Hillslope Processes Affect Vessel Lumen Area and Tree Dimensions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34925420
PubMed Central
PMC8678277
DOI
10.3389/fpls.2021.778802
Knihovny.cz E-zdroje
- Klíčová slova
- Fraxinus, Quercus, biogenic creep, height limitation, hillslope processes, stem eccentricity, tree stability, wood anatomy,
- Publikační typ
- časopisecké články MeSH
The height growth of the trees depends on sufficient mechanical support given by the stem and an effective hydraulic system. On unstable slopes, tree growth is affected by soil pressure from above and potential soil erosion from below the position of tree. The necessary stabilization is then provided by the production of mechanically stronger wood of reduced hydraulic conductivity. Unfortunately, the interaction between tree growth (both radial and axial) and stabilization in the soil is still insufficiently understood. Therefore, in this study, we aimed to quantify the impact of hillslope dynamics on the degree of tree growth and hydraulic limitation, and the potential effect on tree height growth and growth plasticity. To evaluate this effect, we took four cores from 80 individuals of Quercus robur and Fraxinus excelsior and measured tree-ring widths (TRWs) and vessel lumen areas (VLAs). The tree heights were evaluated using a terrestrial laser scanner, and local soil depth was measured by a soil auger. Our data showed a significant limitation of the tree hydraulic system related with the formation of eccentric tree-rings. The stem eccentricity decreased with increasing stem diameter, but at the same time, the negative effect of stem eccentricity on conduit size increased with the increasing stem diameter. Even though this anatomical adaptation associated with the effect of stem eccentricity differed between the tree species (mainly in the different degree of limitations in conduit size), the trees showed an increase in the proportion of hydraulically inactive wood elements and a lowered effectiveness of their hydraulic system. In addition, we observed a larger negative effect of stem eccentricity on VLA in Quercus. We conclude that the stabilization of a tree in unstable soil is accompanied by an inability to create sufficiently effective hydraulic system, resulting in severe height-growth limitation. This affects the accumulation of aboveground biomass and carbon sequestration.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czechia
Department of Forest Ecology The Silva Tarouca Research Institute Brno Czechia
Zobrazit více v PubMed
Aloni R. (2007). “Phytohormonal mechanisms that control wood quality formation in young and mature trees,” in The Compromised Wood Workshop, eds Entwistle K., Harris P., Walker J. (Christchurch: The Wood Technology Research Centre; ), 1–22.
Anfodillo T., Carraro V., Carrer M., Fior C., Rossi S. (2006). Convergent tapering of xylem conduits in different woody species. New Phytol. 169 279–290. 10.1111/j.1469-8137.2005.01587.x PubMed DOI
Anfodillo T., Petit G., Crivellaro A. (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J. 34 352–364. 10.1163/22941932-00000030 DOI
Applequist M. B. (1958). A simple pith locator for use with off-center increment cores. J. Forest. 56:141.
Ballesteros J. A., Stoffel M., Bollschweiler M., Bodoque J. M., Díez-Herrero A. (2010). Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiol. 30 773–781. 10.1093/treephys/tpq031 PubMed DOI
Bartoń K. (2016). MuMIn: Multi-Model Inference. Available online at: http://CRAN.R-project.org/package=MuMIn (accessed April 15, 2020).
