Hillslope Processes Affect Vessel Lumen Area and Tree Dimensions

. 2021 ; 12 () : 778802. [epub] 20211203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34925420

The height growth of the trees depends on sufficient mechanical support given by the stem and an effective hydraulic system. On unstable slopes, tree growth is affected by soil pressure from above and potential soil erosion from below the position of tree. The necessary stabilization is then provided by the production of mechanically stronger wood of reduced hydraulic conductivity. Unfortunately, the interaction between tree growth (both radial and axial) and stabilization in the soil is still insufficiently understood. Therefore, in this study, we aimed to quantify the impact of hillslope dynamics on the degree of tree growth and hydraulic limitation, and the potential effect on tree height growth and growth plasticity. To evaluate this effect, we took four cores from 80 individuals of Quercus robur and Fraxinus excelsior and measured tree-ring widths (TRWs) and vessel lumen areas (VLAs). The tree heights were evaluated using a terrestrial laser scanner, and local soil depth was measured by a soil auger. Our data showed a significant limitation of the tree hydraulic system related with the formation of eccentric tree-rings. The stem eccentricity decreased with increasing stem diameter, but at the same time, the negative effect of stem eccentricity on conduit size increased with the increasing stem diameter. Even though this anatomical adaptation associated with the effect of stem eccentricity differed between the tree species (mainly in the different degree of limitations in conduit size), the trees showed an increase in the proportion of hydraulically inactive wood elements and a lowered effectiveness of their hydraulic system. In addition, we observed a larger negative effect of stem eccentricity on VLA in Quercus. We conclude that the stabilization of a tree in unstable soil is accompanied by an inability to create sufficiently effective hydraulic system, resulting in severe height-growth limitation. This affects the accumulation of aboveground biomass and carbon sequestration.

Zobrazit více v PubMed

Aloni R. (2007). “Phytohormonal mechanisms that control wood quality formation in young and mature trees,” in The Compromised Wood Workshop, eds Entwistle K., Harris P., Walker J. (Christchurch: The Wood Technology Research Centre; ), 1–22.

Anfodillo T., Carraro V., Carrer M., Fior C., Rossi S. (2006). Convergent tapering of xylem conduits in different woody species. New Phytol. 169 279–290. 10.1111/j.1469-8137.2005.01587.x PubMed DOI

Anfodillo T., Petit G., Crivellaro A. (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J. 34 352–364. 10.1163/22941932-00000030 DOI

Applequist M. B. (1958). A simple pith locator for use with off-center increment cores. J. Forest. 56:141.

Ballesteros J. A., Stoffel M., Bollschweiler M., Bodoque J. M., Díez-Herrero A. (2010). Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiol. 30 773–781. 10.1093/treephys/tpq031 PubMed DOI

Bartoń K. (2016). MuMIn: Multi-Model Inference. Available online at: http://CRAN.R-project.org/package=MuMIn (accessed April 15, 2020).

Bontemps J.-D., Hervé J.-C., Dhôte J.-F. (2010). Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecol. Manag. 259 1455–1463. 10.1016/j.foreco.2010.01.019 DOI

Bräuning A., Ridder M. D., Zafirov N., García-González I., Dimitrov D. P., Gärtner H. (2016). Tree-ring features: indicators of extreme event impacts. IAWA J. 37 206–231. 10.1163/22941932-20160131 DOI

Bunn A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia 26 115–124. 10.1016/j.dendro.2008.01.002 DOI

Castagneri D., Regev L., Boaretto E., Carrer M. (2017). Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environ. Exp. Bot. 133 128–138. 10.1016/j.envexpbot.2016.10.009 DOI

Chojnacky D. C., Heath L. S., Jenkins J. C. (2014). Updated generalized biomass equations for North American tree species. Forestry 87 129–151. 10.1093/forestry/cpt053 DOI

Di Iorio A., Lasserre B., Scippa G. S., Chiatante D. (2005). Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann. Bot. 95 351–361. 10.1093/aob/mci033 PubMed DOI PMC

Dietrich L., Hoch G., Kahmen A., Körner C. (2018). Losing half the conductive area hardly impacts the water status of mature trees. Sci. Rep. 8:15006. 10.1038/s41598-018-33465-0 PubMed DOI PMC

