Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26442044
PubMed Central
PMC4564692
DOI
10.3389/fpls.2015.00730
Knihovny.cz E-zdroje
- Klíčová slova
- Picea abies, cambium, cell differentiation, growth/climate relation, phloemogram, sieve cell, tracheid, tracheidogram,
- Publikační typ
- časopisecké články MeSH
There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate-radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932-2010, and cell characteristics in xylem and phloem increments formed in the years 2009-2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.
Department Geografía University of Zaragoza Zaragoza Spain
Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic
Zobrazit více v PubMed
Abe H., Nakai T., Utsumi Y., Kagawa A. (2003). Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiol. 23, 859–863. 10.1093/treephys/23.12.859 PubMed DOI
Abramoff M. D., Magalhaes P. J., Ram S. J. (2004). Image processing with ImageJ. Biophoton. Int. 11, 36–42. PubMed
Agusti J., Greb T. (2013). Going with the wind – Adaptive dynamics of plant secondary meristems. Mech. Dev. 130, 34–44. 10.1016/j.mod.2012.05.011 PubMed DOI PMC
Andreassen K., Solberg S., Tveito O. E., Lystad S. L. (2006). Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. Forest Ecol. Manag. 222, 211–221. 10.1016/j.foreco.2005.10.029 PubMed DOI
Anfodillo T., Petit G., Crivellaro A. (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J. 34, 352–364. 10.1163/22941932-00000030 DOI
Battipaglia G., Saurer M., Cherubini P., Siegwolf R. T. W., Cotrufo M. F. (2009). Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Forest Ecol. Manag. 257, 820–828. 10.1016/j.foreco.2008.10.015 DOI
Begum S., Nakaba S., Yamagishi Y., Oribe Y., Funada R. (2013). Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Plant. 147, 46–54. 10.1111/j.1399-3054.2012.01663.x PubMed DOI
Biondi F., Waikul K. (2004). DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 30, 9 10.1016/j.cageo.2003.11.004 DOI
Bošel'a M., Sedmák R., Sedmáková D., Marušák R., Kulla L. (2014). Temporal shifts of climate–growth relationships of Norway spruce as an indicator of health decline in the Beskids, Slovakia. Forest Ecol. Manag. 325, 108–117. 10.1016/j.foreco.2014.03.055 DOI
Bouriaud O., Popa I. (2009). Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 23, 95–106. 10.1007/s00468-008-0258-z DOI
Bryukhanova M., Fonti P. (2013). Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees 27, 485–496. 10.1007/s00468-012-0802-8 PubMed DOI
Carrer M., Motta R., Nola P. (2012). Significant mean and extreme climate sensitivity of Norway spruce and silver fir at mid-elevation mesic sites in the alps. PLoS ONE 7:e50755. 10.1371/journal.pone.0050755 PubMed DOI PMC
Cook E. R., Peters K. (1997). Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370
Denne M. P. (1988). Definition of latewood according to Mork (1928). IAWA Bull. 10, 59–61.
Domec J. C., Gartner B. L. (2002). Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiol. 22, 91–104. 10.1093/treephys/22.2-3.91 PubMed DOI
Drew D. M., Allen K., Downes G. M., Evans R., Battaglia M., Baker P. (2013). Wood properties in a long-lived conifer reveal strong climate signals where ring-width series do not. Tree Physiol. 33, 37–47. 10.1093/treephys/tps111 PubMed DOI
Eckstein D. (2013). ‘A new star’ – but why just parenchyma for dendroclimatology? New Phytol. 198, 328–330. 10.1111/nph.12229 PubMed DOI
Eilmann B., Rigling A. (2012). Tree-growth analyses to estimate tree species' drought tolerance. Tree Physiol. 32, 178–187. 10.1093/treephys/tps004 PubMed DOI
Eilmann B., Weber P., Rigling A., Eckstein D. (2006). Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23, 121–132. 10.1016/j.dendro.2005.10.002 PubMed DOI
Evert R. F. (2006). Esau's Plant Anatomy Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. Hoboken, NJ: John Wiley & Sons, Inc.
Fabiánek T., Menšík L., Tomášková I., Kulhavý J. (2009). Effects of spruce, beech and mixed commercial stand on humus conditions of forest soils. J. Forest Sci. 55, 119–126.
