Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest
Jazyk angličtina Země Kanada Médium print
Typ dokumentu časopisecké články
Grantová podpora
AdAgriF
CzeCOS
PubMed
38864558
PubMed Central
PMC11240116
DOI
10.1093/treephys/tpae064
PII: 7691689
Knihovny.cz E-zdroje
- Klíčová slova
- deciduous angiosperms, eddy covariance, gross primary production, phenology, phloem isotopes, sap flow,
- MeSH
- dub (rod) fyziologie metabolismus MeSH
- fotosyntéza * fyziologie MeSH
- Fraxinus fyziologie metabolismus MeSH
- lesy * MeSH
- sekvestrace uhlíku MeSH
- stromy * fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.
Department of Geological Sciences Box 460 Gothenburg University Gothenburg 40530 Sweden
Global Change Research Institute Czech Academy of Sciences Bělidla 4a Brno 603 00 Czech Republic
Thünen Institut für Agrarklimaschutz Bundesallee 68 38116 Braunschweig Germany
Zobrazit více v PubMed
Acosta M, Darenova E, Dušek J, Pavelka M. 2017. Soil carbon dioxide fluxes in a mixed floodplain forest in the Czech Republic. Eur J Soil Biol 82:35–42. 10.1016/j.ejsobi.2017.08.006. DOI
Ameray A, Bergeron Y, Valeria O, Montoro Girona M, Cavard X. 2021. Forest carbon management: a review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr For Rep. 7(4):245–266. 10.1007/s40725-021-00151-w. DOI
Aubinet M, Vesala T, Papale D. (eds), 2012. Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht.
Augspurger CK, Cheeseman JM, Salk CF. 2005. Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade. Funct Ecol. 19(4):537–546. 10.1111/j.1365-2435.2005.01027.x. DOI
Baldocchi D. 2008. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot. 56(1):1–26. 10.1071/BT07151. DOI
Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future: carbon balance and eddy covariance. Glob Chang Biol. 9(4):479–492. 10.1046/j.1365-2486.2003.00629.x. DOI
Bassow SL, Bazzaz FA. 1997. Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia. 109(4):507–515. 10.1007/s004420050111. PubMed DOI
Bögelein R, Lehmann MM, Thomas FM. 2019. Differences in carbon isotope leaf-to-phloem fractionation and mixing patterns along a vertical gradient in mature European beech and Douglas fir. New Phytol. 222(4):1803–1815. 10.1111/nph.15735. PubMed DOI
Campioli M, Malhi Y, Vicca S, Luyssaert S, Papale D, Peñuelas J, Reichstein M, Migliavacca M, Arain MA, Janssens IA. 2016. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nat Commun. 7(1):13717. 10.1038/ncomms13717. PubMed DOI PMC
Campioli M, Vicca S, Luyssaert S, Bilcke J, Ceschia E, Chapin Iii FS, Ciais P, Fernández-Martínez M, Malhi Y, Obersteiner M, et al. 2015. Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nat Geosci. 8(11):843–846. 10.1038/ngeo2553. DOI
Čermák J, Deml M, Penka M. 1973. A new method of sap flow rate determination in trees. Biol Plant. 15(3):171–178. 10.1007/BF02922390. DOI
Čermák J, Kučera J, Nadezhdina N. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees. 18(5):529–546. 10.1007/s00468-004-0339-6. DOI
Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD. 2013. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200(4):950–965. 10.1111/nph.12423. PubMed DOI
Delpierre N, Berveiller D, Granda E, Dufrêne E. 2016. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol. 210(2):459–470. 10.1111/nph.13771. PubMed DOI
Etzold S, Buchmann N, Eugster W. 2010. Contribution of advection to the carbon budget measured by eddy covariance at a steep mountain slope forest in Switzerland. Biogeosciences. 7(8):2461–2475. 10.5194/bg-7-2461-2010. DOI
Farquhar GD, O’Leary MH, Berry JA. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol. 9(2):121–137. 10.1071/PP9820121. DOI
Flo V, Martinez-Vilalta J, Steppe K, Schuldt B, Poyatos R. 2019. A synthesis of bias and uncertainty in sap flow methods. Agric For Meteorol 271:362–374. 10.1016/j.agrformet.2019.03.012. DOI
Foken T, Göockede M, Mauder M, Mahrt L, Amiro B, Munger W. 2005. Post-field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology. Kluwer Academic Publishers, Dordrecht, pp 181–208 10.1007/1-4020-2265-4_9 [accessed 2023 May 23]. DOI
Fratini G, Mauder M. 2014. Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3. Atmos Meas Tech. 7(7):2273–2281. 10.5194/amt-7-2273-2014. DOI
Gessler A, Rennenberg H, Keitel C. 2004. Stable isotope composition of organic compounds transported in the phloem of European beech--evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport. Plant Biol (Stuttg). 6(6):721–729. 10.1055/s-2004-830350. PubMed DOI
Gimeno TE, Campany CE, Drake JE, Barton CVM, Tjoelker MG, Ubierna N, Marshall JD. 2021. Whole-tree mesophyll conductance reconciles isotopic and gas-exchange estimates of water-use efficiency. New Phytol. 229(5):2535–2547. 10.1111/nph.17088. PubMed DOI
Granier A. 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann For Sci. 42(2):193–200. 10.1051/forest:19850204. DOI
Hu J, Moore DJP, Riveros-Iregui DA, Burns SP, Monson RK. 2010. Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios. New Phytol. 185(4):1000–1015. 10.1111/j.1469-8137.2009.03154.x. PubMed DOI
Ibrom A, Dellwik E, Flyvbjerg H, Jensen NO, Pilegaard K. 2007. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric For Meteorol. 147(3–4):140–156. 10.1016/j.agrformet.2007.07.007. DOI
Jarosz N, Brunet Y, Lamaud E, Irvine M, Bonnefond J-M, Loustau D. 2008. Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability. Agric For Meteorol. 148(10):1508–1523. 10.1016/j.agrformet.2008.05.001. DOI
Jocher G, Ottosson Löfvenius M, De Simon G, et al. 2017. Apparent winter CO2 uptake by a boreal forest due to decoupling. Agric For Meteorol 232:23–34. 10.1016/j.agrformet.2016.08.002. DOI
Jocher G, Fischer M, Šigut L, Pavelka M, Sedlák P, Katul G. 2020. Assessing decoupling of above and below canopy air masses at a Norway spruce stand in complex terrain. Agric For Meteorol 294:108149. 10.1016/j.agrformet.2020.108149. DOI
Jones HG. 2013. Plants and microclimate: a quantitative approach to environmental plant physiology, 3rd edn. Cambridge University Press, Cambridge.
Klein T, Rotenberg E, Cohen-Hilaleh E, Raz-Yaseef N, Tatarinov F, Preisler Y, Ogée J, Cohen S, Yakir D. 2014. Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest. Ecohydrology. 7(2):409–419. 10.1002/eco.1360. DOI
Klein T, Rotenberg E, Tatarinov F, Yakir D. 2016. Association between sap flow-derived and eddy covariance-derived measurements of forest canopy CO2 uptake. New Phytol. 209(1):436–446. 10.1111/nph.13597. PubMed DOI
Kowalska N, Šigut L, Stojanović M, Fischer M, Kyselova I, Pavelka M. 2020. Analysis of floodplain forest sensitivity to drought. Philos Trans R Soc B Biol Sci. 375(1810):20190518. 10.1098/rstb.2019.0518. PubMed DOI PMC
Kowalska N, Jocher G, Šigut L, Pavelka M. 2022. Does below-above canopy air mass decoupling impact temperate floodplain forest CO2 exchange? Atmos phere. 13(3):437. 10.3390/atmos13030437. DOI
Krejza J, Haeni M, Darenova E, et al. 2022. Disentangling carbon uptake and allocation in the stems of a spruce forest. Environ Exp Bot 196:104787. 10.1016/j.envexpbot.2022.104787. DOI
Kučera J, Čermák J, Penka M. 1977. Improved thermal method of continual recording the transpiration flow rate dynamics. Biol Plant. 19(6):413–420. 10.1007/BF02922976. DOI
Kučera J, Vaníček R, Urban J. 2020. Automated exponential feedback weighting method for subtraction of heat losses from sap flow measured by the trunk heat balance method. Acta Hortic. (1300):81–88. 10.17660/ActaHortic.2020.1300.11. DOI
Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G. 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Chang Biol. 16(1):187–208. 10.1111/j.1365-2486.2009.02041.x. DOI
Lee X, Massman W, Law B. 2005. Handbook of micrometeorology. Springer, Netherlands, Dordrecht, 10.1007/1-4020-2265-4 [accessed 2023 Jun 7, ]. DOI
Lundblad M, Lagergren F, Lindroth A. 2001. Evaluation of heat balance and heat dissipation methods for sapflow measurements in pine and spruce. Ann For Sci. 58(6):625–638. 10.1051/forest:2001150. DOI
Luyssaert S, Marie G, Valade A, Chen Y-Y, Njakou Djomo S, Ryder J, Otto J, Naudts K, Lansø AS, Ghattas J, et al. 2018. Tradeoffs in using European forests to meet climate objectives. Nature. 562(7726):259–262. 10.1038/s41586-018-0577-1. PubMed DOI PMC
Marshall JD, Tarvainen L, Zhao P, Lim H, Wallin G, Näsholm T, Lundmark T, Linder S, Peichl M. 2023. Components explain, but do eddy fluxes constrain? Carbon budget of a nitrogen-fertilized boreal scots pine forest. New Phytol. 239(6):2166–2179. 10.1111/nph.18939. PubMed DOI
Nezval O, Krejza J, Světlík J, Šigut L, Horáček P. 2020. Comparison of traditional ground-based observations and digital remote sensing of phenological transitions in a floodplain forest. Agric For Meteorol 291:108079. 10.1016/j.agrformet.2020.108079. DOI
Offermann C, Ferrio JP, Holst J, Grote R, Siegwolf R, Kayler Z, Gessler A. 2011. The long way down—are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes? Tree Physiol. 31(10):1088–1102. 10.1093/treephys/tpr093. PubMed DOI
Oulehle F, Urban O, Tahovská K, Kolář T, Rybníček M, Büntgen U, Hruška J, Čáslavský J, Trnka M. 2023. Calcium availability affects the intrinsic water-use efficiency of temperate forest trees. Commun Earth Environ. 4(1):1–99.. 10.1038/s43247-023-00822-5. PubMed DOI
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, et al. 2011. A large and persistent carbon sink in the world’s forests. Science. 333(6045):988–993. 10.1126/science.1201609. PubMed DOI
Paul-Limoges E, Wolf S, Eugster W, Hörtnagl L, Buchmann N. 2017. Below-canopy contributions to ecosystem CO2 fluxes in a temperate mixed forest in Switzerland. Agric For Meteorol 247:582–596. 10.1016/j.agrformet.2017.08.011. DOI
Peters RL, Fonti P, Frank DC, Poyatos R, Pappas C, Kahmen A, Carraro V, Prendin AL, Schneider L, Baltzer JL, et al. 2018. Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. New Phytol. 219(4):1283–1299. 10.1111/nph.15241. PubMed DOI
Poyatos R, Granda V, Flo V, Adams MA, Adorján B, Aguadé D, Aidar MPM, Allen S, Alvarado-Barrientos MS, Anderson-Teixeira KJ, et al. 2021. Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst Sci Data. 13(6):2607–2649. 10.5194/essd-13-2607-2021. DOI
Puchi PF, Khomik M, Frigo D, Arain MA, Fonti P, von Arx G, Castagneri D. 2023. Revealing how intra- and inter-annual variability of carbon uptake (GPP) affects wood cell biomass in an eastern white pine forest. Environ Res Lett. 18(2):024027. 10.1088/1748-9326/acb2df. DOI
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, et al. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol. 11(9):1424–1439. 10.1111/j.1365-2486.2005.001002.x. DOI
Ryan MG. 2023. The enduring mystery of differences between eddy covariance and biometric measurements for ecosystem respiration and net carbon storage in forests. New Phytol. 239(6):2060–2063. 10.1111/nph.19105. PubMed DOI
Sakuratani T. 1981. A heat balance method for measuring water flux in the stem of intact plants. J Agric Meteorol. 37(1):9–17. 10.2480/agrmet.37.9. DOI
Schiestl-Aalto P, Stangl ZR, Tarvainen L, Wallin G, Marshall J, Mäkelä A. 2021. Linking canopy-scale mesophyll conductance and phloem sugar δ13C using empirical and modelling approaches. New Phytol. 229(6):3141–3155. 10.1111/nph.17094. PubMed DOI PMC
Schulze E-D, Čermák J, Matyssek M, Penka M, Zimmermann R, Vasícek F, Gries W, Kučera J. 1985. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia. 66(4):475–483. 10.1007/BF00379337. PubMed DOI
Stangl ZR, Tarvainen L, Wallin G, Marshall JD. 2022. Limits to photosynthesis: seasonal shifts in supply and demand for CO2 in scots pine. New Phytol. 233(3):1108–1120. 10.1111/nph.17856. PubMed DOI
Steppe K, De Pauw DJW, Doody TM, Teskey RO. 2010. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric For Meteorol. 150(7–8):1046–1056. 10.1016/j.agrformet.2010.04.004. DOI
Szatniewska J, Zavadilova I, Nezval O, Krejza J, Petrik P, Čater M, Stojanović M. 2022. Species-specific growth and transpiration response to changing environmental conditions in floodplain forest. For Ecol Manage 516:120248. 10.1016/j.foreco.2022.120248. DOI
Tatarinov FA, Kučera J, Cienciala E. 2005. The analysis of physical background of tree sap flow measurement based on thermal methods. Meas Sci Technol. 16(5):1157–1169. 10.1088/0957-0233/16/5/016. DOI
Thomas CK, Martin JG, Law BE, Davis K. 2013. Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon. Agric For Meteorol 173:14–27. 10.1016/j.agrformet.2013.01.001. DOI
Thompson RL, Manning AC, Gloor E, Schultz U, Seifert T, Hänsel F, Jordan A, Heimann M. 2009. In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany. Atmos Meas Tech. 2(2):573–591. 10.5194/amt-2-573-2009. DOI
Tian X, Minunno F, Schiestl-Aalto P, et al. 2021. Disaggregating the effects of nitrogen addition on gross primary production in a boreal scots pine forest. Agric For Meteorol 301-302:108337. 10.1016/j.agrformet.2021.108337. DOI
Ubierna N, Marshall JD. 2011. Estimation of canopy average mesophyll conductance using δ13C of phloem contents. Plant Cell Environ. 34(9):1521–1535. 10.1111/j.1365-3040.2011.02350.x. PubMed DOI
Urban J, Krofta K, Kučera J. 2012. Calibration of stem heat balance sensors upon a study of water balance of the hop plantation. Acta Hortic. (951):79–86. 10.17660/ActaHortic.2012.951.8. DOI
Vernay A, Tian X, Chi J, Linder S, Mäkelä A, Oren R, Peichl M, Stangl ZR, Tor-Ngern P, Marshall JD. 2020. Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances. Plant Cell Environ. 43(9):2124–2142. 10.1111/pce.13835. PubMed DOI
Vernay A, Hasselquist N, Leppä K, Klosterhalfen A, Gutierrez Lopez J, Stangl ZR, Chi J, Kozii N, Marshall JD. 2024. Partitioning gross primary production of a boreal forest among species and strata: a multi-method approach. Agric For Meteorol 345:109857. 10.1016/j.agrformet.2023.109857. DOI
Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR. 2016. Seasonality of temperate forest photosynthesis and daytime respiration. Nature. 534(7609):680–683. 10.1038/nature17966. PubMed DOI
Wilczak JM, Oncley SP, Stage SA. 2001. Sonic anemometer tilt correction algorithms. Bound Layer Meteorol. 99(1):127–150. 10.1023/A:1018966204465. DOI
Wohlfahrt G, Galvagno M. 2017. Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning. Agric For Meteorol 237-238:135–142. 10.1016/j.agrformet.2017.02.012. PubMed DOI PMC
Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M. 2018. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences. 15(16):5015–5030. 10.5194/bg-15-5015-2018. DOI
Yi R, Xu X. 2023. Species with larger vessel area have higher bias for the original Granier equation in calculating sap flux density. J Hydrol 622(B):129762. 10.1016/j.jhydrol.2023.129762. DOI