Domec J.-C., Gärtner B. L. (2003). Relationship between growth rates and xylem hydraulic characteristics in young, mature and old-growth ponderosa pine trees. Plant Cell Environ. 26 471–483. 10.1046/j.1365-3040.2003.00978.x DOI

Fajardo A., Martínez-Pérez C., Cervantes-Alcayde M. A., Olson M. E. (2020). Stem length, not climate, controls vessel diameter in two trees species across a sharp precipitation gradient. New Phytol. 225 2347–2355. 10.1111/nph.16287 PubMed DOI

Fonti P., Bryukhanova M. V., Myglan V. S., Kirdyanov A. V., Naumova O. V., Vaganov E. A. (2013). Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. Am. J. Bot. 100 1332–1343. 10.3732/ajb.1200484 PubMed DOI

Frelich L. E. (2002). Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-Deciduous Forests. Cambridge: Cambridge University Press.

Gärtner B. L., Roy J., Huc R. (2003). Effects of tension wood on specific conductivity and vulnerability to embolism of Quercus ilex seedlings grown at two atmospheric CO2 concentrations. Tree Physiol. 23 387–395. 10.1093/treephys/23.6.387 PubMed DOI

Gärtner H., Nievergelt D. (2010). The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28 85–92. 10.1016/j.dendro.2009.09.002 DOI

Gärtner H., Schweingruber F. H. (2013). Microscopic Preparation Techniques for Plant Stem Analysis. Birmensdorf: WSL.

Gebauer R., Volařík D. (2013). Root hydraulic conductivity and vessel structure modification with increasing soil depth of two oak species: Quercus pubescens and Quercus robur. Trees 27 523–531. 10.1007/s00468-012-0805-5 DOI

Grissino-Mayer H. D. (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57 205–221.

Gullo M. A. L., Salleo S., Piaceri E. C., Rosso R. (1995). Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus corris. Plant Cell Environ. 18 661–669. 10.1111/j.1365-3040.1995.tb00567.x DOI

Harker R. I. (1996). Curved tree trunks: indicators of soil creep and other phenomena. J. Geol. 104, 351–358. 10.1086/629830 DOI

Heinrich I., Gärtner H. (2008). Variations in tension wood of two broad-leaved tree species in response to different mechanical treatments: implications for dendrochronology and mass movement studies. Int. J. Plant Sci. 169 928–936. 10.1086/589695 DOI

Heinrich I., Gärtner H., Monbaron M. (2007). Tension wood formed in Fagus sylvatica and Alnus glutinosa after simulated mass movement events. IAWA J. 28 39–48. 10.1163/22941932-90001617 DOI

Ives A. R., Abbott K. C., Ziebarth N. L. (2010). Analysis of ecological time series with ARMA(p,q) models. Ecology 91 858–871. 10.1890/09-0442.1 PubMed DOI

Jacobsen A. L., Pratt R. B., Tobin M. F., Hacke U. G., Ewers F. W. (2012). A global analysis of xylem vessel length in woody plants. Am. J. Bot. 99 1583–1591. 10.3732/ajb.1200140 PubMed DOI

Jerin T., Phillips J. (2020). Biogeomorphic keystones and equivalents: examples from a bedrock stream. Earth Surf. Proc. Lan. 45 1877–1894. 10.1002/esp.4853 DOI

Jevšenak J., Džeroski S., Levanič T. (2018a). Predicting the vessel lumen area tree-ring parameter of Quercus robur with linear and nonlinear machine learning algorithms. Geochronometria 45 211–222. 10.1515/geochr-2015-0097 DOI

Jevšenak J., Džeroski S., Zavadlav S., Levanič T. (2018b). A machine learning approach to analyzing the relationship between temperatures and multi-proxy tree-ring records. Tree-Ring Res. 74 210–224. 10.3959/1536-1098-74.2.210 DOI

Jones C. G. (2012). Ecosystem engineers and geomorphological signatures in landscapes. Geomorphology 15 75–87. 10.1016/j.geomorph.2011.04.039 DOI

Jourez B., Riboux A., Leclercq A. (2001). Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘Ghoy’). IAWA J. 22 133–157.

