Toward a better understanding of angiosperm xylogenesis: a new method for a cellular approach

. 2023 Jul ; 239 (2) : 792-805. [epub] 20230510

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37161713

The kinetics of wood formation in angiosperms are largely unknown because their complex xylem anatomy precludes using the radial position of vessels and fibers to infer their time of differentiation. We analyzed xylogenesis in ring-porous ash (Fraxinus angustifolia) and diffuse-porous beech (Fagus sylvatica) over 1 yr and proposed a novel procedure to assess the period of vessel and fiber enlargement using a referential radial file (RRF). Our approach captured the dynamics of wood formation and provided a robust estimation of the kinetics of vessel and fiber enlargement. In beech, fibers and vessels had a similar duration of enlargement, decreasing from 14 to 5 d between April and July. In ash, wide vessels formed in April enlarged at a rate of 27 × 103 μm2 d-1 , requiring half the time of contemporary fibers (6 vs 12 d), and less time than the narrower vessels (14 d) formed in May. These findings reveal distinct cell-type-dependent mechanisms for differentiation in diffuse-porous and ring-porous trees, enhancing our understanding of angiosperm wood cell kinetics. Our approach presents an effective method for investigating angiosperm wood formation and provides a more accurate representation of vessel and fiber morphogenesis in wood formation models.

Zobrazit více v PubMed

Aloni R. 2015. Ecophysiological implications of vascular differentiation and plant evolution. Trees 29: 1-16.

Andrianantenaina AN, Rathgeber CBK, Pérez-de-Lis G, Cuny H, Ruelle J. 2019. Quantifying intra-annual dynamics of carbon sequestration in the forming wood: a novel histologic approach. Annals of Forest Science 76: 1-12.

Atkinson CJ, Denne MP. 1988. Reactivation of vessel production in ash (Fraxinus excelsior L.) trees. Annals of Botany 61: 679-688.

Balzano A, Čufar K, de Micco V. 2021. Cell-wall fluorescence highlights the phases of xylogenesis. IAWA Journal 121: 1-10.

Barbaroux C, Bréda N. 2002. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology 22: 1201-1210.

Begum S, Kudo K, Rahman MH, Nakaba S, Yamagishi Y, Nabeshima E, Nugroho WD, Oribe Y, Kitin P, Jin HO et al. 2018. Climate change and the regulation of wood formation in trees by temperature. Trees - Structure and Function 32: 3-15.

Bivand RS, Pebesma EJ, Gomez-Rubio V. 2013. Applied spatial data analysis with R, 2nd edn. New York, NY, USA: Springer.

Buttò V, Deslauriers A, Rossi S, Rozenberg P, Shishov V, Morin H. 2020. The role of plant hormones in tree-ring formation. Trees - Structure and Function 34: 315-335.

Buttò V, Rossi S, Deslauriers A, Morin H. 2019. Is size an issue of time? Relationship between the duration of xylem development and cell traits. Annals of Botany 123: 1257-1265.

Cabon A, Fernández-de-Uña L, Gea-Izquierdo G, Meinzer FC, Woodruff DR, Martínez-Vilalta J, de Cáceres M. 2019. Water potential control of turgor-driven tracheid enlargement in Scots pine at its xeric distribution edge SUP MAT. New Phytologist 44: 3.

Chen Y, Rademacher T, Fonti P, Eckes-Shephard AH, LeMoine JM, Fonti M, Richardson AD, Friend AD. 2022. Inter-annual and inter-species tree growth explained by phenology of xylogenesis. New Phytologist 235: 939-952.

Coiffard C, Gomez B, Daviero-Gomez V, Dilcher DL. 2012. Rise to dominance of angiosperm pioneers in European cretaceous environments. Proceedings of the National Academy of Sciences, USA 109: 20955-20959.

Copini P, Vergeldt FJ, Fonti P, Sass-Klaassen U, den Ouden J, Sterck F, Decuyper M, Gerkema E, Windt CW, van As H. 2019. Magnetic resonance imaging suggests functional role of previous year vessels and fibres in ring-porous sap flow resumption. Tree Physiology 39: 1009-1018.

Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H. 2009. A unique program for cell death in xylem fibers of Populus stem. The Plant Journal 58: 260-274.

Čufar K, Prislan P, Gričar J. 2008. Cambial activity and wood formation in Beech (Fagus sylvatica) during the 2006 growing season. Wood Research 53: 1-12.

