Functional Relationships of Wood Anatomical Traits in Norway Spruce

. 2020 ; 11 () : 683. [epub] 20200526

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32528514

The quantitative assessment of wood anatomical traits offers important insights into those factors that shape tree growth. While it is known that conduit diameter, cell wall thickness, and wood density vary substantially between and within species, the interconnection between wood anatomical traits, tree-ring width, tree height and age, as well as environment effects on wood anatomy remain unclear. Here, we measure and derived 65 wood anatomical traits in cross-sections of the five outermost tree rings (2008-2012) of 30 Norway spruce [Picea abies (L.) H. Karst.] trees growing along an altitudinal gradient (1,400-1,750 m a.s.l.) in the northern Apennines (Italy). We assess the relationship among each anatomical trait and between anatomical trait groups according to their function for (i) tree-ring growth, (ii) cell growth, (iii) hydraulic traits, and (iv) mechanical traits. The results show that tree height significantly affects wood hydraulic traits, as well as number and tangential diameter of tracheids, and ultimately the total ring width. Moreover, the amount of earlywood and latewood percentage influence wood hydraulic safety and efficiency, as well as mechanical traits. Mechanically relevant wood anatomical traits are mainly influenced by tree age, not necessarily correlated with tree height. An additional level of complexity is also indicated by some anatomical traits, such as latewood lumen diameter and the cell wall reinforcement index, showing large inter-annual variation as a proxy of phenotypic plasticity. This study unravels the complex interconnection of tree-ring tracheid structure and identifies anatomical traits showing a large inter-individual variation and a strong interannual coherency. Knowing and quantifying anatomical variation in cells of plant stem is crucial in ecological and biological studies for an appropriate interpretation of abiotic drivers of wood formation often related to tree height and/or tree age.

Zobrazit více v PubMed

Aloni R. (2013). “The role of hormones in controlling vascular differentiation,” in Cellular Aspects of Wood Formation, ed. Fromm J., (Berlin: Springer; ), 99–139. 10.1007/s00425-013-1927-8 DOI

Anfodillo T., Deslauriers A., Menardi R., Tedoldi L., Petit G., Rossi S. (2012). Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J. Exp. Bot. 63 837–845. 10.1093/jxb/err309 PubMed DOI PMC

Anfodillo T., Petit G., Crivellaro A. (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J. 34 352–364.

Avanzi C., Piermattei A., Piotti A., Büntgen U., Heer K., Opgenoorth L., et al. (2019). Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations. Sci. Total Environ. 650 493–504. 10.1016/j.scitotenv.2018.08.348 PubMed DOI

Beeckman H. (2016). Wood anatomy and trait-based ecology. IAWA J. 37 127–151.

Bennett A. C., McDowell N. G., Allen C. D., Anderson-Teixeira K. J. (2015). Larger trees suffer most during drought in forests worldwide. Nat. Plants 1:15139 10.1038/nplants.2015.139 PubMed DOI

Bouche P. S., Larter M., Domec J. C., Burlett R., Gasson P., Jansen S., et al. (2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers. J. Exp. Bot. 65 4419–4431. 10.1093/jxb/eru218 PubMed DOI PMC

Bouriaud O., Teodosiu M., Kirdyanov A. V., Wirth C. (2015). Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences 12 6205–6217.

Carrer M., Brunetti M., Castagneri D. (2016). The imprint of extreme climate events in century- long time series of wood anatomical traits in high-elevation conifers. Front. Plant Sci. 7:683 10.3389/fpls.2016.00683 PubMed DOI PMC

Carrer M., von Arx G., Castagneri D., Petit G. (2015). Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 35 27–33. 10.1093/treephys/tpu108 PubMed DOI

Castagneri D., Fonti P., von Arx G., Carrer M. (2017). How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Ann. Bot. 119 1011–1020. 10.1093/aob/mcw274 PubMed DOI PMC

Chen Z. Q., Baison J., Pan J., Karlsson B., Andersson B., Westin J., et al. (2018). Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics 19:946 10.1186/s12864-018-5256-y PubMed DOI PMC

Chiarugi A. (1936). L’indigenato della “Picea excelsa” nell’Appennino Etrusco. Nuovo G. Bot. Ital. 63 131–166.

Cuny H. E., Rathgeber C. B., Frank D., Fonti P., Fournier M. (2014). Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. 203 1231–1241. 10.1111/nph.12871 PubMed DOI

Dalla-Salda G., Fernández M. E., Sergent A. S., Rozenberg P., Badel E., Martinez Meier A. (2014). Dynamics of cavitation in a Douglas-fir tree-ring: transition-wood, the lord of the ring? J. Plant Hydr. 1:e0005.

Dalla-Salda G., Martinez-Meier A., Cochard H., Rozenberg P. (2009). Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. For. Ecol. Manag. 257 182–189.

