Design of Zn-Binding Peptide(s) from Protein Fragments
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05940S
Grant Agency of the Czech Republic
ID:90254
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39937972
PubMed Central
PMC12002108
DOI
10.1002/cbic.202401014
Knihovny.cz E-zdroje
- Klíčová slova
- Computer design, Isothermal calorimetry, Metal-binding peptide, NMR, QM modeling, Zinc(II),
- MeSH
- molekulární modely MeSH
- peptidy * chemie metabolismus chemická syntéza MeSH
- sekvence aminokyselin MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- zinek * chemie metabolismus MeSH
- zinkové prsty MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy * MeSH
- zinek * MeSH
We designed a minimalistic zinc(II)-binding peptide featuring the Cys2His2 zinc-finger motif. To this aim, several tens of thousands of (His/Cys)-Xn-(His/Cys) protein fragments (n=2-20) were first extracted from the 3D protein structures deposited in Protein Data Bank (PDB). Based on geometrical constraints positioning two Cys (C) and two His (H) side chains at the vertices of a tetrahedron, approximately 22 000 sequences of the (H/C)-Xi-(H/C)-Xj-(H/C)-Xk-(H/C) type, satisfying Nmetal-binding H=Nmetal-binding C=2, were processed. Several other criteria, such as the secondary structure content and predicted fold stability, were then used to select the best candidates. To prove the viability of the computational design experimentally, three peptides were synthesized and subjected to isothermal calorimetry (ITC) measurements to determine the binding constants with Zn2+, including the entropy and enthalpy terms. For the strongest Zn2+ ions binding peptide, P1, the dissociation constant was shown to be in the nanomolar range (KD=~220 nM; corresponding to ΔGbind=-9.1 kcal mol-1). In addition, ITC showed that the [P1 : Zn2+] complex forms in 1 : 1 stoichiometry and two protons are released upon binding, which suggests that the zinc coordination involves both cysteines. NMR experiments also indicated that the structure of the [P1 : Zn2+] complex might be quite similar to the computationally predicted one. In summary, our proof-of-principle study highlights the usefulness of our computational protocol for designing novel metal-binding peptides.
Zobrazit více v PubMed
Zheng H., Cooper D. R., Porebski P. J., Shabalin I. G., Handing K. B., Minor W., Acta Crystallogr. Sect. Struct. Biol. 2017, 73 (Pt 3), 223–233. PubMed PMC
Sánchez-Aparicio J.-E., Tiessler-Sala L., Velasco-Carneros L., Roldán-Martín L., Sciortino G., Maréchal J.-D., J. Chem. Inf. Model. 2021, 61 (1), 311–323. PubMed
Putignano V., Rosato A., Banci L., Andreini C., Nucleic Acids Res. 2018, 46 (D1), D459–D464. PubMed PMC
Bertini I., Gray H. B., Stiefel E. I., Valentine J. S., Biological Inorganic Chemistry. Structure and Reactivity, University Science Books, 2007, ISBN 978-1-891389-43-6.
Liu J., Chakraborty S., Hosseinzadeh P., Yu Y., Tian S., Petrik I., Bhagi A., Lu Y., Chem. Rev. 2014, 114 (8), 4366–4469. PubMed PMC
Solomon E. I., Brunold T. C., Davis M. I., Kemsley J. N., Lee S.-K., Lehnert N., Neese F., Skulan A. J., Yang Y.-S., Zhou J., Chem. Rev. 2000, 100 (1), 235–350. PubMed
Lawrance G. A., Introduction to Coordination Chemistry, John Wiley & Sons, 2013, ISBN 978-0-470-51931-8.
Vatamaniuk O. K., Bucher E. A., Ward J. T., Rea P. A., J. Biol. Chem. 2001, 276 (24), 20817–20820. PubMed
Friedle S., Reisner E., Lippard S. J., Chem. Soc. Rev. 2010, 39 (8), 2768–2779. PubMed PMC
Silva M. P., Saibert C., Bortolotto T., Bortoluzzi A. J., Schenk G., Peralta R. A., Terenzi H., Neves A., J. Inorg. Biochem. 2020, 213, 111249. PubMed
Moroz Y. S., Dunston T. T., Makhlynets O. V., Moroz O. V., Wu Y., Yoon J. H., Olsen A. B., McLaughlin J. M., Mack K. L., Gosavi P. M., van Nuland N. A. J., Korendovych I. V., J. Am. Chem. Soc. 2015, 137 (47), 14905–14911. PubMed
Prier C. K., Arnold F. H., J. Am. Chem. Soc. 2015, 137 (44), 13992–14006. PubMed
Bloomer B. J., Clark D. S., Hartwig J. F., Biochemistry 2022, 62 (2), 221–228. PubMed
Lu Y., Yeung N., Sieracki N., Marshall N. M., Nature 2009, 460 (7257), 855–862. PubMed PMC
Kluska K., Adamczyk J., Krężel A., Coord. Chem. Rev. 2018, 367, 18–64.
Cassandri M., Smirnov A., Novelli F., Pitolli C., Agostini M., Malewicz M., Melino G., Raschellà G., Cell Death Dis. 2017, 3, 17071. PubMed PMC
Negi S., Imanishi M., Hamori M., Kawahara-Nakagawa Y., Nomura W., Kishi K., Shibata N., Sugiura Y., JBIC J. Biol. Inorg. Chem. 2023, 28 (3), 249–261. PubMed PMC
Andreini C., Banci L., Bertini I., Rosato A., J. Proteome Res. 2006, 5 (1), 196–201. PubMed
Gamsjaeger R., Liew C. K., Loughlin F. E., Crossley M., Mackay J. P., Trends Biochem. Sci. 2007, 32 (2), 63–70. PubMed
Cerasoli E., Sharpe B. K., Woolfson D. N., J. Am. Chem. Soc. 2005, 127 (43), 15008–15009. PubMed
Ambroggio X. I., Kuhlman B., J. Am. Chem. Soc. 2006, 128 (4), 1154–1161. PubMed
Carvalho H. F., Branco R. J. F., Leite F. A. S., Matzapetakis M., Roque A. C. A., Iranzo O., Catal. Sci. Technol. 2019, 9 (23), 6723–6736.
Gutten O., Rulíšek L., Inorg. Chem. 2013, 52 (18), 10347–10355. PubMed
Gutten O., Rulíšek L., Phys. Chem. Chem. Phys. 2015, 17 (22), 14393–14404. PubMed
Mohammed T. A., Meier C. M., Kalvoda T., Kalt M., Rulíšek L., Shoshan M. S., Angew. Chem. Int. Ed. 2021, 60 (22), 12381–12385. PubMed
Sauser L., Mohammed T. A., Kalvoda T., Feng S.-J., Spingler B., Rulíšek L., Shoshan M. S., Inorg. Chem. 2021, 60 (24), 18620–18624. PubMed
Sauser L., Kalvoda T., Kavas A., Rulíšek L., Shoshan M. S., ChemMedChem 2022, 17 (15), e202200152. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A. W., Kavukcuoglu K., Kohli P., Hassabis D., Nature 2021, 596 (7873), 583–589. PubMed PMC
Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Hung C.-C., O'Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A. I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M. R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J. M., Nature 2024, 630 (8016), 493–500. PubMed PMC
Li T., Hendrix E., He Y., J. Phys. Chem. B. 2023, 127 (10), 2177–2186 . PubMed
Watson J. L., Juergens D., Bennett N. R., Trippe B. L., Yim J., Eisenach H. E., Ahern W., Borst A. J., Ragotte R. J., Milles L. F., Wicky B. I. M., Hanikel N., Pellock S. J., Courbet A., Sheffler W., Wang J., Venkatesh P., Sappington I., Torres S. V., Lauko A., De Bortoli V., Mathieu E., Ovchinnikov S., Barzilay R., Jaakkola T. S., DiMaio F., Baek M., Baker D., Nature 2023, 620 (7976), 1089–1100. PubMed PMC
Dauparas J., Anishchenko I., Bennett N., Bai H., Ragotte R. J., Milles L. F., Wicky B. I. M., Courbet A., de Haas R. J., Bethel N., Leung P. J. Y., Huddy T. F., Pellock S., Tischer D., Chan F., Koepnick B., Nguyen H., Kang A., Sankaran B., Bera A. K., King N. P., Baker D., Science 2022, 378 (6615), 49–56. PubMed PMC
Wang C., Vernon R., Lange O., Tyka M., Baker D., Protein Sci. Publ. Protein Soc. 2010, 19 (3), 494–506. PubMed PMC
Chalkley M. J., Mann S. I., DeGrado W. F., Nat. Chem. Rev. 2022, 6 (1), 31–50. PubMed PMC
Kerns S. A., Biswas A., Minnetian N. M., Borovik A. S., JACS Au 2022, 2 (6), 1252–1265. PubMed PMC
Tolbert A. E., Ervin C. S., Ruckthong L., Paul T. J., Jayasinghe-Arachchige V. M., Neupane K. P., Stuckey J. A., Prabhakar R., Pecoraro V. L., Nat. Chem. 2020, 12 (4), 405–411. PubMed PMC
