Functional Relationships of Wood Anatomical Traits in Norway Spruce

. 2020 ; 11 () : 683. [epub] 20200526

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32528514

The quantitative assessment of wood anatomical traits offers important insights into those factors that shape tree growth. While it is known that conduit diameter, cell wall thickness, and wood density vary substantially between and within species, the interconnection between wood anatomical traits, tree-ring width, tree height and age, as well as environment effects on wood anatomy remain unclear. Here, we measure and derived 65 wood anatomical traits in cross-sections of the five outermost tree rings (2008-2012) of 30 Norway spruce [Picea abies (L.) H. Karst.] trees growing along an altitudinal gradient (1,400-1,750 m a.s.l.) in the northern Apennines (Italy). We assess the relationship among each anatomical trait and between anatomical trait groups according to their function for (i) tree-ring growth, (ii) cell growth, (iii) hydraulic traits, and (iv) mechanical traits. The results show that tree height significantly affects wood hydraulic traits, as well as number and tangential diameter of tracheids, and ultimately the total ring width. Moreover, the amount of earlywood and latewood percentage influence wood hydraulic safety and efficiency, as well as mechanical traits. Mechanically relevant wood anatomical traits are mainly influenced by tree age, not necessarily correlated with tree height. An additional level of complexity is also indicated by some anatomical traits, such as latewood lumen diameter and the cell wall reinforcement index, showing large inter-annual variation as a proxy of phenotypic plasticity. This study unravels the complex interconnection of tree-ring tracheid structure and identifies anatomical traits showing a large inter-individual variation and a strong interannual coherency. Knowing and quantifying anatomical variation in cells of plant stem is crucial in ecological and biological studies for an appropriate interpretation of abiotic drivers of wood formation often related to tree height and/or tree age.

Zobrazit více v PubMed

Aloni R. (2013). “The role of hormones in controlling vascular differentiation,” in DOI

Anfodillo T., Deslauriers A., Menardi R., Tedoldi L., Petit G., Rossi S. (2012). Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. PubMed DOI PMC

Anfodillo T., Petit G., Crivellaro A. (2013). Axial conduit widening in woody species: a still neglected anatomical pattern.

Avanzi C., Piermattei A., Piotti A., Büntgen U., Heer K., Opgenoorth L., et al. (2019). Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations. PubMed DOI

Beeckman H. (2016). Wood anatomy and trait-based ecology.

Bennett A. C., McDowell N. G., Allen C. D., Anderson-Teixeira K. J. (2015). Larger trees suffer most during drought in forests worldwide. PubMed DOI

Bouche P. S., Larter M., Domec J. C., Burlett R., Gasson P., Jansen S., et al. (2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers. PubMed DOI PMC

Bouriaud O., Teodosiu M., Kirdyanov A. V., Wirth C. (2015). Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce.

Carrer M., Brunetti M., Castagneri D. (2016). The imprint of extreme climate events in century- long time series of wood anatomical traits in high-elevation conifers. PubMed DOI PMC

Carrer M., von Arx G., Castagneri D., Petit G. (2015). Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. PubMed DOI

Castagneri D., Fonti P., von Arx G., Carrer M. (2017). How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. PubMed DOI PMC

Chen Z. Q., Baison J., Pan J., Karlsson B., Andersson B., Westin J., et al. (2018). Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. PubMed DOI PMC

Chiarugi A. (1936). L’indigenato della “Picea excelsa” nell’Appennino Etrusco.

Cuny H. E., Rathgeber C. B., Frank D., Fonti P., Fournier M. (2014). Kinetics of tracheid development explain conifer tree-ring structure. PubMed DOI

Dalla-Salda G., Fernández M. E., Sergent A. S., Rozenberg P., Badel E., Martinez Meier A. (2014). Dynamics of cavitation in a Douglas-fir tree-ring: transition-wood, the lord of the ring?

Dalla-Salda G., Martinez-Meier A., Cochard H., Rozenberg P. (2009). Variation of wood density and hydraulic properties of Douglas-fir (

De Micco V., Carrer M., Rathgeber C. B. K., Camarero J. J., Voltas J., Cherubini P., et al. (2019). From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes.

Denne M. P. (1988). Definition of latewood according to Mork (1928).

Domec J. C., Gartner B. L. (2002). How do water transport and water storage differ in coniferous earlywood and latewood? PubMed DOI

Domec J. C., Warren J. M., Meinzer F. C., Lachenbruch B. (2009). Safety for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees.

Enquist B. J. (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. PubMed DOI

Evans M. E. K., Gugger P. F., Lynch A. M., Guiterman C. H., Fowler J. C., Klesse S., et al. (2018). Dendroecology meets genomics in the common garden: new insights into climate adaptation. PubMed DOI

Evert R. F. (2006).

Fajardo A., Mcintire E. J. B., Olson M. E. (2018). When short stature is an asset in trees. PubMed DOI

Fernández M. E., Barotto A. J., Meier A. M., Gyenge J. E., Tesón N., Quiñones Martorello A. S., et al. (2019). New insights into wood anatomy and function relationships: how eucalyptus challenges what we already know.