Cuny HE, Rathgeber CBK, Frank D, Fonti P, Fournier M. 2014. Kinetics of tracheid development explain conifer tree-ring structure. New Phytologist 203: 1231-1241.

Cuny HE, Rathgeber CBK, Kiessé TS, Hartmann FP, Barbeito I, Fournier M. 2013. Generalized additive models reveal the intrinsic complexity of wood formation dynamics. Journal of Experimental Botany 64: 1983-1994.

Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé J-C. 2010. Wood formation in Angiosperms. Comptes Rendus Biologies 333: 325-334.

Eckes-Shephard AH, Ljungqvist FC, Drew DM, Rathgeber CBK, Friend AD. 2022. Wood formation modeling - a research review and future perspectives. Frontiers in Plant Science 13: 265.

Giagli K, Gričar J, Vavrčík H, Menšík L, Gryc V. 2016. The effects of drought on wood formation in Fagus sylvatica during two constrating years. IAWA Journal 37: 332-348.

Hacke UG, Spicer R, Schreiber SG, Plavcová L. 2017. An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment 40: 831-845.

Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE. 2013. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change 3: 203-207.

Hartmann FP, Rathgeber CBK, Fournier M, Moulia B. 2017. Modelling wood formation and structure: power and limits of a morphogenetic gradient in controlling xylem cell proliferation and growth. Annals of Forest Science 74: 14.

IUSS Working Group WRB. 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps.

Jocher G, Kowalska N, Acosta M, Krejza J, Marková I, Marshall JD, Uchytilová T, Pavelka M, Marek MV. 2021. Potential of typical highland and mountain forests in the Czech Republic for climate-smart forestry: ecosystem-scale drought responses. Canadian Journal of Forest Research 51: 1811-1820.

Kitin P, Funada R. 2016. Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current-year leaves. IAWA Journal 37: 315-331.

Kowalska N, Šigut L, Stojanović M, Fischer M, Kyselova I, Pavelka M. 2020. Analysis of floodplain forest sensitivity to drought. Philosophical Transactions of the Royal Society B: Biological Sciences 375: 20190518.

Kudo K, Utsumi Y, Kuroda K, Yamagishi Y, Nabeshima E, Nakaba S, Yasue K, Takata K, Funada R. 2018. Formation of new networks of earlywood vessels in seedlings of the deciduous ring-porous hardwood Quercus serrata in springtime. Trees - Structure and Function 32: 725-734.

Kudo K, Yasue K, Hosoo Y, Funada R. 2015. Relationship between formation of earlywood vessels and leaf phenology in two ring-porous hardwoods, Quercus serrata and Robinia pseudoacacia, in early spring. Journal of Wood Science 61: 455-464.

Lavrič M, Eler K, Ferlan M, Vodnik D, Gričar J. 2017. Chronological sequence of leaf phenology, xylem and phloem formation and sap flow of Quercus pubescens from abandoned karst grasslands. Frontiers in Plant Science 8: 314.

Legendre P. 2018. lmodel2: model II regression. [WWW document] URL https://CRAN.R-project.org/package=lmodel2 [accessed 5 February 2018].

Lehnebach R, Campioli M, Gričar J, Prislan P, Mariën B, Beeckman H, van den Bulcke J. 2021. High-resolution X-ray computed tomography: a new workflow for the analysis of xylogenesis and intra-seasonal wood biomass production. Frontiers in Plant Science 12: 698640.

Marchand LJ, Dox I, Gričar J, Prislan P, van den Bulcke J, Fonti P, Campioli M. 2021. Timing of spring xylogenesis in temperate deciduous tree species relates to tree growth characteristics and previous autumn phenology. Tree Physiology 41: 1161-1170.

McCulloh K, Sperry JS, Lachenbruch B, Meinzer FC, Reich PB, Voelker S. 2010. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytologist 186: 439-450.

de Micco V, Carrer M, Rathgeber CBK, Julio Camarero JJ, Voltas J, Cherubini P, Battipaglia G. 2019. From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA Journal 40: 155-182.

Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C. 2012. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology 32: 1033-1045.

Miodek A, Gizińska A, Włoch W, Kojs P. 2021. What do we know about growth of vessel elements of secondary xylem in woody plants? Biological Reviews 96: 2911-2924.

Miranda JC, Calderaro C, Cocozza C, Lasserre B, Tognetti R, von Arx G. 2022. Wood anatomical responses of European beech to elevation, land use change, and climate variability in the Central Apennines, Italy. Frontiers in Plant Science 13: 627-642.