De Micco V., Carrer M., Rathgeber C. B. K., Camarero J. J., Voltas J., Cherubini P., et al. (2019). From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA J. 40 155–182.

Denne M. P. (1988). Definition of latewood according to Mork (1928). IAWA Bull. 10 59–62.

Domec J. C., Gartner B. L. (2002). How do water transport and water storage differ in coniferous earlywood and latewood? J. Exp. Bot. 53 2369–2379. 10.1093/jxb/erf100 PubMed DOI

Domec J. C., Warren J. M., Meinzer F. C., Lachenbruch B. (2009). Safety for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA J. 30 101–120.

Enquist B. J. (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22 1045–1064. 10.1093/treephys/22.15-16.1045 PubMed DOI

Evans M. E. K., Gugger P. F., Lynch A. M., Guiterman C. H., Fowler J. C., Klesse S., et al. (2018). Dendroecology meets genomics in the common garden: new insights into climate adaptation. New Phytol. 218 401–403. 10.1111/nph.15094 PubMed DOI

Evert R. F. (2006). Esau’s Plant Anatomy, Meristems, Cells, and Tissues of the Plant Body – Their Structure, Function, and Development. Hoboken: Wiley.

Fajardo A., Mcintire E. J. B., Olson M. E. (2018). When short stature is an asset in trees. Trends Ecol. Evol. 34 193–199. 10.1016/j.tree.2018.10.011 PubMed DOI

Fernández M. E., Barotto A. J., Meier A. M., Gyenge J. E., Tesón N., Quiñones Martorello A. S., et al. (2019). New insights into wood anatomy and function relationships: how eucalyptus challenges what we already know. For. Ecol. Manag. 454:117638.

Fonti P., Bryukhanova M. V., Myglan V. S., Kirdyanov A. V., Naumova O. V., Vaganov E. A. (2013). Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. Am. J. Bot. 100 1332–1343. 10.3732/ajb.1200484 PubMed DOI

Fonti P., Jansen S. (2012). Xylem plasticity in response to climate. New Phytol. 195 734–736. 10.1111/j.1469-8137.2012.04252.x PubMed DOI

Fox J., Weisberg S. (2011). An R Companion to Applied Regression, Second Edition. Thousand Oaks, CA: Wiley.

Gartner B. L. (1995). “Patterns of xylem variations within a tree and their hydraulic and mechanical consequences,” in Plant Stems: Physiology and Functional Morphology, ed. Gartner B. L., (San Diego: Academic Press; ), 125–149.

Gärtner H., Cherubini P., Fonti P., von Arx G., Schneider L., Nievergelt D., et al. (2015a). A technical perspective in modern Tree-ring Research - how to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 97:e52337 10.3791/52337 PubMed DOI PMC

Gärtner H., Lucchinetti S., Schweingruber F. H. (2015b). A new sledge microtome to combine wood anatomy and tree-ring ecology. IAWA J. 36 452–459.

Gärtner H., Schweingruber F. H. (2013). Microscopic Preparation Techniques for Plant Stem Analysis. Birmensdorf: Verlag-WSL.

Hacke U. G., Lachenbruch B., Pitterman J., Mayr S., Domec J. C., Schulte P. J. (2015). “The hydraulic architecture of conifers,” in Functional and Ecological Xylem Anatomy, ed. Hacke U. G., (Switzerland: Springer International Publishing; ), 39–75.

Hacke U. G., Sperry J. S., Pockman W. T., Davis S. D., McCulloh K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126 457–461. 10.1007/s004420100628 PubMed DOI

Hannrup B., Cahalan C., Chantre G., Grabner M., Karlsson B., Le Bayon I., et al. (2004). Genetic parameters of growth and wood quality traits in Picea abies. Scand. J. For. Res. 19 14–29.

Heer K., Behringer D., Piermattei A., Bässler C., Brandl R., Fady B., et al. (2018). Linking dendroecology and association genetics in natural popu- lations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 27 1428–1438. 10.1111/mec.14538 PubMed DOI

Jyske T., Hölttä T. (2015). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytol. 205 102–115. 10.1111/nph.12973 PubMed DOI

Kašpar J., Anfodillo T., Treml V. (2019). Tree size mostly drives the variation of xylem traits at the treeline ecotone. Trees 33 1657–1665.

Lachenbruch B., Moore J. R., Evans R. (2011). “Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence,” in Size- and Age-Related Changes in Tree Structure and Function, eds Meinzer F. C., Lachenbruch B., Dawson T. E., (Dordrecht: Springer; ), 121–164.

Larson P. R. (1969). Wood Formation and the Concept of Wood Quality. New Haven, CT: Yale University.

Larson P. R. (1994). The Vascular Cambium, Development and Structure. Berlin: Springer-Verlag.