Fonti P., Bryukhanova M. V., Myglan V. S., Kirdyanov A. V., Naumova O. V., Vaganov E. A. (2013). Temperature-induced responses of xylem structure of PubMed DOI

Fonti P., Jansen S. (2012). Xylem plasticity in response to climate. PubMed DOI

Fox J., Weisberg S. (2011).

Gartner B. L. (1995). “Patterns of xylem variations within a tree and their hydraulic and mechanical consequences,” in

Gärtner H., Cherubini P., Fonti P., von Arx G., Schneider L., Nievergelt D., et al. (2015a). A technical perspective in modern Tree-ring Research - how to overcome dendroecological and wood anatomical challenges. PubMed DOI PMC

Gärtner H., Lucchinetti S., Schweingruber F. H. (2015b). A new sledge microtome to combine wood anatomy and tree-ring ecology.

Gärtner H., Schweingruber F. H. (2013).

Hacke U. G., Lachenbruch B., Pitterman J., Mayr S., Domec J. C., Schulte P. J. (2015). “The hydraulic architecture of conifers,” in

Hacke U. G., Sperry J. S., Pockman W. T., Davis S. D., McCulloh K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. PubMed DOI

Hannrup B., Cahalan C., Chantre G., Grabner M., Karlsson B., Le Bayon I., et al. (2004). Genetic parameters of growth and wood quality traits in

Heer K., Behringer D., Piermattei A., Bässler C., Brandl R., Fady B., et al. (2018). Linking dendroecology and association genetics in natural popu- lations: stress responses archived in tree rings associate with SNP genotypes in silver fir ( PubMed DOI

Jyske T., Hölttä T. (2015). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. PubMed DOI

Kašpar J., Anfodillo T., Treml V. (2019). Tree size mostly drives the variation of xylem traits at the treeline ecotone.

Lachenbruch B., Moore J. R., Evans R. (2011). “Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence,” in

Larson P. R. (1969).

Larson P. R. (1994).

Lazzarin M., Crivellaro A., Williams C. B., Dawson T. E., Mozzi G., Anfodillo T. (2016). Tracheid and pit anatomy vary in tandem in a tall

Lindenmayer D. B., Laurance W. F. (2016). The unique challenges of conserving large old trees. PubMed DOI

Luss S., Lundqvist S., Evans R., Grahn T., Olsson L., Petit G., et al. (2019). Within-ring variability of wood structure and its relationship to drought. DOI

Magri D., Agrillo E., Di Rita F., Furlanetto G., Pini R., Ravazzi C., et al. (2015). Holocene dynamics of tree taxa populations in Italy.

Malpighi M. (1675).

Martinez Meier A. G., Sanchez L., Salda G., Pastorino M. J. M., Gautry J.-Y., Gallo L. A., et al. (2008). Genetic control of the tree-ring response of Douglas-fir (

McCulloh K., Sperry J. S., Lachenbruch B., Meinzer F. C., Reich P. B., Voelker S. (2010). Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse porous saplings from temperate and tropical forests. PubMed DOI

Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2018).

Olson M. E., Anfodillo T., Rosell J. A., Petit G., Crivellaro A., Isnard S., et al. (2014). Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. PubMed DOI

Plomion C., Leprovost G., Stokes A. (2001). Wood formation in trees. PubMed PMC

Prendin A. L., Petit G., Carrer M., Fonti P., Björklund J., von Arx G. (2017). New research perspectives from a novel approach to quantify tracheid wall thickness. PubMed DOI

Prendin A. L., Petit G., Fonti P., Rixen C., Dawes M. A., von Arx G. (2018). Axial xylem architecture of

R Core Team (2018).

Rosell J. A., Olson M. E., Anfodillo T. (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions.

Rosner S. (2013). Hydraulic and biomechanical optimization in Norway spruce trunk wood: a review.

Rosner S., Klein A., Müller U., Karlsson B. (2008). Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood. PubMed DOI PMC

Rosner S., Svetlik J., Andreassen K., Borja I., Dalsgaard L., Evans R., et al. (2014). Wood density as a screening trait for drought sensitivity in Norway spruce.

Rosner S., Světlík J., Andreassen K., Børja I., Dalsgaard L., Evans R., et al. (2016). Novel hydraulic vulnerability proxies for a boreal conifer species reveal that opportunists may have lower survival prospects under extreme climatic events. PubMed DOI PMC

Rungwattana K., Hietz P. (2017). Radial variation of wood functional traits reflect size-related adaptations of tree mechanics and hydraulics.

Skene D. S. (1972). The kinetics of tracheid development in Tsuga canadensis Carr and its relation to tree vigour.

Stovall A. E. L., Shugart H., Xi Y. (2019). Tree height explains mortality risk during an intense drought. PubMed DOI PMC

Tyree M. T., Ewers F. W. (1991). The hydraulic architecture of trees and other woody plants.

Vaganov E. A., Hughes M. K., Shashkin A. V. (2006). “Seasonal cambium activity and production of new xylem cells,” in

von Arx G., Carrer M. (2014). ROXAS – a new tool to build centuries-long tracheid-lumen chronologies in conifers.

von Arx G., Crivellaro A., Prendin A. L., Čufar K., Carrer M. (2016). Quantitative wood anatomy - practical guidelines. PubMed DOI PMC

West G. B., Brown J. H., Enquist B. J. (1997). A general model for the origin of allometric scaling laws in biology. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...