Physiological reconstruction of blood glucose level using CGMS-signals only
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35388107
PubMed Central
PMC8987039
DOI
10.1038/s41598-022-09884-5
PII: 10.1038/s41598-022-09884-5
Knihovny.cz E-zdroje
- MeSH
- glukosa MeSH
- inzulin MeSH
- inzulinové infuzní systémy MeSH
- krevní glukóza * MeSH
- kvalita života * MeSH
- lidé MeSH
- selfmonitoring glykemie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- inzulin MeSH
- krevní glukóza * MeSH
Patient with diabetes must regularly monitor blood glucose level. Drawing a blood sample is a painful and discomfort experience. Alternatively, the patient measures interstitial fluid glucose level with a sensor installed in subcutaneous tissue. Then, a model of glucose dynamics calculates blood glucose level from the sensor-measured, i.e., interstitial fluid glucose level of subcutaneous tissue. Interstitial fluid glucose level can significantly differ from blood glucose level. The sensor is either factory-calibrated, or the patient calibrates the sensor periodically by drawing blood samples, when glucose levels of both compartments are steady. In both cases, the sensor lifetime is limited up to 14 days. This is the present state of the art. With a physiological model, we would like to prolong the sensor lifetime with an adaptive approach, while requiring no additional blood sample. Prolonging sensor's lifetime, while reducing the associated discomfort, would considerably improve patient's quality of life. We demonstrate that it is possible to determine personalized model parameters from multiple CGMS-signals only, using an animal experiment with a hyperglycemic clamp. The experimenter injected separate glucose and insulin boluses to trigger rapid changes, on which we evaluated the ability to react to non-steady glucose levels in different compartments. With the proposed model, 70%, 80% and 95% of the calculated blood glucose levels had relative error less than or equal to 21.9%, 32.5% and 43.6% respectively. Without the model, accuracy of the sensor-estimated blood glucose level decreased to 39.4%, 49.9% and 99.0% relative errors. This confirms feasibility of the proposed method.
Zobrazit více v PubMed
Jameson, J. L. et al. Harrison’s Principles of Internal Medicine, twentieth edition (Vol.1 & Vol.2) (McGraw-Hill Education/Medical, 2018).
Beck RW, Calhoun P, Kollman C. Challenges for outpatient closed loop studies: how to assess efficacy. Diabetes Technol. Ther. 2013;15:1–3. doi: 10.1089/dia.2012.0289. PubMed DOI
Minder AE, Albrecht D, Schafer J, Zulewski H. Frequency of blood glucose testing in well educated patients with diabetes mellitus type 1: how often is enough? Diabetes Res. Clin. Pract. 2013;101:57–61. doi: 10.1016/j.diabres.2012.12.024. PubMed DOI
Guyton, A. C. & Hall, J. E. Textbook of Medical Physiology, 11e (Guyton Physiology) (Saunders, 2005).
Koutny T. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level. Comput. Methods Programs Biomed. 2016;133:45–54. doi: 10.1016/j.cmpb.2016.05.011. PubMed DOI
Gani A, et al. Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Trans. Inf. Technol. Biomed. 2010;14:157–165. doi: 10.1109/TITB.2009.2034141. PubMed DOI
Bequette BW. Continuous glucose monitoring: Real-time algorithms for calibration, filtering, and alarms. J. Diabetes Sci. Technol. 2010;4:404–418. doi: 10.1177/193229681000400222. PubMed DOI PMC
Alva, S. et al. Accuracy of a 14-day factory-calibrated continuous glucose monitoring system with advanced algorithm in pediatric and adult population with diabetes. J. Diabetes Sci. Technol. 1932296820958754 (2020). PubMed PMC
Wadwa RP, Laffel LM, Shah VN, Garg SK. Accuracy of a factory-calibrated, real-time continuous glucose monitoring system during 10 days of use in youth and adults with diabetes. Diabetes Technol. Ther. 2018;20:395–402. doi: 10.1089/dia.2018.0150. PubMed DOI PMC
Singh AK, Rebec MV, Haidar A. Kalman-based calibration algorithm for agamatrix continuous glucose monitoring system. IEEE Trans. Control Syst. Technol. 2021;29:1257–1267. doi: 10.1109/TCST.2020.3003450. DOI
Atlas, D. et al. International diabetes federation. IDF Diabetes Atlas, 7th edn. Brussels, Belg. Int. Diabetes Fed. (2015).
Barnard KD, et al. Future artificial pancreas technology for type 1 diabetes: What do users want? Diabetes Technol. Ther. 2015;17:311–315. doi: 10.1089/dia.2014.0316. PubMed DOI
Heo YJ, Kim S-H. Toward long-term implantable glucose biosensors for clinical use. Appl. Sci. 2019;9:2158. doi: 10.3390/app9102158. DOI
Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the arrive guidelines 2.0. PLoS Biol.18, e3000411 (2020). PubMed PMC
Koutny T, Ubl M. Smartcgms as a testbed for a blood-glucose level prediction and/or control challenge with (an fda-accepted) diabetic patient simulation. Procedia Comput. Sci. 2020;177:354–362. doi: 10.1016/j.procs.2020.10.048. DOI
Zicha J, et al. Hereditary hypertriglyceridemic rat: A suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 2006;55(Suppl 1):49–63. PubMed
Klimes I, et al. Hereditary hypertriglyceridemic rat: A new animal model of metabolic alterations in hypertension. Blood Press. 1995;4:137–142. doi: 10.3109/08037059509077585. PubMed DOI
Koutny T. Blood glucose level reconstruction as a function of transcapillary glucose transport. Comput. Biol. Med. 2014;53:171–178. doi: 10.1016/j.compbiomed.2014.07.017. PubMed DOI
Koutny T. Prediction of interstitial glucose level. IEEE Trans. Inf. Technol. Biomed. 2012;16:136–142. doi: 10.1109/TITB.2011.2177469. PubMed DOI
Koutny T. Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues. Comput. Biol. Med. 2013;43:1680–1686. doi: 10.1016/j.compbiomed.2013.08.008. PubMed DOI
Dudley, R. M. Uniform Central Limit Theorems (Cambridge Studies in Advanced Mathematics) (Cambridge University Press, 2014).
Shorack, G. R. & Wellner, J. A. Empirical Processes with Applications to Statistics (Wiley Series in Probability and Statistics) (Wiley, 1986).
Pfützner A, Klonoff DC, Pardo S, Parkes JL. Technical aspects of the Parkes error grid. J. Diabetes Sci. Technol. 2013;7:1275–1281. doi: 10.1177/193229681300700517. PubMed DOI PMC
Marmarelis, V. & Mitsis, G. (eds.) Data-Driven Modeling for Diabetes: Diagnosis and Treatment (LNBE) (Springer, 2016).
Feng J, Hajizadeh I, Samadi S, Sevil M, Hobbs N, Brandt R, Cinar A. Hybrid online multi-sensor error detection and functional redundancy for artificial pancreas control systems. IFAC PapersOnLine. 2018;51:138–143. doi: 10.1016/j.ifacol.2018.09.289. DOI
Schifman RB, Howanitz PJ, Souers RJ. Point-of-care glucose critical values: A q-probes study involving 50 health care facilities and 2349 critical results. Arch. Pathol. Lab. Med. 2016;140:119–124. doi: 10.5858/arpa.2015-0058-CP. PubMed DOI