Quantitative vessel mapping on increment cores: a critical comparison of image acquisition methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40012731
PubMed Central
PMC11863283
DOI
10.3389/fpls.2025.1502237
Knihovny.cz E-zdroje
- Klíčová slova
- angiosperms, broad-leaved species, inter-and intra-annual variability, quantitative wood anatomy, radial profile, uncertainty analysis, x-ray CT scanning, xylem porosity,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Quantitative wood anatomy is critical for establishing climate reconstruction proxies, understanding tree hydraulics, and quantifying carbon allocation. Its accuracy depends upon the image acquisition methods, which allows for the identification of the number and dimensions of vessels, fibres, and tracheids within a tree ring. Angiosperm wood is analysed with a variety of different image acquisition methods, including surface pictures, wood anatomical micro-sections, or X-ray computed micro-tomography. Despite known advantages and disadvantages, the quantitative impact of method selection on wood anatomical parameters is not well understood. METHODS: In this study, we present a systematic uncertainty analysis of the impact of the image acquisition method on commonly used anatomical parameters. We analysed four wood samples, representing a range of wood porosity, using surface pictures, micro-CT scans, and wood anatomical micro-sections. Inter-annual patterns were analysed and compared between methods from the five most frequently used parameters, namely mean lumen area (MLA), vessel density (VD), number of vessels (VN), mean hydraulic diameter (D h), and relative conductive area (RCA). A novel sectorial approach was applied on the wood samples to obtain intra-annual profiles of the lumen area (A l), specific theoretical hydraulic conductivity (K s), and wood density (ρ). RESULTS: Our quantitative vessel mapping revealed that values obtained for hydraulic wood anatomical parameters are comparable across different methods, supporting the use of easily applicable surface picture methods for ring-porous and specific diffuse-porous tree species. While intra-annual variability is well captured by the different methods across species, wood density (ρ) is overestimated due to the lack of fibre lumen area detection. DISCUSSION: Our study highlights the potential and limitations of different image acquisition methods for extracting wood anatomical parameters. Moreover, we present a standardized workflow for assessing radial tree ring profiles. These findings encourage the compilation of all studies using wood anatomical parameters and further research to refine these methods, ultimately enhancing the accuracy, replication, and spatial representation of wood anatomical studies.
Department of Environmental Sciences Botany University of Basel Basel Switzerland
Department of Land Environment Agriculture and Forestry University of Padua Legnaro PD Italy
Global Change Research Institute of the Czech Academy of Sciences Brno Czechia
Institute of Botany and Landscape Ecology University of Greifswald Greifswald Germany
Laboratory of Tree Ring Research The University of Arizona Tucson AZ United States
Oeschger Centre for Climate Change Research University of Bern Bern Switzerland
School of Natural Resources and the Environment The University of Arizona Tucson AZ United States
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
UGCT UGent Centre for 10 ray Tomography Ghent University Ghent Belgium
Zobrazit více v PubMed
Akhmetzyanov L., Buras A., Sass-Klaassen U., den Ouden J., Mohren F., Groenendijk P., et al. . (2019). Multi-variable approach pinpoints origin of oak wood with higher precision. J. Biogeogr. 46, 1163–1177. doi: 10.1111/jbi.13576 DOI
Anadon-Rosell A., Dawes M. A., Fonti P., Hagedorn F., Rixen C., von Arx G. (2018). Xylem anatomical and growth responses of the dwarf shrub Vaccinium myrtillus to CO2 enrichment and soil warming at treeline. Sci. Total. Environ. 642, 1172–1183. doi: 10.1016/j.scitotenv.2018.06.117 PubMed DOI