Kašpar J., Anfodillo T., Treml V. (2019). Tree size mostly drives the variation of xylem traits at the treeline ecotone. Trees 33 1657–1665. 10.1007/s00468-019-01887-6 DOI

Kašpar J., Šamonil P., Krůček M., Daněk P. (2020). Changes in the radial growth of trees in relation to biogeomorphic processes in an old-growth forest on flysch, Czechia. Earth Surf. Proc. Lan. 45 2761–2772. 10.1002/esp.4928 DOI

Klesse S., von Arx G., Gossner M. M., Hug C., Rigling A., Queloz V. (2020). Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback. Tree Physiol. 41 683–696. 10.1093/treephys/tpaa091 PubMed DOI

Koch G. W., Sillett S. C., Jennings G. M., Davis S. D. (2004). The limits to tree height. Nature 428 851–854. 10.1038/nature02417 PubMed DOI

Koçillari L., Olson M. E., Suweis S., Rocha R. P., Lovison A., Cardin F., et al. (2021). The Widened Pipe Model of plant hydraulic evolution. Proc. Natl. Acad. Si. U.S.A. 118:e2100314118. 10.1073/pnas.2100314118 PubMed DOI PMC

Malik I., Wistuba M., Migoń P., Fajer M. (2016). Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees (Picea Abies Karst.) – an example from the Kamienne MTS. (Sudetes MTS., Central Europe). Geochronometria 43 24–37.

Nakagawa S., Schielzeth H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4 133–142. 10.1111/j.2041-210x.2012.00261.x DOI

Olson M. E., Anfodillo T., Gleason S. M., McCulloh K. A. (2021). Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. New Phytol. 229 1877–1893. 10.1111/nph.16961 PubMed DOI

Olson M. E., Anfodillo T., Rosell J. A., Petit G., Crivellaro A., Isnard S., et al. (2014). Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol. Lett. 17 988–997. 10.1111/ele.12302 PubMed DOI

Pallardy S. G. (2008). Physiology of Woody Plants, 3rd Edn. Amsterdam: Elsevier.

Pan Y., Birdsey R. A., Fang J., Houghton R., Kauppi P. E., Kurz W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science 333 988–993. 10.1126/science.1201609 PubMed DOI

Pawlik L., Šamonil P. (2018). Soil creep: the driving factors, evidence and significance for biogeomorphic and pedogenic domains and systems – a critical literature review. Earth-Sci. Rev. 178 257–278. 10.1016/j.earscirev.2018.01.008 DOI

Piermattei A., von Arx G., Avanzi C., Fonti P., Gärtner H., Piotti A., et al. (2020). Functional relationships of wood anatomical traits in Norway spruce. Front. Plant Sci. 11:683. 10.3389/fpls.2020.00683 PubMed DOI PMC

Pinheiro J., Douglas B., Saikat D., Sarkar D., and R Development Core (2019). nlme: Linear and Nonlinear Mixed Effects Models. Available online at: https://CRAN.R-project.org/package=nlme (accessed April 15, 2020).

R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Roibu C.-C., Sfeclǎ V., Mursa A., Ionita M., Nagavciuc V., Chiriloaei F., et al. (2020). The climatic response of tree ring width components of Ash (Fraxinus excelsior L.) and Common Oak (Quercus robur L.) from Eastern Europe. Forests 11:600. 10.3390/f11050600 DOI

Rosell J. A., Olson M. E., Anfodillo T. (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. Fores. Rep. 3 46–59. 10.1007/s40725-017-0049-0 DOI

Rossi S., Anfodillo T., Čufar K., Cuny H. E., Deslauriers A., Fonti P., et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 22 3804–3813. 10.1111/gcb.13317 PubMed DOI

Ruelle J. (2014). “Morphology, anatomy and ultrastructure of reaction wood,” in the Biology of Reaction Wood Springer Series in Wood Science, eds Gardiner B., Barnett J., Saranpää P., Gril J. (Berlin: Springer; ), 13–35. 10.1007/978-3-642-10814-3_2 DOI