Bontemps J.-D., Hervé J.-C., Dhôte J.-F. (2010). Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecol. Manag. 259 1455–1463. 10.1016/j.foreco.2010.01.019 DOI
Bräuning A., Ridder M. D., Zafirov N., García-González I., Dimitrov D. P., Gärtner H. (2016). Tree-ring features: indicators of extreme event impacts. IAWA J. 37 206–231. 10.1163/22941932-20160131 DOI
Bunn A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia 26 115–124. 10.1016/j.dendro.2008.01.002 DOI
Castagneri D., Regev L., Boaretto E., Carrer M. (2017). Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environ. Exp. Bot. 133 128–138. 10.1016/j.envexpbot.2016.10.009 DOI
Chojnacky D. C., Heath L. S., Jenkins J. C. (2014). Updated generalized biomass equations for North American tree species. Forestry 87 129–151. 10.1093/forestry/cpt053 DOI
Di Iorio A., Lasserre B., Scippa G. S., Chiatante D. (2005). Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann. Bot. 95 351–361. 10.1093/aob/mci033 PubMed DOI PMC
Dietrich L., Hoch G., Kahmen A., Körner C. (2018). Losing half the conductive area hardly impacts the water status of mature trees. Sci. Rep. 8:15006. 10.1038/s41598-018-33465-0 PubMed DOI PMC
Domec J.-C., Gärtner B. L. (2003). Relationship between growth rates and xylem hydraulic characteristics in young, mature and old-growth ponderosa pine trees. Plant Cell Environ. 26 471–483. 10.1046/j.1365-3040.2003.00978.x DOI
Fajardo A., Martínez-Pérez C., Cervantes-Alcayde M. A., Olson M. E. (2020). Stem length, not climate, controls vessel diameter in two trees species across a sharp precipitation gradient. New Phytol. 225 2347–2355. 10.1111/nph.16287 PubMed DOI
Fonti P., Bryukhanova M. V., Myglan V. S., Kirdyanov A. V., Naumova O. V., Vaganov E. A. (2013). Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. Am. J. Bot. 100 1332–1343. 10.3732/ajb.1200484 PubMed DOI
Frelich L. E. (2002). Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-Deciduous Forests. Cambridge: Cambridge University Press.
Gärtner B. L., Roy J., Huc R. (2003). Effects of tension wood on specific conductivity and vulnerability to embolism of Quercus ilex seedlings grown at two atmospheric CO2 concentrations. Tree Physiol. 23 387–395. 10.1093/treephys/23.6.387 PubMed DOI
Gärtner H., Nievergelt D. (2010). The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28 85–92. 10.1016/j.dendro.2009.09.002 DOI
Gärtner H., Schweingruber F. H. (2013). Microscopic Preparation Techniques for Plant Stem Analysis. Birmensdorf: WSL.
Gebauer R., Volařík D. (2013). Root hydraulic conductivity and vessel structure modification with increasing soil depth of two oak species: Quercus pubescens and Quercus robur. Trees 27 523–531. 10.1007/s00468-012-0805-5 DOI
Grissino-Mayer H. D. (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57 205–221.
Gullo M. A. L., Salleo S., Piaceri E. C., Rosso R. (1995). Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus corris. Plant Cell Environ. 18 661–669. 10.1111/j.1365-3040.1995.tb00567.x DOI
Harker R. I. (1996). Curved tree trunks: indicators of soil creep and other phenomena. J. Geol. 104, 351–358. 10.1086/629830 DOI
Heinrich I., Gärtner H. (2008). Variations in tension wood of two broad-leaved tree species in response to different mechanical treatments: implications for dendrochronology and mass movement studies. Int. J. Plant Sci. 169 928–936. 10.1086/589695 DOI
Heinrich I., Gärtner H., Monbaron M. (2007). Tension wood formed in Fagus sylvatica and Alnus glutinosa after simulated mass movement events. IAWA J. 28 39–48. 10.1163/22941932-90001617 DOI
Ives A. R., Abbott K. C., Ziebarth N. L. (2010). Analysis of ecological time series with ARMA(p,q) models. Ecology 91 858–871. 10.1890/09-0442.1 PubMed DOI
Jacobsen A. L., Pratt R. B., Tobin M. F., Hacke U. G., Ewers F. W. (2012). A global analysis of xylem vessel length in woody plants. Am. J. Bot. 99 1583–1591. 10.3732/ajb.1200140 PubMed DOI
Jerin T., Phillips J. (2020). Biogeomorphic keystones and equivalents: examples from a bedrock stream. Earth Surf. Proc. Lan. 45 1877–1894. 10.1002/esp.4853 DOI
Jevšenak J., Džeroski S., Levanič T. (2018a). Predicting the vessel lumen area tree-ring parameter of Quercus robur with linear and nonlinear machine learning algorithms. Geochronometria 45 211–222. 10.1515/geochr-2015-0097 DOI
Jevšenak J., Džeroski S., Zavadlav S., Levanič T. (2018b). A machine learning approach to analyzing the relationship between temperatures and multi-proxy tree-ring records. Tree-Ring Res. 74 210–224. 10.3959/1536-1098-74.2.210 DOI
Jones C. G. (2012). Ecosystem engineers and geomorphological signatures in landscapes. Geomorphology 15 75–87. 10.1016/j.geomorph.2011.04.039 DOI
Jourez B., Riboux A., Leclercq A. (2001). Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘Ghoy’). IAWA J. 22 133–157.