Anadon-Rosell A., Scharnweber T., von Arx G., Peters R. L., Smiljanić M., Weddell S., et al. . (2022). Growth and wood trait relationships of alnus glutinosa in peatland forest stands with contrasting water regimes. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.788106 PubMed DOI PMC
Babst F., Bouriaud O., Poulter B., Trouet V., Girardin M. P., Frank D. C. (2019). Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313. doi: 10.1126/sciadv.aat4313 PubMed DOI PMC
Babst F., Friend A. D., Karamihalaki M., Wei J., von Arx G., Papale D., et al. . (2021). Modeling ambitions outpace observations of forest carbon allocation. Trends Plant Sci. 26, 210–219. doi: 10.1016/j.tplants.2020.10.002 PubMed DOI
Babst F., Poulter B., Bodesheim P., Mahecha M. D., Frank D. C. (2017). Improved tree-ring archives will support earth-system science. Nat. Ecol. Evol. 1, 8. doi: 10.1038/s41559-016-0008 PubMed DOI
Balzano A., Čufar K., Battipaglia G., Merela M., Prislan P., Aronne G., et al. . (2018). Xylogenesis reveals the genesis and ecological signal of IADFs in Pinus pinea L. and Arbutus unedo L. Ann. Bot. 121, 1231–1242. doi: 10.1093/aob/mcy008 PubMed DOI PMC
Björklund J., Seftigen K., Fonti P., Nievergelt D., von Arx G. (2020). Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris. Dendrochronologia 60, 125673. doi: 10.1016/j.dendro.2020.125673 DOI
Björklund J., Seftigen K., Stoffel M., Fonti M. V., Kottlow S., Frank D. C., et al. . (2023). Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate. Nature 620, 97–103. doi: 10.1038/s41586-023-06176-4 PubMed DOI
Björklund J., von Arx G., Fonti P., Stridbeck P., De Mil T., Neycken A., et al. . (2021). The utility of bulk wood density for tree-ring research. Dendrochronologia 69, 125880. doi: 10.1016/j.dendro.2021.125880 DOI
Björklund J., von Arx G., Nievergelt D., Wilson R., Van den Bulcke J., Günther B., et al. . (2019). Scientific merits and analytical challenges of tree-ring densitometry. Rev. Geophys. 57, 1224–1264. doi: 10.1029/2019RG000642 DOI
Brodersen C. R. (2013). Visualizing wood anatomy in three dimensions with high-resolution X-ray micro-tomography (MCT) - A review. IAWA. J. 34, 408–424. doi: 10.1163/22941932-00000033 DOI
Büntgen U., Frank D. C., Nievergelt D., Esper J. (2006). Summer temperature variations in the european alps, a.d. 755–2004. J. Clim. 19, 5606–5623. doi: 10.1175/JCLI3917.1 DOI
Buras A., Lehejček J., Michalová Z., Morrissey R. C., Svoboda M., Wilmking M. (2017). Shrubs shed light on 20th century Greenland Ice Sheet melting. Boreas 46, 667–677. doi: 10.1111/bor.12244 DOI
Carrer D., Pique G., Ferlicoq M., Ceamanos X., Ceschia E. (2018). What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops. Environ. Res. Lett. 13, 44030. doi: 10.1088/1748-9326/aab650 DOI
Castagneri D., Battipaglia G., von Arx G., Pacheco A., Carrer M. (2018). Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiol. 38, 1098–1109. doi: 10.1093/treephys/tpy036 PubMed DOI
Castagneri D., Carrer M., Regev L., Boaretto E. (2020. a). Precipitation variability differently affects radial growth, xylem traits and ring porosity of three Mediterranean oak species at xeric and mesic sites. Sci. Total. Environ. 699, 134285. doi: 10.1016/j.scitotenv.2019.134285 PubMed DOI
Castagneri D., Fonti P., Von Arx G., Carrer M. (2017. a). How does climate influence xylem morphogenesis over the growing season? Insights from long-Term intra-ring anatomy in Picea abies. Ann. Bot. 119, 1011–1020. doi: 10.1093/aob/mcw274 PubMed DOI PMC
Castagneri D., Prendin A. L., Peters R. L., Carrer M., von Arx G., Fonti P. (2020. b). Long-term impacts of defoliator outbreaks on larch xylem structure and tree-ring biomass. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.01078 PubMed DOI PMC
Castagneri D., Regev L., Boaretto E., Carrer M. (2017. b). Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environ. Exp. Bot. 133, 128–138. doi: 10.1016/j.envexpbot.2016.10.009 DOI