Moulin JC, de Souza RD, Vidaurre GB, Braga Mulin L, Moreira SI. 2022. Effect of drought stress on the formation and lignification of eucalyptus wood cells. IAWA Journal 43: 263-275.

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al. 2011. A large and persistent carbon sink in the world's forests. Science 333: 988-993.

Pérez-de-Lis G, Olano JM, Rozas V, Rossi S, Vázquez-Ruiz RA, García-González I. 2017. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks. Functional Ecology 31: 592-603.

Pérez-de-Lis G, Rossi S, Vázquez-Ruiz RA, Rozas V, García-González I. 2016. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist 209: 521-530.

Prislan P, Čufar K, de Luis M, Gričar J. 2018. Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. Tree Physiology 38: 186-197.

Prislan P, Gričar J, de Luis M, Smith KT, Čufar K. 2013. Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology 180: 142-151.

Pya N, Wood SN. 2015. Shape constrained additive models. Statistics and Computing 25: 543-559.

R Core Team. 2021. R: a language and environment for statistical computing. Vienna, Austria: R foundation for Statistical Computing.

Rathgeber CBK, Cuny HE, Fonti P. 2016. Biological basis of tree-ring formation: a crash course. Frontiers in Plant Science 7: 734.

Rathgeber CBK, Pérez-de-Lis G, Fernández-de-Uña L, Fonti P, Rossi S, Treydte K, Gessler A, Deslauriers A, Fonti MV, Ponton S. 2022. Anatomical, developmental and physiological bases of tree-ring formation in relation to environmental factors. In: Siegwolf RTW, Brooks JR, Roden J, Saurer M, eds. Stable isotopes in tree rings: inferring physiological, climatic and environmental responses. Cham, Switzerland: Springer International, 61-99.

Rossi S, Deslauriers A, Anfodillo T. 2006. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the alpine timberline. IAWA Journal 27: 383-394.

Rossi S, Deslauriers A, Morin H. 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 1: 33-39.

Sass U, Eckstein D. 1995. The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9: 247-252.

Sass-Klaassen U, Sabajo CR, den Ouden J. 2011. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29: 171-175.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675.

Schuetz M, Smith R, Ellis B. 2013. Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany 64: 11-31.

Schweingruber FH. 1993. Trees and wood in dendrochronology. Berlin & Heidelberg, Germany: Springer.

Słupianek A, Dolzblasz A, Sokołowska K. 2021. Xylem parenchyma - role and relevance in wood functioning in trees. Plants 10: 1247.

Suzuki M, Kiyotsugu Y, Suzuki H. 1996. Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA Journal 17: 431-444.

Szatniewska J, Zavadilova I, Nezval O, Krejza J, Petrik P, Čater M, Stojanović M. 2022. Species-specific growth and transpiration response to changing environmental conditions in floodplain forest. Forest Ecology and Management 516: 120248.

Takahashi S, Okada N, Nobuchi T. 2013. Relationship between the timing of vessel formation and leaf phenology in ten ring-porous and diffuse-porous deciduous tree species. Ecological Research 28: 615-624.

Turner R. 2022. deldir: Delaunay triangulation and Dirichlet (Voronoi) tessellation. [WWW document] URL https://CRAN.R-project.org/package=deldir [accessed 23 October 2021].

Valdovinos-Ayala J, Robles C, Fickle JC, Pérez-de-Lis G, Pratt RB, Jacobsen AL. 2022. Seasonal patterns of increases in stem girth, vessel development, and hydraulic function in deciduous tree species. Annals of Botany. 130: 355-365.

Wickham H. 2007. Reshaping data with the reshape package. Journal of Statistical Software 21: i12.

Wickham H, François R, Henry L, Müller K. 2022. dplyr: a grammar of data manipulation. [WWW document] URL https://dplyr.tidyverse.org/ [accessed 1 June 2020].

Wodzicki TJ. 1971. Mechanism of xylem differentiation in Pinus silvestris L. Journal of Experimental Botany 22: 670-687.

Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society 73: 3-36.

Woodcock DW. 1989. Distribution of vessel diameter in ring-porous trees. Aliso: A Journal of Systematic and Floristic Botany 12: 287-293.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Quantitative vessel mapping on increment cores: a critical comparison of image acquisition methods

. 2025 ; 16 () : 1502237. [epub] 20250212

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...