Infusing pancreatic islets into the portal vein currently represents the preferred approach for islet transplantation, despite considerable loss of islet mass almost immediately after implantation. Therefore, approaches that obviate direct intravascular placement are urgently needed. A promising candidate for extrahepatic placement is the omentum. We aimed to develop an extracellular matrix skeleton from the native pancreas that could provide a microenvironment for islet survival in an omental flap. To that end, we compared different decellularization approaches, including perfusion through the pancreatic duct, gastric artery, portal vein, and a novel method through the splenic vein. Decellularized skeletons were compared for size, residual DNA content, protein composition, histology, electron microscopy, and MR imaging after repopulation with isolated islets. Compared to the other approaches, pancreatic perfusion via the splenic vein provided smaller extracellular matrix skeletons, which facilitated transplantation into the omentum, without compromising other requirements, such as the complete depletion of cellular components and the preservation of pancreatic extracellular proteins. Repeated MR imaging of iron-oxide-labeled pancreatic islets showed that islets maintained their position in vivo for 49 days. Advanced environmental scanning electron microscopy demonstrated that islets remained integrated with the pancreatic skeleton. This novel approach represents a proof-of-concept for long-term transplantation experiments.
- Publication type
- Journal Article MeSH
Frozen aqueous solutions are an important subject of study in numerous scientific branches including the pharmaceutical and food industry, atmospheric chemistry, biology, and medicine. Here, we present an advanced environmental scanning electron microscope methodology for research of ice samples at environmentally relevant subzero temperatures, thus under conditions in which it is extremely challenging to maintain the thermodynamic equilibrium of the specimen. The methodology opens possibilities to observe intact ice samples at close to natural conditions. Based on the results of ANSYS software simulations of the surface temperature of a frozen sample, and knowledge of the partial pressure of water vapor in the gas mixture near the sample, we monitored static ice samples over several minutes. We also discuss possible artifacts that can arise from unwanted surface ice formation on, or ice sublimation from, the sample, as a consequence of shifting conditions away from thermodynamic equilibrium in the specimen chamber. To demonstrate the applicability of the methodology, we characterized how the true morphology of ice spheres containing salt changed upon aging and the morphology of ice spheres containing bovine serum albumin. After combining static observations with the dynamic process of ice sublimation from the sample, we can attain images with nanometer resolution.
The impact of a natural wetland ("dambo" in Zambia) on neutral mine drainage at Luanshya in the Zambian Copperbelt has been investigated during an intermediate discharge period (July) using a multi-method characterization of solid phase samples, sequential extraction analysis, X-ray diffraction, Mössbauer spectroscopy, and scanning electron microscopy combined with water analyses, isotopic analyses, and geochemical modeling. In the wetland, the principal identified solid phases in sediments were carbonates, gypsum, and ferric oxyhydroxides. A significant portion of the ochres was present as insoluble hematite. Mine drainage pH values decrease, and log [Formula: see text] values increase after inflow of water into the wetland; dissolved and suspended concentrations of Fe, Mn, Cu, and Co also decrease. Based on speciation calculations, there is no precipitation of secondary Cu and Co minerals in the period of sampling, but it can occur later in dry period when the flow rate is reduced. Concentrations of sulfate decrease, and values of δ34S(SO4) in the wetland increase in parallel, suggesting sulfate reduction is occurring. In more advanced dry period, the discharge in mine drainage stream is probably much lower and water can reach supersaturation with respect to minerals such as gypsum, which has been found in sediments. Wetlands have a positive impact on mine drainage water quality due to the removal of metals by adsorption, co-precipitation, and filtration of colloids. However, there can also be a rebound of contamination by seepage inflow downstream from the wetland. Ongoing climate change with extreme hydrologic events may enhance differences between dry and rainy seasons with resulting faster mobilization of contaminants.
