Optimization of Electrospun TORLON® 4000 Polyamide-Imide (PAI) Nanofibers: Bridging the Gap to Industrial-Scale Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
101110262
European Union
PubMed
38891462
PubMed Central
PMC11174607
DOI
10.3390/polym16111516
PII: polym16111516
Knihovny.cz E-zdroje
- Klíčová slova
- electrospinning, filtration, garment application, industrial-scale applications, nanofibers, polyamide-imide,
- Publikační typ
- časopisecké články MeSH
Polyamide-imide (PAI) is an exceptional polymer known for its outstanding mechanical, chemical, and thermal resistance. This makes it an ideal choice for applications that require excellent durability, such as those in the aerospace sector, bearings, gears, and the oil and gas industry. The current study explores the optimization of TORLON® 4000 T HV polyamide-imide nanofibers utilizing needleless electrospinning devices, ranging from laboratory-scale to industrial-scale production, for the first time. The PAI polymer has been dispersed in several solvent systems at varying concentrations. The diameter of the electrospun PAI nanofibers ranged from 65.8 nanometers to 1.52 μm. Their filtering efficiency was above 90% for particles with a size of 0.3 microns. The TGA results proved that PAI nanofibers have excellent resistance to high temperatures up to 450 °C. The PAI nanofibers are ideal for hot air intake filtration and fire-fighter personal protection equipment applications.
Zobrazit více v PubMed
Fadil F., Affandi N.D.N., Misnon M.I., Bonnia N.N., Harun A.M., Alam M.K. Review on Electrospun Nanofiber-Applied Products. Polymers. 2021;13:2087. doi: 10.3390/polym13132087. PubMed DOI PMC
Toriello M., Afsari M., Shon H.K., Tijing L.D. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. Membranes. 2020;10:204. doi: 10.3390/membranes10090204. PubMed DOI PMC
Yao X., He J.-H. On Fabrication of Nanoscale Non-Smooth Fibers with High Geometric Potential and Nanoparticle’s Non-Linear Vibration. Therm. Sci. 2020;24:2491–2497. doi: 10.2298/TSCI2004491Y. DOI
Wang Y., Yokota T., Someya T. Electrospun Nanofiber-Based Soft Electronics. NPG Asia Mater. 2021;13:22. doi: 10.1038/s41427-020-00267-8. DOI
Cui J., Li F., Wang Y., Zhang Q., Ma W., Huang C. Electrospun Nanofiber Membranes for Wastewater Treatment Applications. Sep. Purif. Technol. 2020;250:117116. doi: 10.1016/j.seppur.2020.117116. DOI
Liu Y., Hao M., Chen Z., Liu L., Liu Y., Yang W., Ramakrishna S. A Review on Recent Advances in Application of Electrospun Nanofiber Materials as Biosensors. Curr. Opin. Biomed. Eng. 2020;13:174–189. doi: 10.1016/j.cobme.2020.02.001. DOI
Yalcinkaya F., Siekierka A., Yalcinkaya B., Dvořák L. Handbook of Nanomaterials, Volume 1. Elsevier; Amsterdam, The Netherlands: 2024. Nanomaterials in Membrane Technology; pp. 361–391.
Sepahvand S., Bahmani M., Ashori A., Pirayesh H., Yu Q., Dafchahi M.N. Preparation and Characterization of Air Nanofilters Based on Cellulose Nanofibers. Int. J. Biol. Macromol. 2021;182:1392–1398. doi: 10.1016/j.ijbiomac.2021.05.088. PubMed DOI
Xie X., Zheng Z., Wang X., Lee Kaplan D. Low-Density Silk Nanofibrous Aerogels: Fabrication and Applications in Air Filtration and Oil/Water Purification. ACS Nano. 2021;15:1048–1058. doi: 10.1021/acsnano.0c07896. PubMed DOI
Natrayan L., Merneedi A., Bharathiraja G., Kaliappan S., Veeman D., Murugan P. Processing and Characterization of Carbon Nanofibre Composites for Automotive Applications. J. Nanomater. 2021;2021:7323885. doi: 10.1155/2021/7323885. DOI
Krifa M., Prichard C. Nanotechnology in Textile and Apparel Research–an Overview of Technologies and Processes. J. Text. Inst. 2020;111:1778–1793. doi: 10.1080/00405000.2020.1721696. DOI