Cuny H. E., Fonti P., Rathgeber C. B. K., von Arx G., Peters R. L., Frank D. C. (2019). Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant Cell Environ. 42, 1222–1232. doi: 10.1111/pce.13464 PubMed DOI
Dietrich L., Zweifel R., Kahmen A. (2018). Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 38, 941–952. doi: 10.1093/treephys/tpy023 PubMed DOI
Decoux V., Varcin É., Leban J.-M. (2004). Relationships between the intra-ring wood density assessed by X-ray densitometry and optical anatomical measurements in conifers. Consequences for the cell wall apparent density determination. Ann. For. Sci. 61, 251–262. doi: 10.1051/forest:2004018 DOI
De Mil T., Vannoppen A., Beeckman H., Van Acker J., Van den Bulcke J. (2016). A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis. Ann. Bot. 117, 1187–1196. doi: 10.1093/aob/mcw063 PubMed DOI PMC
Diaconu D., Hackenberg J., Stangler D. F., Kahle H. P., Spiecker H. (2017). Simulation study to determine necessary sample sizes for image analysis-based quantitative wood anatomy of vessels of beech (Fagus sylvatica). Dendrochronologia 45, 35–38. doi: 10.1016/j.dendro.2017.07.002 DOI
Dierickx S., Genbrugge S., Beeckman H., Hubau W., Kibleur P., Van den Bulcke J. (2024). Non-destructive wood identification using X-ray µCT scanning: which resolution do we need? Plant Methods 20, 98. doi: 10.1186/s13007-024-01216-0 PubMed DOI PMC
Fonti P., Babushkina E. A. (2016). Tracheid anatomical responses to climate in a forest-steppe in Southern Siberia. Dendrochronologia 39, 32–41. doi: 10.1016/j.dendro.2015.09.002 DOI
Fonti P., García-González I. (2004). Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol. 163, 77–86. doi: 10.1111/j.1469-8137.2004.01089.x PubMed DOI
Fonti P., Solomonoff N., García-González I. (2007). Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol. 173, 562–570. doi: 10.1111/j.1469-8137.2006.01945.x PubMed DOI
Fonti P., Treydte K., Osenstetter S., Frank D., Esper J. (2009). Frequency-dependent signals in multi-centennial oak vessel data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 275, 92–99. doi: 10.1016/j.palaeo.2009.02.021 DOI
Fonti P., von Arx G., García-González I., Eilmann B., Sass-Klaassen U., Gärtner H., et al. . (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53. doi: 10.1111/j.1469-8137.2009.03030.x PubMed DOI
Fonti M. V., von Arx G., Harroue M., Schneider L., Nievergelt D., Björklund J., et al. . (2025). A protocol for high-quality sectioning for tree-ring anatomy. Front. Plant Sci. 16. doi: 0.3389/fpls.2025.1505389
Foo Y. Z., O’Dea R. E., Koricheva J., Nakagawa S., Lagisz M. (2021). A practical guide to question formation, systematic searching and study screening for literature reviews in ecology and evolution. Methods Ecol. Evol. 12, 1705–1720. doi: 10.1111/2041-210X.13654 DOI
Frigo D., Römer P., Unterholzner L., Zimmer-Zachmann H., Esper J., Carrer M., et al. . (2024). Review of embedding and non-embedding techniques for quantitative wood anatomy. Dendrochronologia 88, 126241. doi: 10.1016/j.dendro.2024.126241 DOI
García-Cervigón A. I., Olano J. M., von Arx G., Fajardo A. (2018). Xylem adjusts to maintain efficiency across a steep precipitation gradient in two coexisting generalist species. Ann. Bot. 122, 461–472. doi: 10.1093/aob/mcy088 PubMed DOI PMC
García-González I., Fonti P. (2008). Ensuring a representative sample of earlywood vessels for dendroecological studies: An example from two ring-porous species. Trees - Struct. Funct. 22, 237–244. doi: 10.1007/s00468-007-0180-9 DOI
Gärtner H., Lucchinetti S., Schweingruber F. H. (2015). A new sledge microtome to combine wood anatomy and tree-ring ecology. IAWA. J. 36, 452–459. doi: 10.1163/22941932-20150114 DOI
Gärtner H., Nievergelt D. (2010). The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28, 85–92. doi: 10.1016/j.dendro.2009.09.002 DOI
Gärtner H., Schweingruber F. H. (2013). Microscopic Preparation Techniques for Plant Stem Analysis (Remagen: Verlag Dr. Kessel; ).
