The Removal of Residual Concentration of Hazardous Metals in Wastewater from a Neutralization Station Using Biosorbent-A Case Study Company Gutra, Czech Republic

. 2020 Oct 02 ; 17 (19) : . [epub] 20201002

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33023188

This article deals with the possibility of using a biosorbent in the form of a mixture of cones from coniferous trees to remove the residual concentration of hazardous metals contained in hazardous waste, which is disposed of in a neutralization station. The efficiency of the tested biosorbent in removing Ni, Zn, Cu, and Fe was monitored here. Laboratory research was carried out before the actual testing of the biosorbent directly in the operation of the neutralization station. With regard to the planned use of the biosorbent in the operational test, the laboratory experiments were performed in a batch mode and for the most problematic metals (Ni and Zn). The laboratory tests with real wastewater have shown that the biosorbent can be used to remove hazardous metals. Under the given conditions, 96% of Ni and 19% of Zn were removed after 20 min when using NaOH activated biosorbent with the concentration of 0.1 mol L-1. The inactivated biosorbent removed 93% of Ni and 31% of Zn. The tested biosorbent was also successful during the operational tests. The inactivated biosorbent was applied due to the financial costs. It was used for the pre-treatment of hazardous waste in a preparation tank, where a significant reduction in the concentration of hazardous metals occurred, but the values of Ni, Cu, and Zn still failed to meet the emission limits. After 72 h, we measured 10 mg L-1 from the original 4,056 mg L-1 of Ni, 1 mg L-1 from the original 2,252 mg L-1 of Cu, 1 mg L-1 from the original 4,020 mg L-1 of Zn, and 7 mg L-1 from the original 1,853 mg L-1 of Fe. However, even after neutralization, the treated water did not meet the emission limits for discharging into the sewer system. The biosorbent was, therefore, used in the filtration unit as well, which was placed in front of the Parshall flume. After passing through the filtration unit, the concentrations of all the monitored parameters were reduced to a minimum, and the values met the prescribed emission limits. The biosorbent was further used to thicken the residual sludge in the waste pre-treatment tank, which contributed to a significant reduction in the overall cost of disposing of residual hazardous waste. This waste was converted from liquid to solid-state.

Zobrazit více v PubMed

Baroni L., Cenci L., Tettamanti M., Berati M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 2006;61:279–286. doi: 10.1038/sj.ejcn.1602522. PubMed DOI

Lakherwal D. Adsorption of Heavy Metals: A Review. Int. J. Environ. Res. Dev. 2014;4:41–48.

Azimi A., Azari A., Rezakazemi M., Ansarpour M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017;4:37–59. doi: 10.1002/cben.201600010. DOI

Joshi D.N.C. Heavy Metals, Conventional Methods for Heavy Metal Removal, Biosorption and the Development of Low Cost Adsorbent. Eur. J. Pharm. Med. Res. 2017;4:388–393.

Kanamarlapudi S.L.R.K., Chintalpudi V.K., Muddada S. Application of Biosorption for Removal of Heavy Metals from Wastewater. Biosorption. 2018 doi: 10.5772/intechopen.77315. DOI

A Davis T., Volesky B., Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37:4311–4330. doi: 10.1016/S0043-1354(03)00293-8. PubMed DOI

Bhatnagar A., Sillanpää M., Witek-Krowiak A. Agricultural waste peels as versatile biomass for water purification—A review. Chem. Eng. J. 2015;270:244–271. doi: 10.1016/j.cej.2015.01.135. DOI

Gautam R.K., Mudhoo A., Lofrano G., Chattopadhyaya M.C. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014;2:239–259. doi: 10.1016/j.jece.2013.12.019. DOI

Ali I.B.E., Asim M., Khan T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012;113:170–183. doi: 10.1016/j.jenvman.2012.08.028. PubMed DOI

Bilal M., Shah J.A., Ashfaq T., Gardazi S.M.H., Tahir A.A., Pervez A., Haroon H., Mahmood Q. Waste biomass adsorbents for copper removal from industrial wastewater—A review. J. Hazard. Mater. 2013;263:322–333. doi: 10.1016/j.jhazmat.2013.07.071. PubMed DOI

Bhatnagar A., Sillanpää M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010;157:277–296. doi: 10.1016/j.cej.2010.01.007. DOI

Foo K.Y., Hameed B.H. Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 2009;152:39–47. doi: 10.1016/j.cis.2009.09.005. PubMed DOI

De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016;9:10–40. doi: 10.1016/j.susmat.2016.06.002. DOI

Hossain M.A., Ngo H.H., Guo W.S., Setiadi T. Adsorption and desorption of copper(II) ions onto garden grass. Bioresour. Technol. 2012;121:386–395. doi: 10.1016/j.biortech.2012.06.119. PubMed DOI

Abdel-Halim E.S., Abou-Okeil A., Hashem A. Adsorption of Cr (VI) Oxyanions onto Modified Wood Pulp. Polym. Plast. Technol. Eng. 2006;45:71–76. doi: 10.1080/03602550500373519. DOI

Hashem M.A. Adsorption of lead ions from aqueous solution by okra wastes. Int. J. Phys. Sci. 2007;2:178–184. doi: 10.5897/IJPS.9000050. DOI

Pagnanelli F., Mainelli S., Vegliò F., Toro L. Heavy metal removal by olive pomace: Biosorbent characterisation and equilibrium modelling. Chem. Eng. Sci. 2003;58:4709–4717. doi: 10.1016/j.ces.2003.08.001. DOI

Shin E.W., Rowell R.M. Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: The origin of sorption capacity improvement. Chemosphere. 2005;60:1054–1061. doi: 10.1016/j.chemosphere.2005.01.017. PubMed DOI

Nguyen T.A.H., Ngo H.H., Guo W.S., Zhang J., Liang S., Yue Q.Y., Li Q., Nguyen T.V. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour. Technol. 2013;148:574–585. doi: 10.1016/j.biortech.2013.08.124. PubMed DOI

Demirbas A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008;157:220–229. doi: 10.1016/j.jhazmat.2008.01.024. PubMed DOI

Chojnacka K. Biosorption and bioaccumulation – the prospects for practical applications. Environ. Int. 2010;36:299–307. doi: 10.1016/j.envint.2009.12.001. PubMed DOI

Alomá I., Martín-Lara M.A., Rodríguez I.L., Blázquez G., Calero M. Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 2012;43:275–281. doi: 10.1016/j.jtice.2011.10.011. DOI

Torab-Mostaedi M., Asadollahzadeh M., Hemmati A., Khosravi A. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan Inst. Chem. Eng. 2013;44:295–302. doi: 10.1016/j.jtice.2012.11.001. DOI

Burevska K.A., Memedi H., Lisichkov K., Kuvendziev S., Marinkovski M., Ruseska G., Grozdanov A. Biosorption of nickel ions from aqueous solutions by natural and modified peanut husks: Equilibrium and kinetics. Water Environ. J. 2018;32:276–284. doi: 10.1111/wej.12325. DOI

Salem N.M., Awwad A.M. Biosorption of Ni(II) from electroplating wastewater by modified (Eriobotrya japonica) loquat bark. J. Saudi Chem. Soc. 2014;18:379–386. doi: 10.1016/j.jscs.2011.07.008. DOI

Beidokhti M.Z., Naeeni S.T.O., AbdiGhahroudi M.S. Biosorption of Nickel (II) from Aqueous Solutions onto Pistachio Hull Waste as a Low-Cost Biosorbent. Civ. Eng. J. 2019;5:447–457. doi: 10.28991/cej-2019-03091259. DOI

Promthet P., Mungkarndee P. Biosorption of nickel (II) ions from aqueous solutions by tapioca peel. Afr. J. Environ. Sci. Technol. 2015;9:662–670. doi: 10.4314/ajest.v9i8. DOI

Bingöl N.A., Özmal F., Akın B. Phytoremediation and Biosorption Potential of Lythrum salicaria L. for Nickel Removal from Aqueous Solutions. Pol. J. Environ. Stud. 2017;26:2479–2485. doi: 10.15244/pjoes/70628. DOI

Saeed A., Akhter M.W., Iqbal M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep. Purif. Technol. 2005;45:25–31. doi: 10.1016/j.seppur.2005.02.004. DOI

Basci N., Kocadagistan E., Kocadagistan B. Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination. 2004;164:135–140. doi: 10.1016/S0011-9164(04)00172-9. DOI

Subbarayudu K., Prathibha R., Rao C.N., Sivakumar K., Venkateswarlu P. Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Ni(II) and Cu(II) by using Nyctanthes arbor-tristis leaf Powder. Indian J. Adv. Chem. Sci. 2017:81–85. doi: 10.22607/IJACS.2017.502002. DOI

Argun M.E., Dursun S., Ozdemir C., Karatas M. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J. Hazard. Mater. 2007;141:77–85. doi: 10.1016/j.jhazmat.2006.06.095. PubMed DOI

Ayala J., Fernandez B. Removal of zinc, cadmium and nickel from mining waste leachate using walnut shells. Environ. Prot. Eng. 2019;45:141–158. doi: 10.37190/epe190210. DOI

Qi B.C., Aldrich C. Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour. Technol. 2008;99:5595–5601. doi: 10.1016/j.biortech.2007.10.042. PubMed DOI

Aslam M., Arulazhagan P., Rais S., Alam M. Adsorption of Zn2+ and Ni2+ ions from aqueous solution onto phyllanthus debilis: Kinetics & equilibrium studies. Environ. Eng. Manag. J. 2016;15:1581–1591. doi: 10.30638/eemj.2016.170. DOI

Keskinkan O., Goksu M.Z.L., Basibuyuk M., Forster C.F. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum) Bioresour. Technol. 2004;92:197–200. doi: 10.1016/j.biortech.2003.07.011. PubMed DOI

Nuhoglu Y., Oguz E. Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Process. Biochem. 2003;38:1627–1631. doi: 10.1016/S0032-9592(03)00055-4. DOI

Hashim K.S., Shaw A., Al Khaddar R., Pedrola M.O., Phipps D. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. J. Environ. Manag. 2017;189:98–108. doi: 10.1016/j.jenvman.2016.12.035. PubMed DOI

Hashim K.S., AlKhaddar R., Shaw A., Kot P., Al-Jumeily D., Alwash R., Aljefery M.H. Electrocoagulation as an Eco-Friendly River Water Treatment Method. In: AlKhaddar R., Singh R.K., Dutta S., Kumari M., editors. Proceedings of the Advances in Water Resources Engineering and Management. Springer; Singapore: 2019. pp. 219–235. DOI

HACH LANGE GmbH Water Analysis Handbook, Hach. [(accessed on 14 July 2020)]; Available online: https://www.hach.com/wah.

Mamah S.C., Goh P.S., Ismail A.F., Amin M.A.M., Ahmad N.A., Suzaimi N.D., Raji Y.O. Facile preparation of palygorskite/chitin nanofibers hybrids nanomaterial with remarkable adsorption capacity. Mater. Sci. Eng. B. 2020;262:114725. doi: 10.1016/j.mseb.2020.114725. DOI

Regional Office of the Ústí nad Labem Region . Integrated Permit for Facilities: Installations for the Treatment and Disposal of Hazardous Waste of Company GUTRA. 2354/ZP/07/IP-161/Tom. Regional Office of the Ústí nad Labem Region; Ústí nad Labem, Czech Republic: 2013. p. 23.

Czech Republic . Collection of Laws. Czech Republic; Prague, Czech Republic: 2015. Government Decree No. 401/2015 Coll. on indicators and values of permissible pollution of surface waters and wastewaters, requirements for permits for the discharge of wastewaters into surface waters and sewers and on sensitive areas; pp. 5442–5501.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...