Fonti P., Von Arx G., García-González I., Eilmann B., Sass-Klaassen U., Gärtner H., et al. . (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53. 10.1111/j.1469-8137.2009.03030.x PubMed DOI
Fritts H. C. (1976). Tree Rings and Climate. London: Academic Press.
Gindl W., Grabner M., Wimmer R. (2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 14, 409–414. 10.1007/s004680000057 DOI
Gindl W., Grabner M., Wimmer R. (2001). Effects of altitude on tracheid differentiation and lignification of Norway spruce. Can. J. Bot. 79, 815–821. 10.1139/b01-060 DOI
Gričar J., Čufar K., Oven P., Schmitt U. (2005). Differentiation of terminal latewood tracheids in silver fir trees during autumn. Ann. Bot. 95, 959–965. 10.1093/aob/mci112 PubMed DOI PMC
Gričar J., Jagodic Š., Prislan P. (2015). Structure and subsequent seasonal changes in the bark of sessile oak (Quercus petraea). Trees 29, 747–757. 10.1007/s00468-015-1153-z DOI
Gričar J., Jagodic Š., Šefc B., Trajković J., Eler K. (2014a). Can the structure of dormant cambium and the widths of phloem and xylem increments be used as indicators for tree vitality? Eur. J. Forest Res. 133, 551–562. 10.1007/s10342-014-0784-8 DOI
Gričar J., Prislan P., Gryc V., Vavrčík H., De Luis M., Čufar K. (2014b). Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiol. 34, 869–881. 10.1093/treephys/tpu026 PubMed DOI
Guehl J. M. (1985). Étude comparée des potentialités hivernales d'assimilation carbonée de trois conifères de la zone tempérée (Pseudotsuga menziesii Mirb., Abies alba Mill. et Picea excelsa Link.). Ann. Sci. Forest. 42, 23–38.
Hacke U. G., Jansen S. (2009). Embolism resistance of three boreal conifer species varies with pit structure. New Phytol. 182, 675–686. 10.1111/j.1469-8137.2009.02783.x PubMed DOI
Hacke U. G., Sperry J. S. (2001). Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 4, 97–115. 10.1078/1433-8319-00017 PubMed DOI
Harris I., Jones P. D. (2014). CRU TS3.22: Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901- Dec. 2013). University of East Anglia Climatic Research Unit, NCAS British Atmospheric Data Centre. 10.5285/18BE23F8-D252-482D-8AF9-5D6A2D40990C DOI
Holmes R. L. (1994). Dendrochronology Program Library User's Manual. Tucson, AZ: Laboratory of Tree-Ring Research; University of Arizona.
Hölttä T., Mäkinen H., Nöjd P., Mäkelä A., Nikinmaa E. (2010). A physiological model of softwood cambial growth. Tree Physiol. 30, 1235–1252. 10.1093/treephys/tpq068 PubMed DOI
Jyske T., Hölttä T. (2015). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytol. 205, 102–115. 10.1111/nph.12973 PubMed DOI
Lebourgeois F., Rathgeber C. B. K., Ulrich E. (2010). Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J. Veg. Sci. 21, 364–376. 10.1111/j.1654-1103.2009.01148.x DOI
Levanič T., Gričar J., Gagen M., Jalkanen R., Loader N., McCarroll D., et al. (2009). The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 23, 169–180. 10.1007/s00468-008-0265-0 DOI
Mäkinen H., Jyske T., Saranpää P. (2008). Variation of Tracheid Length within Annual Rings of Scots Pine and Norway Spruce. Holzforschung. 123–128. 10.1515/HF.2008.018 DOI
Mäkinen H., Nöjd P., Kahle H.-P., Neumann U., Tveite B., Mielikäinen K., et al. (2003). Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees 17, 173–184. 10.1007/s00468-002-0220-4 DOI
Mullendore D. L., Windt C. W., Van As H., Knoblauch M. (2010). Sieve tube geometry in relation to phloem flow. Plant Cell Online 22, 579–593. 10.1105/tpc.109.070094 PubMed DOI PMC
Park Y.-I., Spiecker H. (2005). Variations in the tree-ring structure of Norway spruce (Picea abies) under contrasting climates. Dendrochronologia 23, 93–104. 10.1016/j.dendro.2005.09.002 DOI
Petit G., Crivellaro A. (2014). Comparative axial widening of phloem and xylem conduits in small woody plants. Trees 28, 915–921. 10.1007/s00468-014-1006-1 DOI
Prislan P., Gričar J., De Luis M., Smith K. T., Čufar K. (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agric. Forest Meteorol. 180, 142–151. 10.1016/j.agrformet.2013.06.001 DOI
Proseus T. E., Boyer J. S. (2006). Periplasm turgor pressure controls wall deposition and assembly in growing Chara corallina cells. Ann. Bot. 98, 93–105. 10.1093/aob/mcl098 PubMed DOI PMC
Quinn G., Keough M. J. (2002). Experimental Design and Data Analysis for Biologists. Cambridge, UK: Cambridge University Press.
Rao R. V., Aebischer D. P., Denne M. P. (1997). Latewood density in relation to wood fibre diameter, wall thickness, and fibre and vessel percentages in Quercus robur L. IAWA J. 18, 127–138.
Rosell J. A., Gleason S., Méndez-Alonzo R., Chang Y., Westoby M. (2014). Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 201, 486–497. 10.1111/nph.12541 PubMed DOI
Rosner S., Baier P., Kikuta S. (2001). Osmotic potential of Norway spruce [Picea abies (L.) Karst.] secondary phloem in relation to anatomy. Trees 15, 472–482. 10.1007/s00468-001-0131-9 DOI
Rossi S., Anfodillo T., Menardi R. (2006). Trephor: a new tool for sampling microcores from tree stems. IAWA J. 27, 89–97. 10.1163/22941932-90000139 DOI
Rossi S., Deslauriers A., Lupi C., Morin H. (2014). Control over growth in cold climates, in Trees in a Changing Environment, eds Tausz M., Grulke N. (Dordrecht: Springer; ), 191–219.
Rowe N., Speck T. (2005). Plant growth forms: an ecological and evolutionary perspective. New Phytol. 166, 61–72. 10.1111/j.1469-8137.2004.01309.x PubMed DOI
Savva Y., Oleksyn J., Reich P., Tjoelker M., Vaganov E., Modrzynski J. (2006). Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees 20, 735–746. 10.1007/s00468-006-0088-9 DOI
Sevanto S., Mcdowell N. G., Dickman L. T., Pangle R., Pockman W. T. (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161. 10.1111/pce.12141 PubMed DOI PMC
Skene D. S. (1972). The kinetics of tracheid development in Tsuga canadensis Carr. and its relation to tree vigour. Ann. Bot. 36, 179–187.
Skrøppa T. (2003). EUFORGEN Technical Guidelines for Genetic Conservation and Use for Norway Spruce (Picea abies). Rome: International Plant Genetic Resources Institute.
Sperry J. S., Meinzer F. C., Mcculloh K. A. (2008). Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ. 31, 632–645. 10.1111/j.1365-3040.2007.01765.x PubMed DOI
Spicer R., Gartner B. L. (2001). The effects of cambial age and position within the stem on specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood. Trees 15, 222–229. 10.1007/s004680100093 DOI
Steppe K., Sterck F., Deslauriers A. (2015). Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 20, 335–343. 10.1016/j.tplants.2015.03.015 PubMed DOI
Swidrak I., Gruber A., Oberhuber W. (2014). Xylem and phloem phenology in co-occurring conifers exposed to drought. Trees 28, 1161–1171. 10.1007/s00468-014-1026-x PubMed DOI PMC
Tyree M. T., Zimmermann M. H. (2010). Xylem Structure and the Ascent of Sap. Berlin; Heidelberg; New York, NY: Springer-Verlag.
Vaganov E. A. (1990). The tracheidogram method in tree-ring analysis and its application, in Methods of Dendrochronology: Applications in the Environmental Sciences, eds Cook E. R., Kairiukstis L. A. (Dordrecht: Kluwer Academic Publishers; ), 63–76.
van der Werf G. W., Sass-Klaassen U., Mohren G. M. J. (2007). The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25, 103–112. 10.1016/j.dendro.2007.03.004 DOI