Gärtner H., Schneider L., Cherubini P. (2024). A new workflow for sampling and digitizing increment cores. J. Visualized Exp. (JoVE) 211,e67098. doi: 10.3791/67098 PubMed DOI
Gennaretti F., Carrer M., García-González I., Rossi S., von Arx G. (2022). Editorial: Quantitative wood anatomy to explore tree responses to global change. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.998895 PubMed DOI PMC
González-Muñoz N., Sterck F., Torres-Ruiz J. M., Petit G., Cochard H., von Arx G., et al. . (2018). Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their distribution range in Europe. PloS One 13, e0196075. doi: 10.1371/journal.pone.0196075 PubMed DOI PMC
Granda E., Alla A. Q., Laskurain N. A., Loidi J., Sánchez-Lorenzo A., Camarero J. J. (2018). Coexisting oak species, including rear-edge populations, buffer climate stress through xylem adjustments. Tree Physiol. 38, 159–172. doi: 10.1093/treephys/tpx157 PubMed DOI
Guérin M., von Arx G., Martin-Benito D., Andreu-Hayles L., Griffin K. L., McDowell N. G., et al. . (2020). Distinct xylem responses to acute vs prolonged drought in pine trees. Tree Physiol. 40, 605–620. doi: 10.1093/treephys/tpz144 PubMed DOI
Hamann T., Smets E., Lens F. (2011). A comparison of paraffin and resin-based techniques used in bark anatomy. Taxon 60, 841–851. doi: 10.1002/tax.603016 DOI
Jacquin P., Longuetaud F., Leban J.-M., Mothe F. (2017). X-ray microdensitometry of wood: A review of existing principles and devices. Dendrochronologia 42, 42–50. doi: 10.1016/j.dendro.2017.01.004 DOI
Kellogg R. M., Wangaard F. F. (1969). Variation in the cell-wall density of wood. Wood Fiber. Sci. 1, 180–204. Available at: https://api.semanticscholar.org/CorpusID:136013715. (Accessed January 12, 2018)
Klesse S., Babst F., Evans M. E. K., Hurley A., Pappas C., Peters R. L. (2023). Legacy effects in radial tree growth are rarely significant after accounting for biological memory. J. Ecol. 111, 1188–1202. doi: 10.1111/1365-2745.14045 DOI
Klesse S., Von Arx G., Gossner M. M., Hug C., Rigling A., Queloz V. (2021). Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback. Tree Physiol. 41, 683–696. doi: 10.1093/treephys/tpaa091 PubMed DOI
Kolb K. J., Sperry J. S. (1999). Differences in drought adaptation between subspecies of sagebrush (Artemisia tridentata). Ecology 80, 2373–2384. doi: 10.1890/0012-9658(1999)080[2373:DIDABS]2.0.CO;2 DOI
Kowalska N., Šigut L., Stojanović M., Fischer M., Kyselova I., Pavelka M. (2020). Analysis of floodplain forest sensitivity to drought: floodplain forest during drought. Philosophical Trans. Royal Soc. B: Biolog. Sci. 375, 0–6. doi: 10.1098/rstb.2019.0518 PubMed DOI PMC
Larrabide I., Feijóo R. A., Novotny A. A., Taroco E. A. (2008). Topological derivative: A tool for image processing. Comput. Struct. 86, 1386–1403. doi: 10.1016/j.compstruc.2007.05.004 DOI
Lehnebach R., Campioli M., Gričar J., Prislan P., Mariën B., Beeckman H., et al. . (2021). High-resolution X-ray computed tomography: A new workflow for the analysis of xylogenesis and intra-seasonal wood biomass production. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.698640 PubMed DOI PMC
