Super-resolution fluorescence microscopy by line-scanning with an unmodified two-photon microscope
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
33896201
PubMed Central
PMC8072199
DOI
10.1098/rsta.2020.0300
Knihovny.cz E-resources
- Keywords
- SIM, laser scanning fluorescence microscopy, multi-photon fluorescence excitation, structured illumination microscopy, super-resolution optical microscopy,
- MeSH
- Algorithms MeSH
- Convallaria ultrastructure MeSH
- Kidney ultrastructure MeSH
- Microscopy, Fluorescence, Multiphoton instrumentation methods statistics & numerical data MeSH
- Mice MeSH
- Optical Phenomena MeSH
- Optical Devices MeSH
- Image Processing, Computer-Assisted methods statistics & numerical data MeSH
- Software MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Fluorescence-based microscopy as one of the standard tools in biomedical research benefits more and more from super-resolution methods, which offer enhanced spatial resolution allowing insights into new biological processes. A typical drawback of using these methods is the need for new, complex optical set-ups. This becomes even more significant when using two-photon fluorescence excitation, which offers deep tissue imaging and excellent z-sectioning. We show that the generation of striped-illumination patterns in two-photon laser scanning microscopy can readily be exploited for achieving optical super-resolution and contrast enhancement using open-source image reconstruction software. The special appeal of this approach is that even in the case of a commercial two-photon laser scanning microscope no optomechanical modifications are required to achieve this modality. Modifying the scanning software with a custom-written macro to address the scanning mirrors in combination with rapid intensity switching by an electro-optic modulator is sufficient to accomplish the acquisition of two-photon striped-illumination patterns on an sCMOS camera. We demonstrate and analyse the resulting resolution improvement by applying different recently published image resolution evaluation procedures to the reconstructed filtered widefield and super-resolved images. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.
See more in PubMed
Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC. 2019. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84. (10.1038/s41556-018-0251-8) PubMed DOI
Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW. 2008. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970. (10.1529/biophysj.107.120345) PubMed DOI PMC
Schermelleh L, et al. 2008. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336. (10.1126/science.1156947) PubMed DOI PMC
Heintzmann R, Huser T. 2017. Super-resolution structured illumination microscopy. Chem. Rev. 117, 13 890–13 908. (10.1021/acs.chemrev.7b00218) PubMed DOI
Song L, Lu-Walther H-W, Förster R, Jost A, Kielhorn M, Zhou J, Heintzmann R. 2016. Fast structured illumination microscopy using rolling shutter cameras. Meas. Sci. Technol. 27, 055401. (10.1088/0957-0233/27/5/055401) DOI
Guo Y, et al. 2018. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442.e17. (10.1016/j.cell.2018.09.057) PubMed DOI
Markwirth A, Lachetta M, Mönkemöller V, Heintzmann R, Hübner W, Huser T, Müller M. 2019. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat. Commun. 10, 4315. (10.1038/s41467-019-12165-x) PubMed DOI PMC
Müller CB, Enderlein J. 2010. Image scanning microscopy. Phys. Rev. Lett. 104, 198101. (10.1103/PhysRevLett.104.198101) PubMed DOI
Sheppard CJR, Mehta SB, Heintzmann R. 2013. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 38, 2889. (10.1364/OL.38.002889) PubMed DOI
Roth S, Sheppard CJ, Wicker K, Heintzmann R. 2013. Optical photon reassignment microscopy (OPRA). Opt. Nanoscopy 5, 6. (10.1186/2192-2853-2-5) DOI
De Luca GMR, et al. 2013. Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4, 2644. (10.1364/BOE.4.002644) PubMed DOI PMC
York AG, Parekh SH, Nogare DD, Fischer RS, Temprine K, Mione M, Chitnis AB, Combs CA, Shroff H. 2012. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9, 749–754. (10.1038/nmeth.2025) PubMed DOI PMC
York AG, Chandris P, Nogare DD, Head J, Wawrzusin P, Fischer RS, Chitnis A, Shroff H. 2013. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126. (10.1038/nmeth.2687) PubMed DOI PMC
Schulz O, et al. 2013. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc. Natl Acad. Sci. 110, 21 000–21 005. (10.1073/pnas.1315858110) PubMed DOI PMC
Azuma T, Kei T. 2015. Super-resolution spinning-disk confocal microscopy using optical photon reassignment. Opt. Express 23, 15003. (10.1364/OE.23.015003) PubMed DOI
Winter PW, Chandris P, Fischer RS, Wu Y, Waterman CM, Shroff H. 2015. Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy. Opt. Express 23, 5327. (10.1364/OE.23.005327) PubMed DOI PMC
Gregor I, Spiecker M, Petrovsky R, Großhans J, Ros R, Enderlein J. 2017. Rapid nonlinear image scanning microscopy. Nat. Methods 14, 1087–1089. (10.1038/nmeth.4467) PubMed DOI
Andresen V, et al. 2012. High-resolution intravital microscopy. PLoS ONE 7, e50915. (10.1371/journal.pone.0050915) PubMed DOI PMC
Pologruto TA, Sabatini BL, Svoboda K. 2003. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13. (10.1186/1475-925X-2-13) PubMed DOI PMC
Müller M, Mönkemöller V, Hennig S, Hübner W, Huser T. 2016. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun. 7, 10980. (10.1038/ncomms10980) PubMed DOI PMC
Křížek P, Lukeš T, Ovesný M, Fliegel K, Hagen GM. 2016. SIMToolbox: a MATLAB toolbox for structured illumination fluorescence microscopy. Bioinformatics 32, 318–320. (10.1093/bioinformatics/btv576) PubMed DOI
Descloux A, Grußmayer KS, Radenovic A. 2019. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods 16, 918–924. (10.1038/s41592-019-0515-7) PubMed DOI
Pospíšil J, Fliegel K, Klíma M. 2017. Assessing resolution in live cell structured illumination microscopy. In Photonics, Devices, and Systems VII (eds K Fliegel, P Páta), p. 106030D. Bellingham, WA: Int. Society for Optics and Photonics.
Gustafsson MGL. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2, 82–87. (10.1046/j.1365-2818.2000.00710.x) PubMed DOI
Lukeš T, Křížek P, Švindrych Z, Benda J, Ovesný M, Fliegel K, Klíma M, Hagen GM. 2014. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation. Opt. Express 22, 29 805–29 817. (10.1364/OE.22.029805) PubMed DOI
Sandmeyer A, Lachetta M, Sandmeyer H, Hübner W, Huser T, Müller M. 2019. DMD-based super-resolution structured illumination microscopy visualizes live cell dynamics at high speed and low cost. bioRxiv, 797670. (10.1101/797670) DOI
Křížek P, Raška I, Hagen GM. 2012. Flexible structured illumination microscope with a programmable illumination array. Opt. Express 20, 24 585–24 599. (10.1364/OE.20.024585) PubMed DOI
Lu-Walther H-W, Kielhorn M, Förster R, Jost A, Wicker K, Heintzmann R. 2015. fastSIM: a practical implementation of fast structured illumination microscopy. Methods Appl. Fluoresc. 3, 014001. (10.1088/2050-6120/3/1/014001) PubMed DOI
Pilger C, Hachmeister H, Greife P, Weiß A, Wiebusch G, Huser T. 2018. Pulse length variation causing spectral distortions in OPO-based hyperspectral coherent Raman scattering microscopy. Opt. Express 26, 28312. (10.1364/OE.26.028312) PubMed DOI
Perez V, Chang B-J, Stelzer EHK. 2016. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution. Sci. Rep. 6, 37149. (10.1038/srep37149) PubMed DOI PMC
Mandula O, Kielhorn M, Wicker K, Krampert G, Kleppe I, Heintzmann R. 2012. Line scan - structured illumination microscopy super-resolution imaging in thick fluorescent samples. Opt. Express 20, 24 167–24 174. (10.1364/OE.20.024167) PubMed DOI
Ingaramo M, York AG, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson GH. 2014. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc. Natl Acad. Sci. 111, 5254–5259. (10.1073/pnas.1314447111) PubMed DOI PMC
Yeh C-H, Chen S-Y. 2015. Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination. Appl. Opt. 54, 2309–2317. (10.1364/AO.54.002309) PubMed DOI