Lazzarin M., Crivellaro A., Williams C. B., Dawson T. E., Mozzi G., Anfodillo T. (2016). Tracheid and pit anatomy vary in tandem in a tall Sequoiadendron giganteum tree. IAWA J. 37 172–185.

Lindenmayer D. B., Laurance W. F. (2016). The unique challenges of conserving large old trees. Trends Ecol. Evol. 31 416–418. 10.1016/j.tree.2016.03.003 PubMed DOI

Luss S., Lundqvist S., Evans R., Grahn T., Olsson L., Petit G., et al. (2019). Within-ring variability of wood structure and its relationship to drought. IAWA J. 40 288–310. 10.1163/22941932-40190216 DOI

Magri D., Agrillo E., Di Rita F., Furlanetto G., Pini R., Ravazzi C., et al. (2015). Holocene dynamics of tree taxa populations in Italy. Rev. Palaeobot. Palynol. 218 267–284.

Malpighi M. (1675). Anatome Plantarum. London: Martyn.

Martinez Meier A. G., Sanchez L., Salda G., Pastorino M. J. M., Gautry J.-Y., Gallo L. A., et al. (2008). Genetic control of the tree-ring response of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to the 2003 drought and heat-wave in France. Ann. For. Sci. 65 102–102.

McCulloh K., Sperry J. S., Lachenbruch B., Meinzer F. C., Reich P. B., Voelker S. (2010). Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse porous saplings from temperate and tropical forests. New Phytol. 186 439–450. 10.1111/j.1469-8137.2010.03181.x PubMed DOI

Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2018). Vegan: Community Ecology Package. R Package Version 2.4–6.

Olson M. E., Anfodillo T., Rosell J. A., Petit G., Crivellaro A., Isnard S., et al. (2014). Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol. Lett. 17 988–997. 10.1111/ele.12302 PubMed DOI

Plomion C., Leprovost G., Stokes A. (2001). Wood formation in trees. Plant Physiol. 127 1513–1523. PubMed PMC

Prendin A. L., Petit G., Carrer M., Fonti P., Björklund J., von Arx G. (2017). New research perspectives from a novel approach to quantify tracheid wall thickness. Tree Physiol. 37 976–983. 10.1093/treephys/tpx037 PubMed DOI

Prendin A. L., Petit G., Fonti P., Rixen C., Dawes M. A., von Arx G. (2018). Axial xylem architecture of Larix decidua exposed to CO2 enrichment and soil warming at the tree line. Funct. Ecol. 32 273–287.

R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rosell J. A., Olson M. E., Anfodillo T. (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. Forest. Rep. 3 46–59.

Rosner S. (2013). Hydraulic and biomechanical optimization in Norway spruce trunk wood: a review. IAWA J. 34 365–390.

Rosner S., Klein A., Müller U., Karlsson B. (2008). Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood. Tree Physiol. 28 1179–1188. 10.1093/treephys/28.8.1179 PubMed DOI PMC

Rosner S., Svetlik J., Andreassen K., Borja I., Dalsgaard L., Evans R., et al. (2014). Wood density as a screening trait for drought sensitivity in Norway spruce. Can. J. For. Res. 44 154–161.

Rosner S., Světlík J., Andreassen K., Børja I., Dalsgaard L., Evans R., et al. (2016). Novel hydraulic vulnerability proxies for a boreal conifer species reveal that opportunists may have lower survival prospects under extreme climatic events. Front. Plant Sci. 7:831 10.3389/fpls.2016.00831 PubMed DOI PMC

Rungwattana K., Hietz P. (2017). Radial variation of wood functional traits reflect size-related adaptations of tree mechanics and hydraulics. Funct. Ecol. 32 1–13.

Skene D. S. (1972). The kinetics of tracheid development in Tsuga canadensis Carr and its relation to tree vigour. Ann. Bot. 36 179–187.

Stovall A. E. L., Shugart H., Xi Y. (2019). Tree height explains mortality risk during an intense drought. Nat. Commun. 10:4385 10.1038/s41467-019-12380-6 PubMed DOI PMC

Tyree M. T., Ewers F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytol. 119 345–360.

Vaganov E. A., Hughes M. K., Shashkin A. V. (2006). “Seasonal cambium activity and production of new xylem cells,” in Growth Dynamics of Conifer Tree Rings, Ecological Studies (Analysis and Synthesis), ed. Vaganov E. A, (Berlin: Springer; ), 71–104.

von Arx G., Carrer M. (2014). ROXAS – a new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32 290–293.

von Arx G., Crivellaro A., Prendin A. L., Čufar K., Carrer M. (2016). Quantitative wood anatomy - practical guidelines. Front. Plant Sci. 7:781 10.3389/fpls.2016.00781 PubMed DOI PMC

West G. B., Brown J. H., Enquist B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science 276 122–126. 10.1126/science.276.5309.122 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...