- MeSH
- Adsorption MeSH
- Chemical Precipitation MeSH
- Water Pollutants, Chemical analysis MeSH
- X-Ray Diffraction MeSH
- Filtration MeSH
- Mining * MeSH
- Climate Change * MeSH
- Colloids MeSH
- Minerals chemistry MeSH
- Wetlands * MeSH
- Environmental Monitoring * methods MeSH
- Wastewater chemistry MeSH
- Weather MeSH
- Seasons MeSH
- Calcium Sulfate chemistry MeSH
- Sulfates analysis MeSH
- Metals, Heavy analysis MeSH
- Carbonates chemistry MeSH
- Ferric Compounds MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Zambia MeSH
This study was performed to test the feasibility of several decontamination methods for remediating heavily contaminated groundwater in a real contaminated locality in the Czech Republic, where a pharmaceuticals plant has been in operation for more than 80 years. The site is polluted mainly by recalcitrant psychopharmaceuticals and monoaromatic hydrocarbons, such as benzene, toluene and chlorobenzene. For this purpose, an advanced oxidation technique employing UV radiation with hydrogen peroxide dosing was employed, in combination with simple aeration pretreatment. The results showed that UV/H2O2 was an efficient and necessary step for degradation of the pharmaceuticals; however, the monoaromatics were already removed during the aeration step. Characterization of the removal mechanisms participating in the aeration revealed that volatilization, co-precipitation and biodegradation contributed to the process. These findings were supported by bacterial metabolite analyses, phospholipid fatty acid analysis, qPCR of representatives of the degradative genes and detailed characterization of the formed precipitate using Mössbauer spectroscopy and scanning electron microscopy. Further tests were carried out in a continuous arrangement directly connected to the wells already present in the locality. The results documented the feasibility of combination of the photo-reactor employing UV/H2O2 together with aeration pretreatment for 4 months, where the overall decontamination efficiency ranged from 72% to 99% of the pharmaceuticals. We recorded even better results for the monoaromatics decontamination except for one month, when we encountered some technical problems with the aeration pump. This demonstrated the necessity of using the aeration step.
- MeSH
- Benzene MeSH
- Biodegradation, Environmental MeSH
- Water Pollutants, Chemical * MeSH
- Chlorobenzenes MeSH
- Pharmaceutical Preparations MeSH
- Hydrogen Peroxide MeSH
- Groundwater * MeSH
- Toluene MeSH
- Environmental Pollution prevention & control MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
We report on new magnetic bimetallic Fe-Ag nanoparticles (NPs) which exhibit significant antibacterial and antifungal activities against a variety of microorganisms including disease causing pathogens, as well as prolonged action and high efficiency of phosphorus removal. The preparation of these multifunctional hybrids, based on direct reduction of silver ions by commercially available zerovalent iron nanoparticles (nZVI) is fast, simple, feasible in a large scale with a controllable silver NP content and size. The microscopic observations (transmission electron microscopy, scanning electron microscopy/electron diffraction spectroscopy) and phase analyses (X-ray diffraction, Mössbauer spectroscopy) reveal the formation of Fe₃O₄/γ-FeOOH double shell on a "redox" active nZVI surface. This shell is probably responsible for high stability of magnetic bimetallic Fe-Ag NPs during storage in air. Silver NPs, ranging between 10 and 30 nm depending on the initial concentration of AgNO₃, are firmly bound to Fe NPs, which prevents their release even during a long-term sonication. Taking into account the possibility of easy magnetic separation of the novel bimetallic Fe-Ag NPs, they represent a highly promising material for advanced antimicrobial and reductive water treatment technologies.
- MeSH
- Anti-Infective Agents chemistry pharmacology MeSH
- X-Ray Diffraction MeSH
- Phosphorus isolation & purification MeSH
- Metal Nanoparticles * MeSH
- Magnetics * MeSH
- Microbial Sensitivity Tests MeSH
- Microscopy, Electron, Scanning MeSH
- Silver chemistry MeSH
- Microscopy, Electron, Transmission MeSH
- Iron chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH