Novel Hydraulic Vulnerability Proxies for a Boreal Conifer Species Reveal That Opportunists May Have Lower Survival Prospects under Extreme Climatic Events
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27375672
PubMed Central
PMC4899478
DOI
10.3389/fpls.2016.00831
Knihovny.cz E-zdroje
- Klíčová slova
- Norway spruce, Picea abies, climatic extremes, conduit wall reinforcement, functional wood anatomy, global warming, top dieback,
- Publikační typ
- časopisecké články MeSH
Top dieback in 40-60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P 50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P 50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P 50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/b ht)(2)) was the best estimate for P 50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/b ht)(2) and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005-2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/b ht)(2) was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an "opportunistic behavior" and genetic predisposition to drought sensitivity.
CSIRO Materials Science and Engineering Clayton VIC Australia
Institute of Botany BOKU Vienna Vienna Austria
Zobrazit více v PubMed
Aguadé D., Poyatos R., Góme M., Oliva J., Martínez-Vilalta J. (2015). The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). Tree Physiol. 35, 229–242. 10.1093/treephys/tpv005 PubMed DOI
Andreassen K., Solberg S., Tveito O. E., Lystad S. L. (2006). Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. Forest Ecol. Managem. 222, 211–221. 10.1016/j.foreco.2005.10.029 DOI
Anfodillo T., Carraro V., Carrer M., Fior C., Rossi S. (2006). Convergent tapering of xylem conduits in different woody species. New Phytol. 169, 279–290. 10.1111/j.1469-8137.2005.01587.x PubMed DOI
Anfodillo T., Petit G., Crivellaro A. (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J. 34, 352–364. 10.1163/22941932-00000030 DOI
Bertaud F., Holmbom B. (2004). Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci. Techn. 38, 245–256. 10.1007/s00226-004-0241-9 DOI
Børja I., Světlík J., Nadezhdin V., Èermák J., Rosner S., Nadezhdina N. (2016). Sap flux - a real time assessment of health status in Norway spruce. Scand. J. Forest Res. 31, 450–457. 10.1080/02827581.2015.1130851 DOI
Bouche P. S., Larter M., Domec J.-C., Burlett R., Gasson P., Jansen S., et al. . (2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers. J. Exp. Bot. 65, 4419–4431. 10.1093/jxb/eru218 PubMed DOI PMC
Britez M. R. D., Sergent A.-S., Martinez-Meier A., Bréda N., Rozenberg P. (2014). Wood density proxies of adaptive traits linked with resistance to drought in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Trees 28, 1289–1304. 10.1007/s00468-014-1003-4 DOI
Carrer M., von Arx G., Castagneri D., Petit G. (2015). Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 35, 27–33. 10.1093/treephys/tpu108 PubMed DOI
Castagneri D., Petit G., Carrer M. (2015). Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient. Tree Physiol. 35, 1378–1387. 10.1093/treephys/tpv085 PubMed DOI
Chen Z.-Q., Gil M. R. G., Karlsson B., Lundqvist S. O., Olsson L., Wu H. X. (2014). Inheritance of growth and solid wood quality traits in a large Norway spruce population tested at two locations in southern Sweden. Tree Genet. Genomes 10, 1291–1303. 10.1007/s11295-014-0761-x DOI
Chmura D. J., Guzicka M., McCulloh K. A., Zytkowiak R. (2016). Limited variation found among Norway spruce half-sib families in physiological response to drought and resistance to embolism. Tree Physiol. 36, 252–266. 10.1093/treephys/tpv141 PubMed DOI
Choat B., Brodersen C. R., McElrone A. R. (2015). Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery. New Phytol. 205, 1095–1105. 10.1111/nph.13110 PubMed DOI
Choat B., Jansen S., Brodribb T. J., Cochard H., Delzon S., Bhaskar R., et al. . (2012). Global convergence in the vulnerability of forests to drought. Nature 491:752–755. 10.1038/nature11688 PubMed DOI
Churakova O. V., Eugster W., Zielis S., Cherubini P., Etzold S., Saurer M., et al. (2014). Increasing relevance of spring temperatures for Norway spruce trees in Davos, Switzerland, after the 1950s. Trees 28, 183–191. 10.1007/s00468-013-0941-6 DOI
Cochard H., Badel E., Herbette S., Delzon S., Choat B., Jansen S. (2013). Methods for measuring plant vulnerability to cavitation: a critical review. J. Exp. Bot. 64, 4779–4791. 10.1093/jxb/ert193 PubMed DOI
Cuny H. E., Rathgeber C. B. K., Lebourgeois F., Fortin M., Fournier M. (2012). Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol. 32, 612–625. 10.1093/treephys/tps039 PubMed DOI
Dalla-Salda G., Fernández M. E., Sergent A.-S., Rozenberg P., Badel E., Martinez-Meier A. (2014). Dynamics of cavitation in a Douglas-fir tree-ring: transition-wood, the lord of the ring? J. Plant Hydraul. 1:e-0005 Available online at: http://jplanthydro.org/articleub/view/31
Dalla-Salda G., Martinez-Meier A., Cochard H., Rozenberg P. (2011). Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir (Pseudotsuga menziesii (Mirb.)). Ann. For. Sci. 68, 747–757. 10.1007/s13595-011-0091-1 DOI
Domec J.-C., Gartner B. L. (2002a). Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiol. 22, 91–104. 10.1093/treephys/22.2-3.91 PubMed DOI
Domec J.-C., Gartner B. L. (2002b). How do water transport and water storage differ in coniferous earlywood and latewood ? J. Exp. Bot. 53, 2369–2379. 10.1093/jxb/erf100 PubMed DOI
Domec J.-C., Warren J. M., Meinzer F. C., Lachenbruch B. (2009). Safety for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA J. 30, 101–120. 10.1163/22941932-90000207 DOI
Evans R. (1994). Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 48, 168–172. 10.1515/hfsg.1994.48.2.168 DOI
Evans R. (1999). A variance approach to the X-ray diffractometric estimation of microfibril angle in wood. Appita J. 52, 283–289.
Gauthier S., Bernier P., Kuuluvainen T., Shvidenko A. Z., Schepaschenko D. G. (2015). Boreal forest health and global change. Science 349, 819–822. 10.1126/science.aaa9092 PubMed DOI
Gindl W., Grabner M., Wimmer R. (2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 14, 409–414. 10.1007/s004680000057 DOI
Godbold D. L., Cermak J., Andreassen K., Dalsgaard L., Gessler A., Hentschel R., et al. (2014). Norway spruce dieback: the root perspective in Sixth Symposium on Physiological Processes in Roots ofWoody Plants, September 8-13, Nagoya.
Gričar J., Prislan P., deLuis M., Gryc V., Hacurová J., Vavrcík H., et al. . (2015). Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front. Plant Sci. 6:730. 10.3389/fpls.2015.00730 PubMed DOI PMC
Hacke U. G., Jansen S. (2009). Embolism resistance of three boreal conifer species varies with pit structure. New Phytol. 182, 675–686. 10.1111/j.1469-8137.2009.02783.x PubMed DOI
Hacke U. G., Lachenbruch B., Pitterman J., Mayr S., Domec J.-C., Schulte P. J. (2015). The Hydraulic Architecture of Conifers, in Functional and Ecological Xylem Anatomy, ed Hacke U. G. (Cham: Springer International Publishing; ), 39–75.
Hacke U. G., Sperry J. S., Pockman W. T., Davis S. D., McCulloh K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461. 10.1007/s004420100628 PubMed DOI
Hannrup B., Cahalan C., Chantre G., Grabner M., Karlsson B., Le Bayon I., et al. (2004). Genetic parameters of growth and wood quality traits in Picea abies. Scand. J. For. Res. 19, 14–29. 10.1080/02827580310019536 DOI
Hartmann H., Ziegler W., Kolle O., Trumbore S. (2013a). Thirst beats hunger – declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol. 200, 340–349. 10.1111/nph.12331 PubMed DOI
Hartmann H., Ziegler W., Trumbore S. (2013b). Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct. Ecol. 27, 413–427. 10.1111/1365-2435.12046 DOI
Hentschel R., Rosner S., Kayler Z. E., Andreassen K., Børja I., Solberg S., et al. (2014). Norway spruce physiological and anatomical predisposition to dieback. Forest Ecol. Managem. 322, 27–36. 10.1016/j.foreco.2014.03.007 DOI
Henttonen H. M., Mäkinen H., Nöjd P. (2009). Seasonal dynamics of the radial increment of Scots pine and Norway spruce in the southern and middle boreal zones in Finland. Can. J. For. Res. 39, 606–618. 10.1139/X08-203 DOI
Hereş A.-M., Camarero J. J., López B. C., Martínez-Vilalta J. (2014). Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality. Trees 28, 1737–1750. 10.1007/s00468-014-1081-3 DOI
IPCC (2013). Climate change 2013: the physical science basis, in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (Cambridge; New York, NY: Cambridge University Press; ), 1535.
Jyske T., Hölttä T. (2015). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytol. 205, 201–215. 10.1111/nph.12973 PubMed DOI
Jyske T., Mäkinen H., Kalliokoski T., Nöjd P. (2014). Intra-annual tracheid production of Norway spruce and Scots pine across a latitudinal gradient in Finland. Agricult. For. Meteorol. 194, 241–254. 10.1016/j.agrformet.2014.04.015 DOI
Kauppi P. E., Posch M., Pirinen P. (2016). Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 9:e111340. 10.1371/journal.pone.0111340 PubMed DOI PMC
Keunecke D., Evans R., Niemz P. (2009). Microstructural properties of common yew and Norway spruce determined with SilviScan. IAWA J. 30, 165–178. 10.1163/22941932-90000212 DOI
Klein T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320. 10.1111/1365-2435.12289 DOI
Kolb K. J., Sperry J. S. (1999). Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant Cell Environ. 22, 925–925. 10.1046/j.1365-3040.1999.00458.x DOI
Lachenbruch B., McCulloh K. A. (2014). Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytol. 204, 747–764. 10.1111/nph.13035 PubMed DOI
Larson P. R. (1994). The Vascular Cambium–Development and Structure. Berlin: Springer.
Lundgren C. (2004). Cell wall thickness and tangential and radial cell diameter of fertilized and irrigated Norway spruce. Silva Fenn. 38, 95–106. 10.14214/sf.438 DOI
Mäkinen H., Nöjd P., Kahle H. P., Neumann U., Tveite B., Mielikäinen K., et al. (2002). Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecol. Managem. 171, 243–259. 10.1016/S0378-1127(01)00786-1 DOI
Mäkinen H., Nöjd P., Saranpää P. (2003). Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol. 23, 959–968. 10.1093/treephys/23.14.959 PubMed DOI
Martínez-Vilalta J., Poyatos R., Aguadé D., Retana J., Mencuccini M. (2014). A new look at water transport regulation in plants. New Phytol. 204, 105–115. 10.1111/nph.12912 PubMed DOI
Mayr S., Cochard H. (2003). A new method for vulnerability analysis of small xylem areas reveals that compression wood of Norway spruce has lower hydraulic safety than opposite wood. Plant Cell Environ. 26, 1365–1371. 10.1046/j.0016-8025.2003.01060.x DOI
Mayr S., Rothart B., Dämon B. (2003). Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline. J. Exp. Bot. 54, 2563–2568. 10.1093/jxb/erg272 PubMed DOI
Mayr S., Schmid P., Laur J., Rosner S., Charra-Vaskou K., Damon B., et al. . (2014). Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol. 164, 1731–1740. 10.1104/pp.114.236646 PubMed DOI PMC
McDowell N. G. (2011). Update on Mechanisms of Vegetation Mortality. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059. 10.1104/pp.110.170704 PubMed DOI PMC
McDowell N. G., Williams A. P., Xu C., Pockman W. T., Dickman L. T., Sevanto S., et al. (2016). Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Climate Change 6, 295–300. 10.1038/nclimate2873 DOI
McDowell N., Pockman W. T., Allen C. D., Breshears D. D., Cobb N., Kolb T., et al. . (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739. 10.1111/j.1469-8137.2008.02436.x PubMed DOI
Meinzer F. C., McCulloh K. A. (2013). Xylem recovery from drought-induced embolism: where is the hydraulic point of no return? Tree Physiol. 33, 331–334. 10.1093/treephys/tpt022 PubMed DOI
Mencuccini M., Grace J., Fioravanti M. (1997). Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics. Tree Physiol. 17, 105–113. PubMed
Mikkonen S., Laine M., Mäkelä H. M., Gregow H., Tuomenvirta H., Lahtinen M., et al. (2015). Trends in the average temperature in Finland, 1847-2013. Stoch. Environ. Res. Risk Assess. 29, 1521–1529. 10.1007/s00477-014-0992-2 DOI
Montwé D., Isaac-Renton M., Hamann A., Spiecker H. (2016). Drought tolerance and growth in populations of a wide-ranging tree species indicate climate change risks for the boreal north. Global Change Biol. 22, 806–815. 10.1111/gcb.13123 PubMed DOI
Pammenter N. W., Vander Willigen C. (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol. 18, 589–593. 10.1093/treephys/18.8-9.589 PubMed DOI
Pitterman J., Sperry J. S., Wheeler J. K., Hacke U., Sikkema E. H. (2006). Mechanical reinforcement of tracheids compromises the hydraulic efficincy of conifer xylem. Plant Cell Environ. 29, 1618–1628. 10.1111/j.1365-3040.2006.01539.x PubMed DOI
Rosner S. (2013). Hydraulic and biomechanical optimization in Norway spruce trunkwood: a review. IAWA J. 34, 365–390. 10.1163/22941932-00000031 DOI
Rosner S., Karlsson B., Konnerth J., Hansmann C. (2009). Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation. Tree Physiol. 29, 1419–1431. 10.1093/treephys/tpp077 PubMed DOI PMC
Rosner S., Klein A., Müller U., Karlsson B. (2008). Tradeoffs between hydraulic and mechanical stress response of mature Norway spruce trunkwood. Tree Physiol. 28, 1179–1188. 10.1093/treephys/28.8.1179 PubMed DOI PMC
Rosner S., Luss S., Světliìk J., Andreassen K., Børja I., Dalsgaard L., et al. (2016). Chronology of hydraulic vulnerability in trunk wood of conifer trees with and without symptoms of top dieback. J. Plant Hydraul. 3:e-001 Available online at: http://jplanthydro.org/articleub/view/68
Rosner S., Svìtlík J., Andreassen K., Børja I., Dalsgaard L., Evans R., et al. (2014). Wood density as a screening trait for drought sensitivity in Norway spruce. Can. J. For. Res. 44, 154–161. 10.1139/cjfr-2013-0209 DOI
Rossi S., Anfodillo T., Cufar K., Cuny H. E., Deslauriers A., Fonti P., et al. . (2013). A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere. Anna. Bot. 112, 1911–1920. 10.1093/aob/mct243 PubMed DOI PMC
Rossi S., Deslauriers A., Gricar J., Seo J., Rathgeber C. B. K., Anfodillo T., et al. (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 17, 696–707. 10.1111/j.1466-8238.2008.00417.x DOI
Schlyter P., Stjernquist I., Bärring L., Jönsson A. M., Nilsson C. (2006). Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Climate Res. 31, 75–84. 10.3354/cr031075 DOI
Sevanto S., McDowell N. G., Dickman L. T., Pangle R., Pockman W. T. (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environm. 37, 153–161. 10.1111/pce.12141 PubMed DOI PMC
Solberg S. (2004). Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. Forest Pathol. 34, 93–104. 10.1111/j.1439-0329.2004.00351.x DOI
Stinziano J. R., Hüner N. P. A., Way D. A. (2015). Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree Physiol. 35, 1303–1313. 10.1093/treephys/tpv118 PubMed DOI
Tardieu F., Simonneau T. (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J. Exp. Bot. 49, 419–432. 10.1093/jxb DOI
Treml V., Kašpar J., KuŽelová H., Gryc V. (2015). Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic. Trees 29, 515–526. 10.1007/s00468-014-1129-4 DOI
Vysotskaya L. G., Vaganov E. A. (1989). Components of the variability of radial cell size in tree rings of conifers. IAWA Bull. 10, 417–428.
Wilkinson S., Ogée J., Domec J.-C., Rayment M., Wingate L. (2015). Biophysical modelling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts. Tree Physiol. 35, 305–318. 10.1093/treephys/tpv010 PubMed DOI
Wimmer R., Grabner M. (2000). A comparison of tree-ring features in Picea abies as correlated with climate. IAWA J. 21, 403–416. 10.1163/22941932-90000256 DOI
Zang C., Pretzsch H., Rothe A. (2012). Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees 26, 557–569. 10.1007/s00468-011-0617-z DOI
Zwieniecki M. A., Secchi F. (2015). Threats to xylem hydraulic function of trees under ‘new climate normal’ conditions. Plant Cell Environm. 38, 1713–1724. 10.1111/pce.12412 PubMed DOI
Functional Relationships of Wood Anatomical Traits in Norway Spruce