Guffy S. L., Pulavarti S. V. S. R. K., Harrison J., Fleming D., Szyperski T., Kuhlman B., Biochemistry 2023, 62 (3), 770–781. PubMed PMC
Pham T. L., Fazliev S., Baur P., Comba P., Thomas F., ChemBioChem 2023, 24 (3), e202200588. PubMed PMC
Thuc Dang V., Engineer A., McElheny D., Drena A., Telser J., Tomczak K., Nguyen A. I., Chem. Eur. J. 2024, 30 (59), e202402101. PubMed
Pham T. L., Kovermann M., Thomas F., ACS Synth. Biol. 2022, 11 (1), 254–264. PubMed
Learte-Aymamí S., Martínez-Castro L., González-González C., Condeminas M., Martin-Malpartida P., Tomás-Gamasa M., Baúlde S., Couceiro J. R., Maréchal J.-D., Macias M. J., Mascareñas J. L., Vázquez M. E., JACS Au 2024, 4 (7), 2630–2639. PubMed PMC
Hoffnagle A. M., Tezcan F. A., J. Am. Chem. Soc. 2023, 145 (26), 14208–14214. PubMed PMC
Lou Y., Zhang B., Ye X., Wang Z.-G., Mater. Today Nano 2023, 21, 100302.
Webster A. M., Peacock A. F. A., Chem. Commun. 2021, 57 (56), 6851–6862. PubMed
Timm J., Pike D. H., Mancini J. A., Tyryshkin A. M., Poudel S., Siess J. A., Molinaro P. M., McCann J. J., Waldie K. M., Koder R. L., Falkowski P. G., Nanda V., Sci. Adv. 2023, 9 (10), eabq1990. PubMed PMC
Pirro F., La Gatta S., Arrigoni F., Famulari A., Maglio O., Del Vecchio P., Chiesa M., De Gioia L., Bertini L., Chino M., Nastri F., Lombardi A., Angew. Chem. Int. Ed. 2023, 62 (1), e202211552. PubMed
Kožíšek M., Svatoš A., Buděšínský M., Muck A., Bauer M. C., Kotrba P., Ruml T., Havlas Z., Linse S., Rulíšek L., Chem. Eur. J. 2008, 14 (26), 7836–7846. PubMed
Pham T. L., Thomas F., ChemBioChem 2024, 25 (7), e202300745. PubMed
Marshall L. R., Korendovych I. V., Curr. Opin. Chem. Biol. 2021, 64, 145–153. PubMed PMC
Rink W. M., Thomas F., Chem. Eur. J. 2019, 25 (7), 1665–1677. PubMed
Frishman D., Argos P., Proteins Struct. Funct. Genet. 1995, 23 (4), 566–579. PubMed
Olofsson S., Johansson G., Baltzer L., J. Chem. Soc.-Perkin Trans. 1995, 2 (11), 2047–2056.
Smith A. J., Naudin E. A., Edgell C. L., Baker E. G., Mylemans B., FitzPatrick L., Herman A., Rice H. M., Andrews D. M., Tigue N., Woolfson D. N., Savery N. J., ACS Synth. Biol. 2023, 12 (6), 1845–1858. PubMed PMC
Murre C., Bain G., van Dijk M. A., Engel I., Furnari B. A., Massari M. E., Matthews J. R., Quong M. W., Rivera R. R., Stuiver M. H., Biochim. Biophys. Acta 1994, 1218 (2), 129–135. PubMed
Duboué-Dijon E., Mason P. E., Fischer H. E., Jungwirth P., J. Phys. Chem. B 2018, 122 (13), 3296–3306. PubMed
Fukada H., Takahashi K., Proteins Struct. Funct. Bioinf. 1998, 33 (2), 159–166. PubMed
Krimmer S. G., Klebe G., J. Comput.-Aided Mol. Des. 2015, 29 (9), 867–883. PubMed
Kuhlman B., Dantas G., Ireton G. C., Varani G., Stoddard B. L., Baker D., Science 2003, 302 (5649), 1364–1368. PubMed
Alford R. F., Leaver-Fay A., Jeliazkov J. R., O'Meara M. J., DiMaio F. P., Park H., Shapovalov M. V., Renfrew P. D., Mulligan V. K., Kappel K., Labonte J. W., Pacella M. S., Bonneau R., Bradley P., Dunbra, R. L. ck Jr. , Das R., Baker D., Kuhlman B., Kortemme T., Gray J. J., J. Chem. Theory Comput. 2017, 13 (6), 3031–3048. PubMed PMC
Kalvoda T., Martinek T., Jungwirth P., Rulíšek L., J. Chem. Phys. 2024, 160(8), 084308. PubMed
Persson I., Liquids 2022, 2 (3), 210–242.
Migliorati V., Mancini G., Tatoli S., Zitolo A., Filipponi A., De Panfilis S., Di Cicco A., D'Angelo P., Inorg. Chem. 2013, 52 (2), 1141–1150. PubMed
D'Angelo P., Barone V., Chillemi G., Sanna N., Meyer-Klaucke W., Pavel N. V., J. Am. Chem. Soc. 2002, 124 (9), 1958–1967. PubMed
Maheshwary S., Patel N., Sathyamurthy N., Kulkarni A. D., Gadre S. R., J. Phys. Chem. A 2001, 105 (46), 10525–10537.
Tissandier M. D., Cowen K. A., Feng W. Y., Gundlach E., Cohen M. H., Earhart A. D., Coe J. V., Tuttle T. R., J. Phys. Chem. A 1998, 102 (40), 7787–7794.
Kelly C. P., Cramer C. J., Truhlar D. G., J. Phys. Chem. B 2006, 110 (32), 16066–16081. PubMed
Rey J., Murail S., de Vries S., Derreumaux P., Tuffery P., Nucleic Acids Res. 2023, 51 (W1), W432–W437. PubMed PMC
Lee W., Tonelli M., Markley J. L., Bioinformatics 2015, 31 (8), 1325–1327. PubMed PMC
Herrmann T., Güntert P., Wüthrich K., J. Mol. Biol. 2002, 319 (1), 209–227. PubMed
Shen Y., Delaglio F., Cornilescu G., Bax A., J. Biomol. NMR 2009, 44 (4), 213–223. PubMed PMC
Sreerama N., Woody R. W., Protein Sci. 2004, 13 (1), 100–112. PubMed PMC
Sreerama N., Woody R. W., Methods Enzymol. 2004, 383, 318–351. PubMed
Sreerama N., Woody R. W., Anal. Biochem. 2000, 287 (2), 252–260. PubMed
Bianconi M. L., Methods Enzymol. 2016, 567, 237–256. PubMed
Humphrey W., Dalke A., Schulten K., J. Mol. Graphics 1996, 14 (1), 33–38. PubMed
Huang J., A. D. MacKerell Jr , J. Comput. Chem. 2013, 34 (25), 2135–2145. PubMed PMC
Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., Schulten K., J. Comput. Chem. 2005, 26 (16), 1781–802. PubMed PMC
Perdew J. P., Phys. Rev. B 1986, 33 (12), 8822–8824. PubMed
Becke A. D., Phys. Rev. A 1988, 38 (6), 3098–3100. PubMed
Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132 (15), 154104. PubMed
Grimme S., Ehrlich S., Goerigk L., J. Comput. Chem. 2011, 32 (7), 1456–1465. PubMed
Hostaš J., Řezáč J., J. Chem. Theory Comput. 2017, 13 (8), 3575–3585. PubMed
Klamt A., Schüürmann G., J. Chem. Soc. Perkin Trans. 2 1993, (5), 799–805.
Baldridge K., Klamt A., J. Chem. Phys. 1997, 106 (16), 6622–6633.
Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37 (2), 785–789. PubMed
Becke A., J. Chem. Phys. 1993, 98, 5648–5652.
Klamt A., Jonas V., Bürger T., Lohrenz J. C. W., J. Phys. Chem. A 1998, 102 (26), 5074–5085.
Klamt A., J. Phys. Chem. 1995, 99 (7), 2224–2235.
Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S., WIREs Comput. Mol. Sci. 2021, 11 (2), e1493.
Ehlert S., Stahn M., Spicher S., Grimme S., J. Chem. Theory Comput. 2021, 17 (7), 4250–4261. PubMed
TURBOMOLE V7.7 2022, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
The PyMOL Molecular Graphics System, Version 2.5.2 Schrödinger, LLC.