Ruffinatto F., Crivellaro A. (2019). Atlas of Macroscopic Wood Identification: With a Special Focus on Timbers Used in Europe and CITES-listed Species. Berlin: Springer International Publishing. 10.1007/978-3-030-23566-6 DOI

Ryan M. G., Phillips N., Bond B. J. (2006). The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29 367–381. 10.1111/j.1365-3040.2005.01478.x PubMed DOI

Ryan M. G., Yoder B. J. (1997). Hydraulic limits to tree height and tree growth. BioScience 47 235–242. 10.2307/1313077 DOI

Rybníček M., Čermák P., Prokop O., Žid T., Trnka M., Kolář T. (2016). Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 75 55–65. 10.12657/denbio.075.006 DOI

Šamonil P., Daněk P., Senecká A., Adam D., Phillips J. D. (2018). Biomechanical effects of trees in an old-growth temperate forest. Earth Surf. Proc. Lan. 43 1063–1072. 10.1002/esp.4304 DOI

San-Miguel-Ayanz J., de Rigo D., Caudullo G., Durrant T., Mauri A., Tinner W., et al. (2016). European Atlas of Forest Tree Species. Brussels: European Commission.

Shouse M., Phillips J. (2016). Soil deepening by trees and the effects of parent material. Geomorphology 269 1–7. 10.1016/j.geomorph.2016.06.031 DOI

Šilhán K. (2015). Can tree tilting indicate mechanisms of slope movement? Eng. Geol. 199 157–164. 10.1016/j.enggeo.2015.11.005 DOI

Šilhán K. (2017). Dendrogeomorphic chronologies of landslides: dating of true slide movements? Earth Surf. Proc. Lan. 42 2109–2118. 10.1002/esp.4153 DOI

Šilhán K. (2019). Tree-ring eccentricity in the dendrogeomorphic analysis of landslides – a comparative study. CATENA 174 1–10. 10.1016/j.catena.2018.11.002 DOI

Šilhán K., Stoffel M. (2015). Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236 34–43. 10.1016/j.geomorph.2015.02.003 DOI

Tolasz R., Míková T., Veleriánová A., Voženílek V. (2007). Climate Atlas of Czechia. Praha: Český hydrometeorologickýústav.

Trouillier M., van der Maaten-Theunissen M., Scharnweber T., Würth D., Burger A., Schnittler M., et al. (2019). Size matters—a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees 33 183–192. 10.1007/s00468-018-1767-z DOI

Tumajer J., Burda J., Treml V. (2015). Dating of rockfal events using vessel lumen area in Betula pendula. IAWA J. 36 286–299. 10.1163/22941932-20150100 DOI

Tumajer J., Treml V. (2013). Meta-analysis of dendrochronological dating of mass movements. Geochronometria 40 59–76. 10.2478/s13386-012-0021-5 DOI

Tumajer J., Treml V. (2019). Disentangling the effects of disturbance, climate and tree age on xylem hydraulic conductivity of Betula pendula. Ann. Bot. 123 783–792. 10.1093/aob/mcy209 PubMed DOI PMC

Tyree M. T., Zimmermann M. H. (2002). “Hydraulic architecture of whole plants and plant performance,” in Xylem Structure and the Ascent of Sap Springer Series in Wood Science, eds Tyree M. T., Zimmermann M. H. (Berlin: Springer; ), 175–214. 10.1007/978-3-662-04931-0_6 DOI

von Arx G., Carrer M. (2014). ROXAS – A new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32 290–293. 10.1016/j.dendro.2013.12.001 DOI

von Arx G., Kueffer C., Fonti P. (2013). Quantifying plasticity in vessel grouping – added value from the image analysis tool ROXAS. IAWA J. 34 433–445. 10.1163/22941932-00000035 DOI

Wilson B. F., Gärtner B. L. (2011). Lean in red alder (Alnusrubra): growth stress, tension wood, and righting response. Can. J. Forest Res. 26 1951–1956. 10.1139/x26-220 DOI

Wistuba M., Malik I., Wójcicki K., Michałowicz P. (2015). Coupling between landslides and eroding stream channels reconstructed from spruce tree rings (examples from the Carpathians and Sudetes – Central Europe). Earth Surf. Proc. Lan. 40 293–312. 10.1002/esp.3632 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...