Levanič T. (2007). Atrics – A new system for image acquisition in dendrochronology. Tree-Ring Res. 63, 117–122. doi: 10.3959/1536-1098-63.2.117 DOI
Lewis A. M., Boose E. R. (1995). Estimating volume flow rates through xylem conduits. Am. J. Bot. 82, 1112–1116. doi: 10.2307/2446063 DOI
Ljungqvist F. C., Seim A., Krusic P. J., González-Rouco J. F., Werner J. P., Cook E. R., et al. . (2019). European warm-season temperature and hydroclimate since 850 CE. Environ. Res. Lett. 14, 84015. doi: 10.1088/1748-9326/ab2c7e DOI
Mayo S. C., Chen F., Evans R. (2010). Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. J. Struct. Biol. 171, 182–188. doi: 10.1016/j.jsb.2010.04.001 PubMed DOI
Nola P., Bracco F., Assini S., von Arx G., Castagneri D. (2020). Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. @ is differently affected by climate in a temperate alluvial forest. Ann. For. Sci. 77, 8. doi: 10.1007/s13595-019-0906-z DOI
Nolin A. F., Tardif J. C., Conciatori F., Kames S., Meko D. M., Bergeron Y. (2021). Multi-century tree-ring anatomical evidence reveals increasing frequency and magnitude of spring discharge and floods in eastern boreal Canada. Glob. Planet. Change 199, 103444. doi: 10.1016/j.gloplacha.2021.103444 DOI
Noyer E., Stojanović M., Horáček P., Pérez-de-Lis G. (2023). Toward a better understanding of angiosperm xylogenesis: a new method for a cellular approach. New Phytol. 239, 792–805. doi: 10.1111/nph.18959 PubMed DOI
Olson M. E., Anfodillo T., Rosell J. A., Petit G., Crivellaro A., Isnard S., et al. . (2014). Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol. Lett. 17, 988–997. doi: 10.1111/ele.12302 PubMed DOI
Peters R. L., Balanzategui D., Hurley A. G., von Arx G., Prendin A. L., Cuny H. E., et al. . (2018). RAPTOR: Row and position tracheid organizer in R. Dendrochronologia 47, 10–16. doi: 10.1016/j.dendro.2017.10.003 DOI
Peters R. L., Miranda J. C., Schönbeck L., Nievergelt D., Fonti M. V., Saurer M., et al. . (2020. b). Tree physiological monitoring of the 2018 larch budmoth outbreak: preference for leaf recovery and carbon storage over stem wood formation in Larix decidua. Tree Physiol. 40, 1697–1711. doi: 10.1093/treephys/tpaa087 PubMed DOI
Peters R. L., Steppe K., Cuny H. E., De Pauw D. J. W., Frank D. C., Schaub M., et al. . (2021). Turgor – a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 229, 213–229. doi: 10.1111/nph.16872 PubMed DOI
Peters R. L., Steppe K., Pappas C., Zweifel R., Babst F., Dietrich L., et al. . (2023). Daytime stomatal regulation in mature temperate trees prioritizes stem rehydration at night. New Phytol. 239, 553–546. doi: 10.1111/nph.18964 PubMed DOI
Peters R. L., von Arx G., Nievergelt D., Ibrom A., Stillhard J., Trotsiuk V., et al. . (2020. a). Axial changes in wood functional traits have limited net effects on stem biomass increment in European beech (Fagus sylvatica). Tree Physiol. 40, 498–510. doi: 10.1093/treephys/tpaa002 PubMed DOI PMC
Piermattei A., von Arx G., Avanzi C., Fonti P., Gärtner H., Piotti A., et al. . (2020). Functional relationships of wood anatomical traits in Norway spruce. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00683 PubMed DOI PMC
Popkova M. I., Vaganov E. A., Shishov V. V., Babushkina E. A., Rossi S., Fonti M. V., et al. . (2018). Modeled tracheidograms disclose drought influence on pinus sylvestris tree-rings structure from siberian forest-steppe. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01144 PubMed DOI PMC
Prendin A. L., Carrer M., Karami M., Hollesen J., Bjerregaard Pedersen N., Pividori M., et al. . (2020). Immediate and carry-over effects of insect outbreaks on vegetation growth in West Greenland assessed from cells to satellite. J. Biogeogr. 47, 87–100. doi: 10.1111/jbi.13644 DOI
Prendin A. L., Mayr S., Beikircher B., von Arx G., Petit G. (2018. a). Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. Tree Physiol. 38, 1088–1097. doi: 10.1093/treephys/tpy065 PubMed DOI
Prendin A. L., Petit G., Fonti P., Rixen C., Dawes M. A., von Arx G. (2018. b). Axial xylem architecture of Larix decidua exposed to CO2 enrichment and soil warming at the tree line. Funct. Ecol. 32, 273–287. doi: 10.1111/1365-2435.12986 DOI
R Core Team (2017). R: A language and environment for statistical computing. (Vienna, Austria: R Foundation for Statistical Computing; ). Available at: https://www.R-project.org/.
Rathgeber C. B. K., Decoux V., Leban J.-M. (2006). Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann. For. Sci. 63, 699–706. doi: 10.1051/forest:2006050 DOI
Reinig F., Gärtner H., Crivellaro A., Nievergelt D., Pauly M., Schweingruber F., et al. . (2018). Introducing anatomical techniques to subfossil wood. Dendrochronologia 52, 146–151. doi: 10.1016/j.dendro.2018.10.005 DOI
Seftigen K., Fonti M. V., Luckman B., Rydval M., Stridbeck P., Von Arx G., et al. . (2022). Prospects for dendroanatomy in paleoclimatology - a case study on Picea engelmannii from the Canadian Rockies. Clim. Past. 18, 1151–1168. doi: 10.5194/cp-18-1151-2022 DOI
Skiadaresis G., Schwarz J., Stahl K., Bauhus J. (2021). Groundwater extraction reduces tree vitality, growth and xylem hydraulic capacity in Quercus robur during and after drought events. Sci. Rep. 11, 1–14. doi: 10.1038/s41598-021-84322-6 PubMed DOI PMC
Souto-Herrero M., Rozas V., García-González I. (2017). A 481-year chronology of oak earlywood vessels as an age-independent climatic proxy in NW Iberia. Glob. Planet. Change 155, 20–28. doi: 10.1016/j.gloplacha.2017.06.003 DOI
Steppe K., Cnudde V., Girard C., Lemeur R., Cnudde J.-P., Jacobs P. (2004). Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J. Struct. Biol. 148, 11–21. doi: 10.1016/j.jsb.2004.05.001 PubMed DOI
Steppe K., Lemeur R. (2007). Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model. Tree Physiol. 27, 43–52. doi: 10.1093/treephys/27.1.43 PubMed DOI
St. George S., Nielsen E., Conciatori F., Tardif J. (2002). Trends in Quercus macrocarpa vessel areas and their implications for tree-ring paleoflood studies. Tree-Ring Res. 58, 3–10.