Zhang M., Song W., Tang Y., Xu X., Huang Y., Yu D. Polymer-Based Nanofiber–Nanoparticle Hybrids and Their Medical Applications. Polymers. 2022;14:351. doi: 10.3390/polym14020351. PubMed DOI PMC
Wang N., Wang B., Wang W., Yang H., Wan Y., Zhang Y., Guan L., Yao Y., Teng X., Meng C. Structural Design of Electrospun Nanofibers for Electrochemical Energy Storage and Conversion. J. Alloys Compd. 2023;935:167920. doi: 10.1016/j.jallcom.2022.167920. DOI
Gao Y., Guo F., Cao P., Liu J., Li D., Wu J., Wang N., Su Y., Zhao Y. Winding-Locked Carbon Nanotubes/Polymer Nanofibers Helical Yarn for Ultrastretchable Conductor and Strain Sensor. ACS Nano. 2020;14:3442–3450. doi: 10.1021/acsnano.9b09533. PubMed DOI
Çevik A., Alzeebaree R., Humur G., Niş A., Gülşan M.E. Effect of Nano-Silica on the Chemical Durability and Mechanical Performance of Fly Ash Based Geopolymer Concrete. Ceram. Int. 2018;44:12253–12264. doi: 10.1016/j.ceramint.2018.04.009. DOI
Xu R., Yao Y., Wang H., Yuan Y., Wang J., Yang H., Jiang Y., Shi P., Wu X., Peng Z. Unraveling the Nature of Excellent Potassium Storage in Small-Molecule Se@ Peapod-Like N-Doped Carbon Nanofibers. Adv. Mater. 2020;32:2003879. doi: 10.1002/adma.202003879. PubMed DOI
Liu Y., Wang S., Lan W. Fabrication of Antibacterial Chitosan-PVA Blended Film Using Electrospray Technique for Food Packaging Applications. Int. J. Biol. Macromol. 2018;107:848–854. doi: 10.1016/j.ijbiomac.2017.09.044. PubMed DOI
Kuntzler S.G., Costa J.A.V., de Morais M.G. Development of Electrospun Nanofibers Containing Chitosan/PEO Blend and Phenolic Compounds with Antibacterial Activity. Int. J. Biol. Macromol. 2018;117:800–806. doi: 10.1016/j.ijbiomac.2018.05.224. PubMed DOI
Prasad T., Shabeena E., Vinod D., Kumary T., Anil Kumar P. Characterization and in Vitro Evaluation of Electrospun Chitosan/Polycaprolactone Blend Fibrous Mat for Skin Tissue Engineering. J. Mater. Sci. Mater. Med. 2015;26:28. doi: 10.1007/s10856-014-5352-8. PubMed DOI
Zhu P., Zhang X., Wang Y., Li C., Wang X., Tie J., Wang Y. Electrospun Polylactic Acid Nanofiber Membranes Containing Capparis spinosa L. Extracts for Potential Wound Dressing Applications. J. Appl. Polym. Sci. 2021;138:50800. doi: 10.1002/app.50800. DOI
Kim S.S., Lee J. Antibacterial Activity of Polyacrylonitrile–Chitosan Electrospun Nanofibers. Carbohydr. Polym. 2014;102:231–237. doi: 10.1016/j.carbpol.2013.11.028. PubMed DOI
Cengiz F., Jirsak O. The Effect of Salt on the Roller Electrospinning of Polyurethane Nanofibers. Fibers Polym. 2009;10:177–184. doi: 10.1007/s12221-009-0177-7. DOI
Nirmala R., Navamathavan R., El-Newehy M.H., Kim H.Y. Preparation and Characterization of Electrospun Ultrafine Polyamide-6 Nanofibers. Polym. Int. 2011;60:1475–1480. doi: 10.1002/pi.3105. DOI
Naragund V.S., Panda P.K. Electrospun Polyacrylonitrile Nanofiber Membranes for Air Filtration Application. Int. J. Environ. Sci. Technol. 2021;19:10233–10244. doi: 10.1007/s13762-021-03705-4. DOI
Sanyal A., Sinha-Ray S. Ultrafine PVDF Nanofibers for Filtration of Air-Borne Particulate Matters: A Comprehensive Review. Polymers. 2021;13:1864. doi: 10.3390/polym13111864. PubMed DOI PMC
Li D., Liu H., Shen Y., Wu H., Liu F., Wang L., Liu Q., Deng B. Preparation of PI/PTFE–PAI Composite Nanofiber Aerogels with Hierarchical Structure and High-Filtration Efficiency. Nanomaterials. 2020;10:1806. doi: 10.3390/nano10091806. PubMed DOI PMC
Dodda J.M., Bělský P. Progress in Designing Poly (Amide Imide) s (PAI) in Terms of Chemical Structure, Preparation Methods and Processability. Eur. Polym. J. 2016;84:514–537. doi: 10.1016/j.eurpolymj.2016.09.043. DOI
Kesler D.G. Master’s Thesis. The University of North Carolina at Greensboro; Greensboro, NC, USA: 2020. Synthesis and Mechanical Characterization of Polyamide-Imide/Zinc Oxide Nanocomposites Towards Applications in Aerospace.
