Design of Zn-Binding Peptide(s) from Protein Fragments

. 2025 Apr 01 ; 26 (7) : e202401014. [epub] 20250226

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39937972

Grantová podpora
23-05940S Grant Agency of the Czech Republic
ID:90254 Ministry of Education, Youth and Sports of the Czech Republic

We designed a minimalistic zinc(II)-binding peptide featuring the Cys2His2 zinc-finger motif. To this aim, several tens of thousands of (His/Cys)-Xn-(His/Cys) protein fragments (n=2-20) were first extracted from the 3D protein structures deposited in Protein Data Bank (PDB). Based on geometrical constraints positioning two Cys (C) and two His (H) side chains at the vertices of a tetrahedron, approximately 22 000 sequences of the (H/C)-Xi-(H/C)-Xj-(H/C)-Xk-(H/C) type, satisfying Nmetal-binding H=Nmetal-binding C=2, were processed. Several other criteria, such as the secondary structure content and predicted fold stability, were then used to select the best candidates. To prove the viability of the computational design experimentally, three peptides were synthesized and subjected to isothermal calorimetry (ITC) measurements to determine the binding constants with Zn2+, including the entropy and enthalpy terms. For the strongest Zn2+ ions binding peptide, P1, the dissociation constant was shown to be in the nanomolar range (KD=~220 nM; corresponding to ΔGbind=-9.1 kcal mol-1). In addition, ITC showed that the [P1 : Zn2+] complex forms in 1 : 1 stoichiometry and two protons are released upon binding, which suggests that the zinc coordination involves both cysteines. NMR experiments also indicated that the structure of the [P1 : Zn2+] complex might be quite similar to the computationally predicted one. In summary, our proof-of-principle study highlights the usefulness of our computational protocol for designing novel metal-binding peptides.

Zobrazit více v PubMed

Zheng H., Cooper D. R., Porebski P. J., Shabalin I. G., Handing K. B., Minor W., Acta Crystallogr. Sect. Struct. Biol. 2017, 73 (Pt 3), 223–233. PubMed PMC

Sánchez-Aparicio J.-E., Tiessler-Sala L., Velasco-Carneros L., Roldán-Martín L., Sciortino G., Maréchal J.-D., J. Chem. Inf. Model. 2021, 61 (1), 311–323. PubMed

Putignano V., Rosato A., Banci L., Andreini C., Nucleic Acids Res. 2018, 46 (D1), D459–D464. PubMed PMC

Bertini I., Gray H. B., Stiefel E. I., Valentine J. S., Biological Inorganic Chemistry. Structure and Reactivity, University Science Books, 2007, ISBN 978-1-891389-43-6.

Liu J., Chakraborty S., Hosseinzadeh P., Yu Y., Tian S., Petrik I., Bhagi A., Lu Y., Chem. Rev. 2014, 114 (8), 4366–4469. PubMed PMC

Solomon E. I., Brunold T. C., Davis M. I., Kemsley J. N., Lee S.-K., Lehnert N., Neese F., Skulan A. J., Yang Y.-S., Zhou J., Chem. Rev. 2000, 100 (1), 235–350. PubMed

Lawrance G. A., Introduction to Coordination Chemistry, John Wiley & Sons, 2013, ISBN 978-0-470-51931-8.

Vatamaniuk O. K., Bucher E. A., Ward J. T., Rea P. A., J. Biol. Chem. 2001, 276 (24), 20817–20820. PubMed

Friedle S., Reisner E., Lippard S. J., Chem. Soc. Rev. 2010, 39 (8), 2768–2779. PubMed PMC

Silva M. P., Saibert C., Bortolotto T., Bortoluzzi A. J., Schenk G., Peralta R. A., Terenzi H., Neves A., J. Inorg. Biochem. 2020, 213, 111249. PubMed

Moroz Y. S., Dunston T. T., Makhlynets O. V., Moroz O. V., Wu Y., Yoon J. H., Olsen A. B., McLaughlin J. M., Mack K. L., Gosavi P. M., van Nuland N. A. J., Korendovych I. V., J. Am. Chem. Soc. 2015, 137 (47), 14905–14911. PubMed

Prier C. K., Arnold F. H., J. Am. Chem. Soc. 2015, 137 (44), 13992–14006. PubMed

Bloomer B. J., Clark D. S., Hartwig J. F., Biochemistry 2022, 62 (2), 221–228. PubMed

Lu Y., Yeung N., Sieracki N., Marshall N. M., Nature 2009, 460 (7257), 855–862. PubMed PMC

Kluska K., Adamczyk J., Krężel A., Coord. Chem. Rev. 2018, 367, 18–64.

Cassandri M., Smirnov A., Novelli F., Pitolli C., Agostini M., Malewicz M., Melino G., Raschellà G., Cell Death Dis. 2017, 3, 17071. PubMed PMC

Negi S., Imanishi M., Hamori M., Kawahara-Nakagawa Y., Nomura W., Kishi K., Shibata N., Sugiura Y., JBIC J. Biol. Inorg. Chem. 2023, 28 (3), 249–261. PubMed PMC

Andreini C., Banci L., Bertini I., Rosato A., J. Proteome Res. 2006, 5 (1), 196–201. PubMed

Gamsjaeger R., Liew C. K., Loughlin F. E., Crossley M., Mackay J. P., Trends Biochem. Sci. 2007, 32 (2), 63–70. PubMed

Cerasoli E., Sharpe B. K., Woolfson D. N., J. Am. Chem. Soc. 2005, 127 (43), 15008–15009. PubMed

Ambroggio X. I., Kuhlman B., J. Am. Chem. Soc. 2006, 128 (4), 1154–1161. PubMed

Carvalho H. F., Branco R. J. F., Leite F. A. S., Matzapetakis M., Roque A. C. A., Iranzo O., Catal. Sci. Technol. 2019, 9 (23), 6723–6736.

Gutten O., Rulíšek L., Inorg. Chem. 2013, 52 (18), 10347–10355. PubMed

Gutten O., Rulíšek L., Phys. Chem. Chem. Phys. 2015, 17 (22), 14393–14404. PubMed

Mohammed T. A., Meier C. M., Kalvoda T., Kalt M., Rulíšek L., Shoshan M. S., Angew. Chem. Int. Ed. 2021, 60 (22), 12381–12385. PubMed

Sauser L., Mohammed T. A., Kalvoda T., Feng S.-J., Spingler B., Rulíšek L., Shoshan M. S., Inorg. Chem. 2021, 60 (24), 18620–18624. PubMed

Sauser L., Kalvoda T., Kavas A., Rulíšek L., Shoshan M. S., ChemMedChem 2022, 17 (15), e202200152. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A. W., Kavukcuoglu K., Kohli P., Hassabis D., Nature 2021, 596 (7873), 583–589. PubMed PMC

Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Hung C.-C., O'Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A. I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M. R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J. M., Nature 2024, 630 (8016), 493–500. PubMed PMC

Li T., Hendrix E., He Y., J. Phys. Chem. B. 2023, 127 (10), 2177–2186 . PubMed

Watson J. L., Juergens D., Bennett N. R., Trippe B. L., Yim J., Eisenach H. E., Ahern W., Borst A. J., Ragotte R. J., Milles L. F., Wicky B. I. M., Hanikel N., Pellock S. J., Courbet A., Sheffler W., Wang J., Venkatesh P., Sappington I., Torres S. V., Lauko A., De Bortoli V., Mathieu E., Ovchinnikov S., Barzilay R., Jaakkola T. S., DiMaio F., Baek M., Baker D., Nature 2023, 620 (7976), 1089–1100. PubMed PMC

Dauparas J., Anishchenko I., Bennett N., Bai H., Ragotte R. J., Milles L. F., Wicky B. I. M., Courbet A., de Haas R. J., Bethel N., Leung P. J. Y., Huddy T. F., Pellock S., Tischer D., Chan F., Koepnick B., Nguyen H., Kang A., Sankaran B., Bera A. K., King N. P., Baker D., Science 2022, 378 (6615), 49–56. PubMed PMC

Wang C., Vernon R., Lange O., Tyka M., Baker D., Protein Sci. Publ. Protein Soc. 2010, 19 (3), 494–506. PubMed PMC

Chalkley M. J., Mann S. I., DeGrado W. F., Nat. Chem. Rev. 2022, 6 (1), 31–50. PubMed PMC

Kerns S. A., Biswas A., Minnetian N. M., Borovik A. S., JACS Au 2022, 2 (6), 1252–1265. PubMed PMC

Tolbert A. E., Ervin C. S., Ruckthong L., Paul T. J., Jayasinghe-Arachchige V. M., Neupane K. P., Stuckey J. A., Prabhakar R., Pecoraro V. L., Nat. Chem. 2020, 12 (4), 405–411. PubMed PMC

Guffy S. L., Pulavarti S. V. S. R. K., Harrison J., Fleming D., Szyperski T., Kuhlman B., Biochemistry 2023, 62 (3), 770–781. PubMed PMC

Pham T. L., Fazliev S., Baur P., Comba P., Thomas F., ChemBioChem 2023, 24 (3), e202200588. PubMed PMC

Thuc Dang V., Engineer A., McElheny D., Drena A., Telser J., Tomczak K., Nguyen A. I., Chem. Eur. J. 2024, 30 (59), e202402101. PubMed

Pham T. L., Kovermann M., Thomas F., ACS Synth. Biol. 2022, 11 (1), 254–264. PubMed

Learte-Aymamí S., Martínez-Castro L., González-González C., Condeminas M., Martin-Malpartida P., Tomás-Gamasa M., Baúlde S., Couceiro J. R., Maréchal J.-D., Macias M. J., Mascareñas J. L., Vázquez M. E., JACS Au 2024, 4 (7), 2630–2639. PubMed PMC

Hoffnagle A. M., Tezcan F. A., J. Am. Chem. Soc. 2023, 145 (26), 14208–14214. PubMed PMC

Lou Y., Zhang B., Ye X., Wang Z.-G., Mater. Today Nano 2023, 21, 100302.

Webster A. M., Peacock A. F. A., Chem. Commun. 2021, 57 (56), 6851–6862. PubMed

Timm J., Pike D. H., Mancini J. A., Tyryshkin A. M., Poudel S., Siess J. A., Molinaro P. M., McCann J. J., Waldie K. M., Koder R. L., Falkowski P. G., Nanda V., Sci. Adv. 2023, 9 (10), eabq1990. PubMed PMC

Pirro F., La Gatta S., Arrigoni F., Famulari A., Maglio O., Del Vecchio P., Chiesa M., De Gioia L., Bertini L., Chino M., Nastri F., Lombardi A., Angew. Chem. Int. Ed. 2023, 62 (1), e202211552. PubMed

Kožíšek M., Svatoš A., Buděšínský M., Muck A., Bauer M. C., Kotrba P., Ruml T., Havlas Z., Linse S., Rulíšek L., Chem. Eur. J. 2008, 14 (26), 7836–7846. PubMed

Pham T. L., Thomas F., ChemBioChem 2024, 25 (7), e202300745. PubMed

Marshall L. R., Korendovych I. V., Curr. Opin. Chem. Biol. 2021, 64, 145–153. PubMed PMC

Rink W. M., Thomas F., Chem. Eur. J. 2019, 25 (7), 1665–1677. PubMed

Frishman D., Argos P., Proteins Struct. Funct. Genet. 1995, 23 (4), 566–579. PubMed

Olofsson S., Johansson G., Baltzer L., J. Chem. Soc.-Perkin Trans. 1995, 2 (11), 2047–2056.

Smith A. J., Naudin E. A., Edgell C. L., Baker E. G., Mylemans B., FitzPatrick L., Herman A., Rice H. M., Andrews D. M., Tigue N., Woolfson D. N., Savery N. J., ACS Synth. Biol. 2023, 12 (6), 1845–1858. PubMed PMC

Murre C., Bain G., van Dijk M. A., Engel I., Furnari B. A., Massari M. E., Matthews J. R., Quong M. W., Rivera R. R., Stuiver M. H., Biochim. Biophys. Acta 1994, 1218 (2), 129–135. PubMed

Duboué-Dijon E., Mason P. E., Fischer H. E., Jungwirth P., J. Phys. Chem. B 2018, 122 (13), 3296–3306. PubMed

Fukada H., Takahashi K., Proteins Struct. Funct. Bioinf. 1998, 33 (2), 159–166. PubMed

Krimmer S. G., Klebe G., J. Comput.-Aided Mol. Des. 2015, 29 (9), 867–883. PubMed

Kuhlman B., Dantas G., Ireton G. C., Varani G., Stoddard B. L., Baker D., Science 2003, 302 (5649), 1364–1368. PubMed

Alford R. F., Leaver-Fay A., Jeliazkov J. R., O'Meara M. J., DiMaio F. P., Park H., Shapovalov M. V., Renfrew P. D., Mulligan V. K., Kappel K., Labonte J. W., Pacella M. S., Bonneau R., Bradley P., Dunbra, R. L. ck  Jr. , Das R., Baker D., Kuhlman B., Kortemme T., Gray J. J., J. Chem. Theory Comput. 2017, 13 (6), 3031–3048. PubMed PMC

Kalvoda T., Martinek T., Jungwirth P., Rulíšek L., J. Chem. Phys. 2024, 160(8), 084308. PubMed

Persson I., Liquids 2022, 2 (3), 210–242.

Migliorati V., Mancini G., Tatoli S., Zitolo A., Filipponi A., De Panfilis S., Di Cicco A., D'Angelo P., Inorg. Chem. 2013, 52 (2), 1141–1150. PubMed

D'Angelo P., Barone V., Chillemi G., Sanna N., Meyer-Klaucke W., Pavel N. V., J. Am. Chem. Soc. 2002, 124 (9), 1958–1967. PubMed

Maheshwary S., Patel N., Sathyamurthy N., Kulkarni A. D., Gadre S. R., J. Phys. Chem. A 2001, 105 (46), 10525–10537.

Tissandier M. D., Cowen K. A., Feng W. Y., Gundlach E., Cohen M. H., Earhart A. D., Coe J. V., Tuttle T. R., J. Phys. Chem. A 1998, 102 (40), 7787–7794.

Kelly C. P., Cramer C. J., Truhlar D. G., J. Phys. Chem. B 2006, 110 (32), 16066–16081. PubMed

Rey J., Murail S., de Vries S., Derreumaux P., Tuffery P., Nucleic Acids Res. 2023, 51 (W1), W432–W437. PubMed PMC

Lee W., Tonelli M., Markley J. L., Bioinformatics 2015, 31 (8), 1325–1327. PubMed PMC

Herrmann T., Güntert P., Wüthrich K., J. Mol. Biol. 2002, 319 (1), 209–227. PubMed

Shen Y., Delaglio F., Cornilescu G., Bax A., J. Biomol. NMR 2009, 44 (4), 213–223. PubMed PMC

Sreerama N., Woody R. W., Protein Sci. 2004, 13 (1), 100–112. PubMed PMC

Sreerama N., Woody R. W., Methods Enzymol. 2004, 383, 318–351. PubMed

Sreerama N., Woody R. W., Anal. Biochem. 2000, 287 (2), 252–260. PubMed

Bianconi M. L., Methods Enzymol. 2016, 567, 237–256. PubMed

Humphrey W., Dalke A., Schulten K., J. Mol. Graphics 1996, 14 (1), 33–38. PubMed

Huang J., A. D. MacKerell  Jr , J. Comput. Chem. 2013, 34 (25), 2135–2145. PubMed PMC

Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., Schulten K., J. Comput. Chem. 2005, 26 (16), 1781–802. PubMed PMC

Perdew J. P., Phys. Rev. B 1986, 33 (12), 8822–8824. PubMed

Becke A. D., Phys. Rev. A 1988, 38 (6), 3098–3100. PubMed

Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132 (15), 154104. PubMed

Grimme S., Ehrlich S., Goerigk L., J. Comput. Chem. 2011, 32 (7), 1456–1465. PubMed

Hostaš J., Řezáč J., J. Chem. Theory Comput. 2017, 13 (8), 3575–3585. PubMed

Klamt A., Schüürmann G., J. Chem. Soc. Perkin Trans. 2 1993, (5), 799–805.

Baldridge K., Klamt A., J. Chem. Phys. 1997, 106 (16), 6622–6633.

Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37 (2), 785–789. PubMed

Becke A., J. Chem. Phys. 1993, 98, 5648–5652.

Klamt A., Jonas V., Bürger T., Lohrenz J. C. W., J. Phys. Chem. A 1998, 102 (26), 5074–5085.

Klamt A., J. Phys. Chem. 1995, 99 (7), 2224–2235.

Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S., WIREs Comput. Mol. Sci. 2021, 11 (2), e1493.

Ehlert S., Stahn M., Spicher S., Grimme S., J. Chem. Theory Comput. 2021, 17 (7), 4250–4261. PubMed

TURBOMOLE V7.7 2022, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

The PyMOL Molecular Graphics System, Version 2.5.2 Schrödinger, LLC.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...