Tarelkin Y., Hufkens K., Hahn S., Van den Bulcke J., Bastin J.-F., Ilondea B. A., et al. . (2019). Wood anatomy variability under contrasted environmental conditions of common deciduous and evergreen species from central African forests. Trees 33, 893–909. doi: 10.1007/s00468-019-01826-5 DOI
Trtik P., Dual J., Keunecke D., Mannes D., Niemz P., Stähli P., et al. . (2007). 3D imaging of microstructure of spruce wood. J. Struct. Biol. 159, 46–55. doi: 10.1016/j.jsb.2007.02.003 PubMed DOI
Tyree M. T., Zimmermann M. H. (2002). Xylem Structure and the Ascent of Sap (Heidelberg: Springer Berlin Heidelberg; ).
Vaganov E. A. (1990). “The tracheidogram method in tree-ring analysis and its application,” in Methods of dendrochronology: applications in the environmental sciences. Eds. Cook E. R., Kairiukstis L. A. (Kluwer Academic Publishers, Dordrecht, the Netherlands: ), 63–76.
Vaganov E. A., Schulze E.-D., Skomarkova M. V., Knohl A., Brand W. A., Roscher C. (2009). Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia 161, 729–745. doi: 10.1007/s00442-009-1421-y PubMed DOI PMC
Van Camp J., Hubeau M., Van den Bulcke J., Van Acker J., Steppe K. (2018). Cambial pinning relates wood anatomy to ecophysiology in the African tropical tree Maesopsis eminii. Tree Physiol. 38, 232–242. doi: 10.1093/treephys/tpx151 PubMed DOI
Van den Bulcke J., Boone M. A., Dhaene J., Van Loo D., Van Hoorebeke L., Boone M. N., et al. . (2019). Advanced X-ray CT scanning can boost tree ring research for earth system sciences. Ann. Bot. 124, 837–847. doi: 10.1093/aob/mcz126 PubMed DOI PMC
Van den Bulcke J., Boone M., Van Acker J., Stevens M., Van Hoorebeke L. (2009). X-ray tomography as a tool for detailed anatomical analysis. Ann. For. Sci. 66, 508. doi: 10.1051/forest/2009033 DOI
Van den Bulcke J., Wernersson E. L. G., Dierick M., Van Loo D., Masschaele B., Brabant L., et al. . (2014). 3D tree-ring analysis using helical X-ray tomography. Dendrochronologia 32, 39–46. doi: 10.1016/j.dendro.2013.07.001 DOI
Vlassenbroeck J., Dierick M., Masschaele B., Cnudde V., Van Hoorebeke L., Jacobs P. (2007). Software tools for quantification of X-ray microtomography at the UGCT. Nucl. Instruments. Methods Phys. Res. Sect. A. Accel. Spectrometers. Detect. Assoc. Equip. 580, 442–445. doi: 10.1016/j.nima.2007.05.073 DOI
von Arx G., Carrer M. (2014). ROXAS – A new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32, 290–293. doi: 10.1016/j.dendro.2013.12.001 DOI
von Arx G., Carrer M., Crivellaro A., De Micco V., Fonti P., Lens F., et al. . (2021). Q-NET – a new scholarly network on quantitative wood anatomy. Dendrochronologia 70, 125890. doi: 10.1016/j.dendro.2021.125890 DOI
von Arx G., Crivellaro A., Prendin A. L., Čufar K., Carrer M. (2016). Quantitative wood anatomy—Practical guidelines. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00781 PubMed DOI PMC
Wood S. N. (2017). Generalized Additive Models: An Introduction with R. 2nd Editio (New York, NY: Chapman and Hall/CRC; ). doi: 10.1201/9781315370279 DOI
Woodcock D. W. (1989). Distribution of vessel diameter in ring-porous trees. Aliso. A. J. Syst. Florist. Bot. 12, 287–293. doi: 10.5642/aliso.19891202.05 DOI
Ziaco E., Biondi F., Rossi S., Deslauriers A. (2014). Climatic influences on wood anatomy and tree-ring features of Great Basin conifers at a new mountain observatory. Appl. Plant Sci. 2, 1400054. doi: 10.3732/apps.1400054 PubMed DOI PMC