Hua Y., Li Y., Ji Z., Cui W., Wu Z., Fan J., Liu Y. Dual-Bionic, Fluffy, and Flame Resistant Polyamide-Imide Ultrafine Fibers for High-Temperature Air Filtration. Chem. Eng. J. 2023;452:139168. doi: 10.1016/j.cej.2022.139168. DOI
Feng Y., Xiong T., Xu H., Li C., Hou H. Polyamide-Imide Reinforced Polytetrafluoroethylene Nanofiber Membranes with Enhanced Mechanical Properties and Thermal Stabilities. Mater. Lett. 2016;182:59–62. doi: 10.1016/j.matlet.2016.06.074. DOI
Kausar A. Polyamide-Grafted-Multi-Walled Carbon Nanotube Electrospun Nanofibers/Epoxy Composites. Fibers Polym. 2014;15:2564–2571. doi: 10.1007/s12221-014-2564-y. DOI
Bai R., Shao H., Chang H., Wang H., Ding X., Cao W., Cao Y., Lin T. Novel Piezoelectric Properties of Electrospun Polyamide-Imide Nanofiber Membranes. J. Mater. Chem. A. 2023;11:26230–26241. doi: 10.1039/D3TA05734H. DOI
Gurave P.M., Rastgar M., Mizan M.M.H., Srivastava R.K., Sadrzadeh M. Superhydrophilic Electrospun Polyamide-Imide Membranes for Efficient Oil/Water Separation under Gravity. ACS Appl. Eng. Mater. 2023;1:3134–3146. doi: 10.1021/acsaenm.3c00550. PubMed DOI
Xue J., He M., Liang Y., Crawford A., Coates P., Chen D., Shi R., Zhang L. Fabrication and Evaluation of Electrospun PCL–Gelatin Micro-/Nanofiber Membranes for Anti-Infective GTR Implants. J. Mater. Chem. B. 2014;2:6867–6877. doi: 10.1039/C4TB00737A. PubMed DOI
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Optimisation of Thin Film Composite Nanofiltration Membranes Based on Laminated Nanofibrous and Nonwoven Supporting Material. Desalination Water Treat. 2017;59:19–30. doi: 10.5004/dwt.2016.0254. DOI
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin Film Nanofibrous Composite Membrane for Dead-End Seawater Desalination. J. Nanomater. 2016;2016:2694373. doi: 10.1155/2016/2694373. DOI
Determination of the Permeability of Fabrics to Air. CEN; Bruxelles, Belgium: 1996.
Respiratory Protective Devices—Filtering Half Masks to Protect Against Particles. CEN; Bruxelles, Belgium: 2009.
Katritzky A.R., Fara D.C., Yang H., Tämm K., Tamm T., Karelson M. Quantitative Measures of Solvent Polarity. Chem. Rev. 2004;104:175–198. doi: 10.1021/cr020750m. PubMed DOI
Lindman B., Karlström G., Stigsson L. On the Mechanism of Dissolution of Cellulose. J. Mol. Liq. 2010;156:76–81. doi: 10.1016/j.molliq.2010.04.016. DOI
Kong D.-C., Yang M.-H., Zhang X.-S., Du Z.-C., Fu Q., Gao X.-Q., Gong J.-W. Control of Polymer Properties by Entanglement: A Review. Macromol. Mater. Eng. 2021;306:2100536. doi: 10.1002/mame.202100536. DOI
Andrady A.L. Science and Technology of Polymer Nanofibers. John Wiley & Sons; Hoboken, NJ, USA: 2008.
Shenoy S.L., Bates W.D., Frisch H.L., Wnek G.E. Role of Chain Entanglements on Fiber Formation during Electrospinning of Polymer Solutions: Good Solvent, Non-Specific Polymer–Polymer Interaction Limit. Polymer. 2005;46:3372–3384. doi: 10.1016/j.polymer.2005.03.011. DOI
Wannatong L., Sirivat A., Supaphol P. Effects of Solvents on Electrospun Polymeric Fibers: Preliminary Study on Polystyrene. Polym. Int. 2004;53:1851–1859. doi: 10.1002/pi.1599. DOI
Hsiao S.-H., Yang C.-P., Chen C.-W., Liou G.-S. Synthesis and Properties of Novel Poly (Amide-Imide) s Derived from 2, 4-Diaminotriphenylamine and Imide Ring-Preformed Dicarboxylic Acids. J. Polym. Res. 2005;12:289–294. doi: 10.1007/s10965-004-5481-8. DOI
Xie Z., Dao B., Hodgkin J., Hoang M., Hill A., Gray S. Synthesis and Characterization of Hybrid Organic–Inorganic Materials Based on Sulphonated Polyamideimide and Silica. J. Polym. Res. 2011;18:965–973. doi: 10.1007/s10965-010-9496-z. DOI
Particulate Air Filters for General Ventilation. BSI; Brussel, Belgium: 2012.
Air Filters for General Ventilation. CEN; Brussels, Belgium: 2022.