Kašpar J., Anfodillo T., Treml V. (2019). Tree size mostly drives the variation of xylem traits at the treeline ecotone. Trees 33 1657–1665. 10.1007/s00468-019-01887-6 DOI
Kašpar J., Šamonil P., Krůček M., Daněk P. (2020). Changes in the radial growth of trees in relation to biogeomorphic processes in an old-growth forest on flysch, Czechia. Earth Surf. Proc. Lan. 45 2761–2772. 10.1002/esp.4928 DOI
Klesse S., von Arx G., Gossner M. M., Hug C., Rigling A., Queloz V. (2020). Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback. Tree Physiol. 41 683–696. 10.1093/treephys/tpaa091 PubMed DOI
Koch G. W., Sillett S. C., Jennings G. M., Davis S. D. (2004). The limits to tree height. Nature 428 851–854. 10.1038/nature02417 PubMed DOI
Koçillari L., Olson M. E., Suweis S., Rocha R. P., Lovison A., Cardin F., et al. (2021). The Widened Pipe Model of plant hydraulic evolution. Proc. Natl. Acad. Si. U.S.A. 118:e2100314118. 10.1073/pnas.2100314118 PubMed DOI PMC
Malik I., Wistuba M., Migoń P., Fajer M. (2016). Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees (Picea Abies Karst.) – an example from the Kamienne MTS. (Sudetes MTS., Central Europe). Geochronometria 43 24–37.
Nakagawa S., Schielzeth H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4 133–142. 10.1111/j.2041-210x.2012.00261.x DOI
Olson M. E., Anfodillo T., Gleason S. M., McCulloh K. A. (2021). Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. New Phytol. 229 1877–1893. 10.1111/nph.16961 PubMed DOI
Olson M. E., Anfodillo T., Rosell J. A., Petit G., Crivellaro A., Isnard S., et al. (2014). Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol. Lett. 17 988–997. 10.1111/ele.12302 PubMed DOI
Pallardy S. G. (2008). Physiology of Woody Plants, 3rd Edn. Amsterdam: Elsevier.
Pan Y., Birdsey R. A., Fang J., Houghton R., Kauppi P. E., Kurz W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science 333 988–993. 10.1126/science.1201609 PubMed DOI
Pawlik L., Šamonil P. (2018). Soil creep: the driving factors, evidence and significance for biogeomorphic and pedogenic domains and systems – a critical literature review. Earth-Sci. Rev. 178 257–278. 10.1016/j.earscirev.2018.01.008 DOI
Piermattei A., von Arx G., Avanzi C., Fonti P., Gärtner H., Piotti A., et al. (2020). Functional relationships of wood anatomical traits in Norway spruce. Front. Plant Sci. 11:683. 10.3389/fpls.2020.00683 PubMed DOI PMC
Pinheiro J., Douglas B., Saikat D., Sarkar D., and R Development Core (2019). nlme: Linear and Nonlinear Mixed Effects Models. Available online at: https://CRAN.R-project.org/package=nlme (accessed April 15, 2020).
