conference on Nuclear Engineering V001T03A034–V001T03A034 (The American Society of Mechanical Engineers (ASME), Charlotte, North Carolina, USA, 2016). 10.1115/ICONE24-61106

Kolb U, Gorelik T, Mugnaioli E. Automated diffraction tomography combined with electron precession: a new tool for ab initio nanostructure analysis. MRS Proc. 2009;1184:1184–GG01–05. doi: 10.1557/PROC-1184-GG01-05. DOI

Kolb U, Mugnaioli E, Gorelik TE. Automated electron diffraction tomography–a new tool for nano crystal structure analysis. Cryst. Res. Technol. 2011;46:542–554. doi: 10.1002/crat.201100036. PubMed DOI

Kolb U, Gorelik T, Kübel C, Otten MT, Hubert D. Towards automated diffraction tomography: part I—data acquisition. Ultramicroscopy. 2007;107:507–513. doi: 10.1016/j.ultramic.2006.10.007. PubMed DOI

Kolb U, Gorelik T, Otten MT. Towards automated diffraction tomography. Part II—cell parameter determination. Ultramicroscopy. 2008;108:763–772. doi: 10.1016/j.ultramic.2007.12.002. PubMed DOI

Jiang J, Jorda JL, Yu J, Baumes LA, Mugnaioli E. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science. 2011;333:1131–1134. doi: 10.1126/science.1208652. PubMed DOI

Palatinus L, et al. Structure refinement from precession electron diffraction data. Acta Crystallogr. A. 2013;69:171–188. doi: 10.1107/S010876731204946X. PubMed DOI

Palatinus L, et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2015;71:740–751. doi: 10.1107/S2052520615017023. PubMed DOI

Palatinus L, Petříček V, Corrêa CA. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. A Found. Adv. 2015;71:235–244. doi: 10.1107/S2053273315001266. PubMed DOI

Palatinus, L. PETS–Program For Analysis Of Electron Diffraction Data. (Institute of Physics, Prague, 2011).

Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: general features. Z. für Krist. Cryst. Mater. 2017;229:1–8.

Zhang WW, Xu HH, Liang JL, Xiong W, Du Y. Phase equilibria of the Fe–Ni–Si system at 850° C. J. Alloy. Compd. 2009;481:509–514. doi: 10.1016/j.jallcom.2009.03.026. DOI

Takeda S, Iwama Y, Sakakura A. On the equilibrium diagram of Fe-Ni-Si system and the ternary compound σ-phase appearing in this system. Nippon Kinzoku Gakkaishi. 1960;24:534–538.

Borusevich, L. K., Gladyshevskii, E. I., YuB, K. & Rozum, S. N. Visn. Lvivskogo Derzh. Univ. Ser. Khim.8, 83–87 (1965).

Ackerbauer S, Krendelsberger N, Weitzer F, Hiebl K. The constitution of the ternary system Fe–Ni–Si. Intermetallics. 2009;17:414–420. doi: 10.1016/j.intermet.2008.11.016. DOI

Daymond MR, Priesmeyer HG. Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modelling. Acta Mater. 2002;50:1613–1626. doi: 10.1016/S1359-6454(02)00026-5. DOI

Colaço R, Vilar R. A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear. 2003;254:625–634. doi: 10.1016/S0043-1648(03)00185-6. DOI

Hughes H. A new silicide in a 12 per cent chromium steel. Nature. 1959;183:1543–1544. doi: 10.1038/1831543a0. DOI

Bruker AXS. TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data–User’s Manual. (Bruker AXS GmbH, Karlsruhe, 2008).

Ro CU, et al. Heterogeneity assessment in individual CaCO3−CaSO4 particles using ultrathin window electron probe X-ray microanalysis. Anal. Chem. 2001;73:4574–4583. doi: 10.1021/ac010438x. PubMed DOI

Williams, D. B. & Carter, C. B. Transmission Electron Microscopy. (Springer, New York city, NY, 1996).

Vincent R, Midgley PA. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy. 1994;53:271–282. doi: 10.1016/0304-3991(94)90039-6. DOI

Gorelik TE, Stewart AA, Kolb U. Structure solution with automated electron diffraction tomography data: different instrumental approaches. J. Microsc. 2011;244:325–331. doi: 10.1111/j.1365-2818.2011.03550.x. PubMed DOI

Mugnaioli E, Gorelik T, Kolb U. ‘Ab initio’ structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy. 2009;109:758–765. doi: 10.1016/j.ultramic.2009.01.011. PubMed DOI

Palatinus L, et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science. 2017;355:166–169. doi: 10.1126/science.aak9652. PubMed DOI

Klementová M, Karlík M, Novák P, Palatinus L. Structure determination of a new phase Ni8Ti5 by electron diffraction tomography. Intermetallics. 2017;85:110–116. doi: 10.1016/j.intermet.2017.02.003. DOI

Santisteban JR, Daymond MR, James JA. ENGIN-X: a third-generation neutron strain scanner. J. Appl. Crystallogr. 2006;39:812–825. doi: 10.1107/S0021889806042245. DOI

Larson, A. C. & Dreele, Von, R. B. Generalised Structure Analysis System (Los Alamos National Laboratory, New Mexico, 1994).

Toby BH. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 2001;34:210–213. doi: 10.1107/S0021889801002242. DOI

Hodeau, J.-L. et al. Nine-crystal multianalyzer stage for high-resolution powder diffraction between 6 keV and 40 keV. In Proc. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. 3448, 353–361 (SPIE, San Diego, California, USA, 1998).

Akhtar J, Durrani SK. Determination of gaseous elements in metals and metal powders. J. Chem. Soc. Pak. 1996;18:14–18.

Momma K, Izumi F. IUCr. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

3D Electron Diffraction: The Nanocrystallography Revolution

. 2019 Aug 28 ; 5 (8) : 1315-1329. [epub] 20190719

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace