The Removal of Residual Concentration of Hazardous Metals in Wastewater from a Neutralization Station Using Biosorbent-A Case Study Company Gutra, Czech Republic
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33023188
PubMed Central
PMC7578924
DOI
10.3390/ijerph17197225
PII: ijerph17197225
Knihovny.cz E-zdroje
- Klíčová slova
- biosorption, copper, desorption, hazardous waste, iron, neutralization station, nickel, zinc,
- MeSH
- adsorpce MeSH
- chemické látky znečišťující vodu analýza MeSH
- kovy MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda MeSH
- těžké kovy analýza MeSH
- zinek analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- kovy MeSH
- odpadní voda MeSH
- těžké kovy MeSH
- zinek MeSH
This article deals with the possibility of using a biosorbent in the form of a mixture of cones from coniferous trees to remove the residual concentration of hazardous metals contained in hazardous waste, which is disposed of in a neutralization station. The efficiency of the tested biosorbent in removing Ni, Zn, Cu, and Fe was monitored here. Laboratory research was carried out before the actual testing of the biosorbent directly in the operation of the neutralization station. With regard to the planned use of the biosorbent in the operational test, the laboratory experiments were performed in a batch mode and for the most problematic metals (Ni and Zn). The laboratory tests with real wastewater have shown that the biosorbent can be used to remove hazardous metals. Under the given conditions, 96% of Ni and 19% of Zn were removed after 20 min when using NaOH activated biosorbent with the concentration of 0.1 mol L-1. The inactivated biosorbent removed 93% of Ni and 31% of Zn. The tested biosorbent was also successful during the operational tests. The inactivated biosorbent was applied due to the financial costs. It was used for the pre-treatment of hazardous waste in a preparation tank, where a significant reduction in the concentration of hazardous metals occurred, but the values of Ni, Cu, and Zn still failed to meet the emission limits. After 72 h, we measured 10 mg L-1 from the original 4,056 mg L-1 of Ni, 1 mg L-1 from the original 2,252 mg L-1 of Cu, 1 mg L-1 from the original 4,020 mg L-1 of Zn, and 7 mg L-1 from the original 1,853 mg L-1 of Fe. However, even after neutralization, the treated water did not meet the emission limits for discharging into the sewer system. The biosorbent was, therefore, used in the filtration unit as well, which was placed in front of the Parshall flume. After passing through the filtration unit, the concentrations of all the monitored parameters were reduced to a minimum, and the values met the prescribed emission limits. The biosorbent was further used to thicken the residual sludge in the waste pre-treatment tank, which contributed to a significant reduction in the overall cost of disposing of residual hazardous waste. This waste was converted from liquid to solid-state.
Zobrazit více v PubMed
Baroni L., Cenci L., Tettamanti M., Berati M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 2006;61:279–286. doi: 10.1038/sj.ejcn.1602522. PubMed DOI
Lakherwal D. Adsorption of Heavy Metals: A Review. Int. J. Environ. Res. Dev. 2014;4:41–48.
Azimi A., Azari A., Rezakazemi M., Ansarpour M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017;4:37–59. doi: 10.1002/cben.201600010. DOI
Joshi D.N.C. Heavy Metals, Conventional Methods for Heavy Metal Removal, Biosorption and the Development of Low Cost Adsorbent. Eur. J. Pharm. Med. Res. 2017;4:388–393.
Kanamarlapudi S.L.R.K., Chintalpudi V.K., Muddada S. Application of Biosorption for Removal of Heavy Metals from Wastewater. Biosorption. 2018 doi: 10.5772/intechopen.77315. DOI
A Davis T., Volesky B., Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37:4311–4330. doi: 10.1016/S0043-1354(03)00293-8. PubMed DOI
Bhatnagar A., Sillanpää M., Witek-Krowiak A. Agricultural waste peels as versatile biomass for water purification—A review. Chem. Eng. J. 2015;270:244–271. doi: 10.1016/j.cej.2015.01.135. DOI
Gautam R.K., Mudhoo A., Lofrano G., Chattopadhyaya M.C. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014;2:239–259. doi: 10.1016/j.jece.2013.12.019. DOI
Ali I.B.E., Asim M., Khan T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012;113:170–183. doi: 10.1016/j.jenvman.2012.08.028. PubMed DOI
Bilal M., Shah J.A., Ashfaq T., Gardazi S.M.H., Tahir A.A., Pervez A., Haroon H., Mahmood Q. Waste biomass adsorbents for copper removal from industrial wastewater—A review. J. Hazard. Mater. 2013;263:322–333. doi: 10.1016/j.jhazmat.2013.07.071. PubMed DOI
Bhatnagar A., Sillanpää M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010;157:277–296. doi: 10.1016/j.cej.2010.01.007. DOI
Foo K.Y., Hameed B.H. Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 2009;152:39–47. doi: 10.1016/j.cis.2009.09.005. PubMed DOI
De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016;9:10–40. doi: 10.1016/j.susmat.2016.06.002. DOI
Hossain M.A., Ngo H.H., Guo W.S., Setiadi T. Adsorption and desorption of copper(II) ions onto garden grass. Bioresour. Technol. 2012;121:386–395. doi: 10.1016/j.biortech.2012.06.119. PubMed DOI
Abdel-Halim E.S., Abou-Okeil A., Hashem A. Adsorption of Cr (VI) Oxyanions onto Modified Wood Pulp. Polym. Plast. Technol. Eng. 2006;45:71–76. doi: 10.1080/03602550500373519. DOI
Hashem M.A. Adsorption of lead ions from aqueous solution by okra wastes. Int. J. Phys. Sci. 2007;2:178–184. doi: 10.5897/IJPS.9000050. DOI
Pagnanelli F., Mainelli S., Vegliò F., Toro L. Heavy metal removal by olive pomace: Biosorbent characterisation and equilibrium modelling. Chem. Eng. Sci. 2003;58:4709–4717. doi: 10.1016/j.ces.2003.08.001. DOI
Shin E.W., Rowell R.M. Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: The origin of sorption capacity improvement. Chemosphere. 2005;60:1054–1061. doi: 10.1016/j.chemosphere.2005.01.017. PubMed DOI
Nguyen T.A.H., Ngo H.H., Guo W.S., Zhang J., Liang S., Yue Q.Y., Li Q., Nguyen T.V. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour. Technol. 2013;148:574–585. doi: 10.1016/j.biortech.2013.08.124. PubMed DOI
Demirbas A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008;157:220–229. doi: 10.1016/j.jhazmat.2008.01.024. PubMed DOI
Chojnacka K. Biosorption and bioaccumulation – the prospects for practical applications. Environ. Int. 2010;36:299–307. doi: 10.1016/j.envint.2009.12.001. PubMed DOI
Alomá I., Martín-Lara M.A., Rodríguez I.L., Blázquez G., Calero M. Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 2012;43:275–281. doi: 10.1016/j.jtice.2011.10.011. DOI
Torab-Mostaedi M., Asadollahzadeh M., Hemmati A., Khosravi A. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan Inst. Chem. Eng. 2013;44:295–302. doi: 10.1016/j.jtice.2012.11.001. DOI
Burevska K.A., Memedi H., Lisichkov K., Kuvendziev S., Marinkovski M., Ruseska G., Grozdanov A. Biosorption of nickel ions from aqueous solutions by natural and modified peanut husks: Equilibrium and kinetics. Water Environ. J. 2018;32:276–284. doi: 10.1111/wej.12325. DOI
Salem N.M., Awwad A.M. Biosorption of Ni(II) from electroplating wastewater by modified (Eriobotrya japonica) loquat bark. J. Saudi Chem. Soc. 2014;18:379–386. doi: 10.1016/j.jscs.2011.07.008. DOI
Beidokhti M.Z., Naeeni S.T.O., AbdiGhahroudi M.S. Biosorption of Nickel (II) from Aqueous Solutions onto Pistachio Hull Waste as a Low-Cost Biosorbent. Civ. Eng. J. 2019;5:447–457. doi: 10.28991/cej-2019-03091259. DOI
Promthet P., Mungkarndee P. Biosorption of nickel (II) ions from aqueous solutions by tapioca peel. Afr. J. Environ. Sci. Technol. 2015;9:662–670. doi: 10.4314/ajest.v9i8. DOI
Bingöl N.A., Özmal F., Akın B. Phytoremediation and Biosorption Potential of Lythrum salicaria L. for Nickel Removal from Aqueous Solutions. Pol. J. Environ. Stud. 2017;26:2479–2485. doi: 10.15244/pjoes/70628. DOI
Saeed A., Akhter M.W., Iqbal M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep. Purif. Technol. 2005;45:25–31. doi: 10.1016/j.seppur.2005.02.004. DOI
Basci N., Kocadagistan E., Kocadagistan B. Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination. 2004;164:135–140. doi: 10.1016/S0011-9164(04)00172-9. DOI
Subbarayudu K., Prathibha R., Rao C.N., Sivakumar K., Venkateswarlu P. Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Ni(II) and Cu(II) by using Nyctanthes arbor-tristis leaf Powder. Indian J. Adv. Chem. Sci. 2017:81–85. doi: 10.22607/IJACS.2017.502002. DOI
Argun M.E., Dursun S., Ozdemir C., Karatas M. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J. Hazard. Mater. 2007;141:77–85. doi: 10.1016/j.jhazmat.2006.06.095. PubMed DOI
Ayala J., Fernandez B. Removal of zinc, cadmium and nickel from mining waste leachate using walnut shells. Environ. Prot. Eng. 2019;45:141–158. doi: 10.37190/epe190210. DOI
Qi B.C., Aldrich C. Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour. Technol. 2008;99:5595–5601. doi: 10.1016/j.biortech.2007.10.042. PubMed DOI
Aslam M., Arulazhagan P., Rais S., Alam M. Adsorption of Zn2+ and Ni2+ ions from aqueous solution onto phyllanthus debilis: Kinetics & equilibrium studies. Environ. Eng. Manag. J. 2016;15:1581–1591. doi: 10.30638/eemj.2016.170. DOI
Keskinkan O., Goksu M.Z.L., Basibuyuk M., Forster C.F. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum) Bioresour. Technol. 2004;92:197–200. doi: 10.1016/j.biortech.2003.07.011. PubMed DOI
Nuhoglu Y., Oguz E. Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Process. Biochem. 2003;38:1627–1631. doi: 10.1016/S0032-9592(03)00055-4. DOI
Hashim K.S., Shaw A., Al Khaddar R., Pedrola M.O., Phipps D. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. J. Environ. Manag. 2017;189:98–108. doi: 10.1016/j.jenvman.2016.12.035. PubMed DOI
Hashim K.S., AlKhaddar R., Shaw A., Kot P., Al-Jumeily D., Alwash R., Aljefery M.H. Electrocoagulation as an Eco-Friendly River Water Treatment Method. In: AlKhaddar R., Singh R.K., Dutta S., Kumari M., editors. Proceedings of the Advances in Water Resources Engineering and Management. Springer; Singapore: 2019. pp. 219–235. DOI
HACH LANGE GmbH Water Analysis Handbook, Hach. [(accessed on 14 July 2020)]; Available online: https://www.hach.com/wah.
Mamah S.C., Goh P.S., Ismail A.F., Amin M.A.M., Ahmad N.A., Suzaimi N.D., Raji Y.O. Facile preparation of palygorskite/chitin nanofibers hybrids nanomaterial with remarkable adsorption capacity. Mater. Sci. Eng. B. 2020;262:114725. doi: 10.1016/j.mseb.2020.114725. DOI
Regional Office of the Ústí nad Labem Region . Integrated Permit for Facilities: Installations for the Treatment and Disposal of Hazardous Waste of Company GUTRA. 2354/ZP/07/IP-161/Tom. Regional Office of the Ústí nad Labem Region; Ústí nad Labem, Czech Republic: 2013. p. 23.
Czech Republic . Collection of Laws. Czech Republic; Prague, Czech Republic: 2015. Government Decree No. 401/2015 Coll. on indicators and values of permissible pollution of surface waters and wastewaters, requirements for permits for the discharge of wastewaters into surface waters and sewers and on sensitive areas; pp. 5442–5501.