R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Roibu C.-C., Sfeclǎ V., Mursa A., Ionita M., Nagavciuc V., Chiriloaei F., et al. (2020). The climatic response of tree ring width components of Ash (Fraxinus excelsior L.) and Common Oak (Quercus robur L.) from Eastern Europe. Forests 11:600. 10.3390/f11050600 DOI
Rosell J. A., Olson M. E., Anfodillo T. (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. Fores. Rep. 3 46–59. 10.1007/s40725-017-0049-0 DOI
Rossi S., Anfodillo T., Čufar K., Cuny H. E., Deslauriers A., Fonti P., et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 22 3804–3813. 10.1111/gcb.13317 PubMed DOI
Ruelle J. (2014). “Morphology, anatomy and ultrastructure of reaction wood,” in the Biology of Reaction Wood Springer Series in Wood Science, eds Gardiner B., Barnett J., Saranpää P., Gril J. (Berlin: Springer; ), 13–35. 10.1007/978-3-642-10814-3_2 DOI
Ruffinatto F., Crivellaro A. (2019). Atlas of Macroscopic Wood Identification: With a Special Focus on Timbers Used in Europe and CITES-listed Species. Berlin: Springer International Publishing. 10.1007/978-3-030-23566-6 DOI
Ryan M. G., Phillips N., Bond B. J. (2006). The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29 367–381. 10.1111/j.1365-3040.2005.01478.x PubMed DOI
Ryan M. G., Yoder B. J. (1997). Hydraulic limits to tree height and tree growth. BioScience 47 235–242. 10.2307/1313077 DOI
Rybníček M., Čermák P., Prokop O., Žid T., Trnka M., Kolář T. (2016). Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 75 55–65. 10.12657/denbio.075.006 DOI
Šamonil P., Daněk P., Senecká A., Adam D., Phillips J. D. (2018). Biomechanical effects of trees in an old-growth temperate forest. Earth Surf. Proc. Lan. 43 1063–1072. 10.1002/esp.4304 DOI
San-Miguel-Ayanz J., de Rigo D., Caudullo G., Durrant T., Mauri A., Tinner W., et al. (2016). European Atlas of Forest Tree Species. Brussels: European Commission.
Shouse M., Phillips J. (2016). Soil deepening by trees and the effects of parent material. Geomorphology 269 1–7. 10.1016/j.geomorph.2016.06.031 DOI
Šilhán K. (2015). Can tree tilting indicate mechanisms of slope movement? Eng. Geol. 199 157–164. 10.1016/j.enggeo.2015.11.005 DOI
Šilhán K. (2017). Dendrogeomorphic chronologies of landslides: dating of true slide movements? Earth Surf. Proc. Lan. 42 2109–2118. 10.1002/esp.4153 DOI
Šilhán K. (2019). Tree-ring eccentricity in the dendrogeomorphic analysis of landslides – a comparative study. CATENA 174 1–10. 10.1016/j.catena.2018.11.002 DOI
Šilhán K., Stoffel M. (2015). Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236 34–43. 10.1016/j.geomorph.2015.02.003 DOI
Tolasz R., Míková T., Veleriánová A., Voženílek V. (2007). Climate Atlas of Czechia. Praha: Český hydrometeorologickýústav.
Trouillier M., van der Maaten-Theunissen M., Scharnweber T., Würth D., Burger A., Schnittler M., et al. (2019). Size matters—a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees 33 183–192. 10.1007/s00468-018-1767-z DOI
Tumajer J., Burda J., Treml V. (2015). Dating of rockfal events using vessel lumen area in Betula pendula. IAWA J. 36 286–299. 10.1163/22941932-20150100 DOI
Tumajer J., Treml V. (2013). Meta-analysis of dendrochronological dating of mass movements. Geochronometria 40 59–76. 10.2478/s13386-012-0021-5 DOI
Tumajer J., Treml V. (2019). Disentangling the effects of disturbance, climate and tree age on xylem hydraulic conductivity of Betula pendula. Ann. Bot. 123 783–792. 10.1093/aob/mcy209 PubMed DOI PMC
Tyree M. T., Zimmermann M. H. (2002). “Hydraulic architecture of whole plants and plant performance,” in Xylem Structure and the Ascent of Sap Springer Series in Wood Science, eds Tyree M. T., Zimmermann M. H. (Berlin: Springer; ), 175–214. 10.1007/978-3-662-04931-0_6 DOI
von Arx G., Carrer M. (2014). ROXAS – A new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32 290–293. 10.1016/j.dendro.2013.12.001 DOI
von Arx G., Kueffer C., Fonti P. (2013). Quantifying plasticity in vessel grouping – added value from the image analysis tool ROXAS. IAWA J. 34 433–445. 10.1163/22941932-00000035 DOI
Wilson B. F., Gärtner B. L. (2011). Lean in red alder (Alnusrubra): growth stress, tension wood, and righting response. Can. J. Forest Res. 26 1951–1956. 10.1139/x26-220 DOI
Wistuba M., Malik I., Wójcicki K., Michałowicz P. (2015). Coupling between landslides and eroding stream channels reconstructed from spruce tree rings (examples from the Carpathians and Sudetes – Central Europe). Earth Surf. Proc. Lan. 40 293–312. 10.1002/esp.3632 DOI