Histopathological spectrum of common aldosterone-driver gene mutations in aldosterone-producing adenomas
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
40557039
PubMed Central
PMC12185499
DOI
10.3389/fmed.2025.1569619
Knihovny.cz E-resources
- Keywords
- CYP11B2-guided sequencing, aldosterone-driver mutations, aldosterone-producing adenomas, genotype–phenotype correlations, immunohistochemistry analysis,
- Publication type
- Journal Article MeSH
Past studies on common mutant aldosterone-producing adenomas (APAs) had found genotype-phenotype correlations associated with histological appearance. Most of these studies did not perform CYP11B2-guided sequencing of APAs or sequencing for all the currently known aldosterone-driver genes. Hence, misinterpretation of the genotype-phenotype correlations could have occurred. Herein, we aimed to identify the genotype-phenotype correlations associated with the histopathology of the different mutant APAs utilizing CYP11B2-guided sequencing. A total of 33 APAs with confirmed aldosterone-driver mutation (17 KCNJ5 mutant APAs, 8 ATP1A1 mutant APAs, 6 CACNA1D mutant APAs, and 2 CTNNB1 mutant APAs) were immunohistochemically stained using H&E, CYP17A1, CYP11B2, KCNJ5, Ki67, β-catenin, and LHCGR antibody. Interestingly, APAs with a p.Thr41Ala CTNNB1 mutation also harbored a p.Val1373Met CACNA1D mutation. The CTNNB1 double mutant APAs had less expression of CYP17A1 and larger quantities of spironolactone bodies than a single mutant APA with a p.Ser45Phe CTNNB1 mutation. However, both CTNNB1 mutant APAs displayed diffuse active β-catenin expression with prominent nuclear staining that reflects the constitutive activation of the Wnt/β-catenin signaling pathway (p = 0.016 compared to other genotypes) but no significant increase in LHCGR. KCNJ5 mutant APAs displayed distinct existence of atypical cells (6 of the 17 KCNJ5 mutant APAs), whereas CACNA1D mutant APAs had frequent presentations of spironolactone bodies (4 of the 6 CACNA1D mutant APAs), and ATP1A1 mutant APAs had significantly higher Ki67 score than KCNJ5 mutant APAs (p = 0.020). The results of this study support the notion that CYP11B2-guided sequencing of all currently known aldosterone-driver genes can fine-tune existing genotype-phenotype correlations in histopathological profiles.
Charles University and University Hospital Hradec Kralove Hradec Kralove Czechia
Faculty of Medicine National University of Malaysia Kuala Lumpur Malaysia
See more in PubMed
Rossi GP. Primary aldosteronism: JACC state-of-the-art review. J Am Coll Cardiol (2019) 74:2799–811. doi: 10.1016/j.jacc.2019.09.057 PubMed DOI
Omata K, Tomlins SA, Rainey WE. Aldosterone-producing cell clusters in normal and pathological states. Horm Metab Res. (2017) 49:951–6. doi: 10.1055/s-0043-122394, PMID: PubMed DOI PMC
Williams TA, Gomez-Sanchez CE, Rainey WE, Giordano TJ, Lam AK, Marker A, et al. International histopathology consensus for unilateral primary aldosteronism. J Clin Endocrinol Metab. (2021) 106:42–54. doi: 10.1210/clinem/dgaa484, PMID: PubMed DOI PMC
Teo AE, Garg S, Haris Shaikh L, Zhou J, Karet Frankl FE, Gurnell M, et al. Pregnancy, primary aldosteronism, and adrenal CTNNB1 mutations. N Engl J Med. (2015) 373:1429–36. doi: 10.1056/NEJMoa1504869, PMID: PubMed DOI PMC
Monticone S, Castellano I, Versace K, Lucatello B, Veglio F, Gomez-Sanchez CE, et al. Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Mol Cell Endocrinol. (2015) 411:146–54. doi: 10.1016/j.mce.2015.04.022, PMID: PubMed DOI PMC
Kitamoto T, Suematsu S, Yamazaki Y, Nakamura Y, Sasano H, Matsuzawa Y, et al. Clinical and steroidogenic characteristics of aldosterone-producing adenomas with ATPase or CACNA1D gene mutations. J Clin Endocrinol Metabol. (2016) 101:494–503. doi: 10.1210/jc.2015-3284, PMID: PubMed DOI
Åkerström T, Willenberg HS, Cupisti K, Ip J, Backman S, Moser A, et al. Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas. Endocr Relat Cancer. (2015) 22:735–44. doi: 10.1530/ERC-15-0321, PMID: PubMed DOI
Azizan EAB, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet. (2013) 45:1055–60. doi: 10.1038/ng.2716, PMID: PubMed DOI
Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Genetic and genomic mechanisms of primary aldosteronism. Trends Mol Med. (2020) 26:819–32. doi: 10.1016/j.molmed.2020.05.005, PMID: PubMed DOI
Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. (2013) 45:440–4. doi: 10.1038/ng.2550, PMID: PubMed DOI
Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. (2011) 331:768–72. doi: 10.1126/science.1198785, PMID: PubMed DOI PMC
Scholl UI, Stölting G, Schewe J, Thiel A, Tan H, Nelson-Williams C, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet. (2018) 50:349–54. doi: 10.1038/s41588-018-0048-5, PMID: PubMed DOI PMC
Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. eLife. (2015) 4:e06315. doi: 10.7554/eLife.06315, PMID: PubMed DOI PMC
Fernandes-Rosa FL, Daniil G, Orozco IJ, Göppner C, El Zein R, Jain V, et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat Genet. (2018) 50:355–61. doi: 10.1038/s41588-018-0053-8, PMID: PubMed DOI
Åkerström T, Maharjan R, Sven Willenberg H, Cupisti K, Ip J, Moser A, et al. Activating mutations in CTNNB1 in aldosterone producing adenomas. Sci Rep. (2016) 6:19546. doi: 10.1038/srep19546, PMID: PubMed DOI PMC
Williams TA, Monticone S, Mulatero P. PubMed DOI
Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat Genet. (2021) 53:1360–72. doi: 10.1038/s41588-021-00906-y, PMID: PubMed DOI PMC
Rege J, Bandulik S, Nanba K, Kosmann C, Blinder AR, Plain A, et al. Somatic SLC30A1 mutations altering zinc transporter ZnT1 cause aldosterone-producing adenomas and primary aldosteronism. Nat Genet. (2023) 55:1623–31. doi: 10.1038/s41588-023-01498-5, PMID: PubMed DOI PMC
Gomez-Sanchez CE, Qi X, Velarde-Miranda C, Plonczynski MW, Parker CR, Rainey W, et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol Cell Endocrinol. (2014) 383:111–7. doi: 10.1016/j.mce.2013.11.022, PMID: PubMed DOI PMC
De Sousa K, Boulkroun S, Baron S, Nanba K, Wack M, Rainey WE, et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension. (2020) 75:1034–44. doi: 10.1161/HYPERTENSIONAHA.119.14177, PMID: PubMed DOI PMC
Mohideen SK, Mustangin M, Kamaruddin NA, Muhammad R, Jamal ARA, Sukor N, et al. Prevalence and histopathological characteristics of KCNJ5 mutant aldosterone-producing adenomas in a multi-ethnic Malaysian cohort. Front Endocrinol (Lausanne). (2019) 10:666. doi: 10.3389/fendo.2019.00666, PMID: PubMed DOI PMC
Yadav R, Petrunak EM, Estrada DF, Scott EE. Structural insights into the function of steroidogenic cytochrome P450 17A1. Mol Cell Endocrinol. (2017) 441:68–75. doi: 10.1016/j.mce.2016.08.035, PMID: PubMed DOI PMC
Chen AX, Nishimoto K, Nanba K, Rainey WE. Potassium channels related to primary aldosteronism: expression similarities and differences between human and rat adrenals. Mol Cell Endocrinol. (2015) 417:141–8. doi: 10.1016/j.mce.2015.09.011, PMID: PubMed DOI PMC
Berthon A, Drelon C, Ragazzon B, Boulkroun S, Tissier F, Amar L, et al. WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet. (2014) 23:889–905. doi: 10.1093/hmg/ddt484, PMID: PubMed DOI
Ceral J, Solar M, Krajina A, Ballon M, Suba P, Cap J. Adrenal venous sampling in primary aldosteronism: a low dilution of adrenal venous blood is crucial for a correct interpretation of the results. Eur J Endocrinol. (2010) 162:101–7. doi: 10.1530/EJE-09-0217, PMID: PubMed DOI PMC
Solar M, Malirova E, Ballon M, Pelouch R, Ceral J. Confirmatory testing in primary aldosteronism: extensive medication switching is not needed in all patients. Eur J Endocrinol. (2012) 166:679–86. doi: 10.1530/EJE-11-0914, PMID: PubMed DOI PMC
Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, et al. Aldosterone-producing adenomas: histopathology-genotype correlation and identification of a novel CACNA1D mutation. Hypertension. (2017) 70:129–36. doi: 10.1161/HYPERTENSIONAHA.117.09057, PMID: PubMed DOI
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. (2010) 7:248–9. doi: 10.1038/nmeth0410-248, PMID: PubMed DOI PMC
Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. (2003) 31:3812–4. doi: 10.1093/nar/gkg509, PMID: PubMed DOI PMC
Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. (2011) 39:e118. doi: 10.1093/nar/gkr407, PMID: PubMed DOI PMC
Datta N. Unleashing the power of MutationTaster2 and MutationTaster2021: the machine learning approach to genetic variant analysis. Rev Cuba Inform Méd. (2023) 15:614. Available at: https://www.researchgate.net/publication/237020041_Semiautomated_Image_Analysis_of_High_Contrast_Tissue_Areas_Using_HueSaturation_Brightness_Based_Color_Filtering
Kircher M, Witten DM, Jain P, O'roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. (2014) 46:310–5. doi: 10.1038/ng.2892, PMID: PubMed DOI PMC
Mezei T, Szakács M, Dénes L, Jung J, Egyed-Zsigmond I. Semiautomated image analysis of high contrast tissue areas using hue/saturation/brightness based color filtering. Acta Med Marisiensis. (2011) 57:679–84. Available at: https://scholar.google.com/scholar_lookup?hl=en&volume=15&publication_year=2023&pages=614&journal=Revista+Cubana+de+Inform%C3%A1tica+M%C3%A9dica&issue=2&author=N.+Datta&title=Unleashing+the+Power+of+MutationTaster2+and+MutationTaster2021%3A+The+Machine+Learning+Approach+to+Genetic+Variant+Analysis
Omata K, Satoh F, Morimoto R, Ito S, Yamazaki Y, Nakamura Y, et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension. (2018) 72:874–80. doi: 10.1161/HYPERTENSIONAHA.118.11086, PMID: PubMed DOI PMC
Gaujoux S, Grabar S, Fassnacht M, Ragazzon B, Launay P, Libé R, et al. β-Catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma. Clin Cancer Res. (2011) 17:328–36. doi: 10.1158/1078-0432.CCR-10-2006, PMID: PubMed DOI
Boulkroun S, Samson-Couterie B, Golib-Dzib JF, Amar L, Plouin PF, Sibony M, et al. Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology. (2011) 152:4753–63. doi: 10.1210/en.2011-1205, PMID: PubMed DOI
Tissier F, Cavard C, Groussin L, Perlemoine K, Fumey G, Hagneré A-M, et al. Mutations of β-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. (2005) 65:7622–7. doi: 10.1158/0008-5472.CAN-05-0593, PMID: PubMed DOI
Brunner E, Peter O, Schweizer L, Basler K. Pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the wingless signal in Drosophila. Nature. (1997) 385:829–33. doi: 10.1038/385829a0, PMID: PubMed DOI
Van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell. (1997) 88:789–99. doi: 10.1016/s0092-8674(00)81925-x, PMID: PubMed DOI
Pignatti E, Leng S, Yuchi Y, Borges KS, Guagliardo NA, Shah MS, et al. Beta-catenin causes adrenal hyperplasia by blocking zonal transdifferentiation. Cell Rep. (2020) 31:107524. doi: 10.1016/j.celrep.2020.107524, PMID: PubMed DOI PMC
Wu V-C, Wang S-M, Chueh S-CJ, Yang S-Y, Huang K-H, Lin Y-H, et al. The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes. Sci Rep. (2017) 7:39121. doi: 10.1038/srep39121, PMID: PubMed DOI PMC
Davis DA, Medline NM. Spironolactone (Aldactone) bodies: concentric lamellar formations in the adrenal cortices of patients treated with spironolactone. Am J Clin Pathol. (1970) 54:22–32. doi: 10.1093/ajcp/54.1.22, PMID: PubMed DOI
Hsu S-M, Raine L, Martin HF. Spironolactone bodies: an immunoperoxidase study with biochemical correlation. Am J Clin Pathol. (1981) 75:92–5. doi: 10.1093/ajcp/75.1.92, PMID: PubMed DOI
Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metabol. (2016) 101:1889–916. doi: 10.1210/jc.2015-4061, PMID: PubMed DOI