Analysis of floodplain forest sensitivity to drought
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32892727
PubMed Central
PMC7485104
DOI
10.1098/rstb.2019.0518
Knihovny.cz E-zdroje
- Klíčová slova
- drought, eddy covariance, floodplain forest, gross primary production, radial stem variations, tree water deficit,
- MeSH
- klimatické změny * MeSH
- koloběh uhlíku * MeSH
- lesy * MeSH
- období sucha * MeSH
- roční období MeSH
- stromy růst a vývoj MeSH
- uhlík metabolismus MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- uhlík MeSH
- voda MeSH
Floodplain forests are very complex, productive ecosystems, capable of storing huge amounts of soil carbon. With the increasing occurrence of extreme events, they are today among the most threatened ecosystems. Our study's main goal was to assess the productivity of a floodplain forest located at Lanžhot in the Czech Republic from two perspectives: carbon uptake (using an eddy covariance method) and stem radius variations (using dendrometers). We aimed to determine which conditions allow for high ecosystem production and what role drought plays in reducing such production potential. Additionally, we were interested to determine the relative soil water content threshold indicating the onset and duration of this event. We hypothesized that summer drought in 2018 had the most significant negative effects on the overall annual carbon and water budgets. In contrast with our original hypothesis, we found that an exceptionally warm spring in 2018 caused a positive gross primary production (GPP) and evapotranspiration (ET) anomaly that consequently led in 2018 to the highest seasonal total GPP and ET from all of the investigated years (2015-2018). The results showed ring-porous species to be the most drought resistant. Relative soil water content threshold of approximately 0.45 was determined as indicating the onset of drought stress. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
Zobrazit více v PubMed
Tockner K, Jack A, Stanford A. 2002. Riverine flood plains: present state and future trends. Envir. Cons. 29, 308–330. (10.1017/S037689290200022X) DOI
Hanberry BB, Kabrick JM, Hea HS. 2015. Potential tree and soil carbon storage in a major historical floodplain forest with disrupted ecological function. Persp. Plant Ecol. Evol. Syst. 17, 17–23.
Oswalt SN, King SL. 2005. Channelization and floodplain forests: impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA. For. Ecol. Manage. 215, 69–83. (10.1016/j.foreco.2005.05.004) DOI
Ravenga C, Brunner J, Henninger N, Kassem K, Payne R. 2000. Pilot analysis of global ecosystems. Freshwater systems. Washington, DC: World Resources Institute.
UNEP-WCMC. 2001. United Nations Environment Programme-World Conservation Monitoring Centre. See https://apps.unep.org/redirect.php?file=/publications/pmtdocuments/272.pdf.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of WG I to the fifth assessment report of the IPCC (eds Stocker TF, et al.), chapter 2, pp. 159–254. Cambridge, UK: Cambridge University Press.
Vicente-Serrano SM, et al. 2011. A multi-scalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res. 116, D20109 (10.1029/2011JD016039) DOI
Acosta M, Darenova E, Dusek J, Pavelka M. 2017. Soil carbon dioxide fluxes in a mixed floodplain forest in the Czech Republic. Eur. J. Soil Biol. 82, 35e42 (10.1016/j.ejsobi.2017.08.006) DOI
Toreti A, et al. 2019. The Exceptional 2018 European water seesaw calls for action on adaptation. Earth's Future: 7, 652–663. (10.1029/2019EF001170) DOI
Drought 2018 Team, ICOS Ecosystem Thematic Centre. 2019. Drought-2018 ecosystem eddy covariance flux product in FLUXNET-Archive format - release 2019-1 (Version 1.0). ICOS Carbon Portal. (10.18160/PZDK-EF78) DOI
Pastorello GZ, et al. 2014. Observational data patterns for time series data quality assessment. In IEEE 10th International Conference on e-Science 1, pp. 271–278. (10.1109/eScience.2014.45) DOI
Papale D, et al. 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583. (10.5194/bg-3-571-2006) DOI
Reichstein M, et al. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439. (10.1111/j.1365-2486.2005.001002.x) DOI
Kučera J, Brito P, Jiménez MS, Urban J. 2017. Direct Penman–Monteith parameterization for estimating stomatal conductance and modeling sap flow. Trees 31, 873–885. (10.1007/s00468-016-1513-3) DOI
Beguería S, Vicente-Serrano SM, Reig F, Latorre B. 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023. (10.1002/joc.3887) DOI
Beguería and Vicente-Serrano. 2017. e Calculation of the standardised precipitation-evapotranspiration index. Package ‘SPEI’, Version 1.7. See http://sac.csic.es/spei.
See https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.f17050d7?tab=overview (10.24381/cds.f17050d7) DOI
Stojanović M, Noyer E, Fajstavr M, Pericolo O, Horáček P.. 2019. Relationships between phenology and ecophysiology in two contrasting ring-porous tree species. In Book of Abstracts. EuroDendro Conference, 2019, 9–13 September (eds Gryc V, et al.), 184 See http://eurodendro2019.mendelu.cz/.
Zweifel R, Haeni M, Buchmann N, Eugster W. 2016. Are trees able to grow in periods of stem shrinkage? New Phytol. 211, 839–849. (10.1111/nph.13995) PubMed DOI
Zweifel R. 2016. Radial stem variations: a source of tree physiological information not fully exploited yet. Plant, Cell Environ. 39, 231–232. (10.1111/pce.12613) PubMed DOI
Hartmann H, Ziegler W, Kolle O, Trumbore S. 2013. Thirst beats hunger: declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol. 200, 340–349. (10.1111/nph.12331) PubMed DOI
Bréda N, Huc R, Granier A, Dreyer E. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644. (10.1051/forest:2006042) DOI
Reichstein M, et al. 2013. Climate extremes and the carbon cycle. Nature 500, 287–295. (10.1038/nature12350) PubMed DOI
Leifeld J, Menichetti L. 2018. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (10.1038/s41467-018-03406-6) PubMed DOI PMC
Middleton BA, Souter NJ. 2016. Functional integrity of freshwater forested wetlands, hydrologic alteration, and climate change. Ecosyst. Health Sustain. 2, e01200 (10.1002/ehs2.1200) DOI
Flach M, Sippel S, Gans F, Bastos A, Brenning A, Reichstein M, Mahecha MD. 2018. Contrasting biosphere responses to hydrometeorological extremes: revisiting the 2010 western Russian heatwave. Biogeosciences 15, 6067–6085. (10.5194/bg-15-6067-2018) DOI
Wolf S, et al. 2016. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880 LP–5885. (10.1073/pnas.1519620113) PubMed DOI PMC
Rigden AJ, Salvucci GD. 2017. Stomatal response to humidity and CO2 implicated in recent decline in us evaporation. Glob. Change Biol. 23, 1140–1151. (10.1111/gcb.13439) PubMed DOI
Massmann A, Gentine P, Lin C. 2019. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model Earth Syst. 11, 3305–3320. (10.1029/2019MS001790) (10.5194/hess-2018-553) PubMed DOI PMC
Medlyn BE, et al. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Chang. Biol. 17, 2134–2144. (10.1111/j.1365-2486.2010.02375.x) DOI
Kramer K, Friend A, Leinonen I. 1996. Modelling comparison to evaluate the importance of phenology and spring frost damage for the effects of climate change on growth of mixed temperate zone deciduous forest. Clim. Res. 7, 31–41. (10.3354/cr007031) DOI
Kazda M, Salzer J, Reiter I. 2000. Photosynthetic capacity in relation to nitrogen in the canopy of Quercus robur, Fraxinus angustifolia and Tilia cordata floodplain forest. Tree Physiol. 20, 1029–1037. (10.1093/treephys/20.15.1029) PubMed DOI
Van der Maaten E, Pape J, Van der Maaten-Theunissen M, Scharnweber T, Smiljanić M, Cruz-García R, Wilmking M. 2018. Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species. Tree Physiol. 38, 1820–1828. (10.1093/treephys/tpy042) PubMed DOI
Köcher P, Horna V, Leuschner C. 2013. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol. 33, 817–832. (10.1093/treephys/tpt055) PubMed DOI
Quantitative vessel mapping on increment cores: a critical comparison of image acquisition methods
Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest
figshare
10.6084/m9.figshare.c.5077587