Bioluminescence Imaging In Vivo Confirms the Viability of Pancreatic Islets Transplanted into the Greater Omentum
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33599904
DOI
10.1007/s11307-021-01588-y
PII: 10.1007/s11307-021-01588-y
Knihovny.cz E-zdroje
- Klíčová slova
- Bioluminescence, Omentum, Pancreatic islet transplantation, Type 1 diabetes,
- MeSH
- krysa rodu Rattus MeSH
- Langerhansovy ostrůvky diagnostické zobrazování MeSH
- luminiscenční měření metody MeSH
- molekulární zobrazování metody MeSH
- omentum diagnostické zobrazování MeSH
- přežívání štěpu fyziologie MeSH
- transplantace Langerhansových ostrůvků * MeSH
- viabilita buněk fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: The liver is the most widely used site for pancreatic islet transplantation. However, several site-specific limitations impair functional success, with instant blood-mediated inflammatory reaction being the most important. The aim of this study was to develop a preclinical model for placement of the islet graft into a highly vascularized omental flap using a fibrin gel. For this purpose, we tested islet viability by bioluminescence imaging (BLI). PROCEDURES: Pancreatic islets were isolated from luciferase-positive and luciferase-negative rats, mixed at a 1:1 ratio, placed into a plasma-thrombin bioscaffold, and transplanted in standard (10 pancreatic islets/g wt; n = 10) and marginal (4 pancreatic islets/g wt; n = 7) numbers into the omentums of syngeneic diabetic animals. For the control, 4 pancreatic islets/g were transplanted into the liver using the standard procedure (n = 7). Graft viability was tested by bioluminescence at days 14, 30, 60, and 90 post transplant. Glucose levels, intravenous glucose tolerance, and serum C-peptide were assessed regularly. RESULTS: Nonfasting glucose levels < 10 mmol/l were restored in all animals. While islet viability in the omentum was clearly detected by stable luminescence signals throughout the whole study period, no signals were detected from islets transplanted into the liver. The bioluminescence signals were highly correlated with stimulated C-peptide levels detected at 80 days post transplant. Glucose tolerance did not differ among the 3 groups. CONCLUSIONS: We successfully tested a preclinical model of islet transplantation into the greater omentum using a biocompatible scaffold made from autologous plasma and human thrombin. Both standard and marginal pancreatic islet numbers in a gel-form bioscaffold placed in the omentum restored glucose homeostasis in recipients with diabetes. Bioluminescence was shown promising as a direct proof of islet viability.
1st Faculty of Medicine Charles University Prague Czech Republic
Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Rickels MR, Robertson RP (2019) Pancreatic islet transplantation in humans: recent progress and future directions. Endocr Rev 40:631–668 DOI
Wilhelm JJ, Balamurugan AN, Bellin MD et al (2021) Progress in individualizing autologous islet isolation techniques for pediatric islet autotransplantation after total pancreatectomy in children for chronic pancreatitis. Am J Transplant 21(2):776–786
London NJ, Donnelly PK (1994) Techniques of pancreas and islet transplantation. Baillieres Clin Gastroenterol 8:517–532 DOI
Johansson H, Lukinius A, Moberg L, Lundgren T, Berne C, Foss A, Felldin M, Kallen R, Salmela K, Tibell A, Tufveson G, Ekdahl KN, Elgue G, Korsgren O, Nilsson B (2005) Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 54:1755–1762 DOI
Delaune V, Berney T, Lacotte S, Toso C (2017) Intraportal islet transplantation: the impact of the liver microenvironment. Transpl Int 30:227–238 DOI
Carlsson PO, Palm F, Andersson A, Liss P (2001) Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 50:489–495 DOI
Shapiro AM, Gallant HL, Hao EG et al (2005) The portal immunosuppressive storm: relevance to islet transplantation? Ther Drug Monit 27:35–37 DOI
Jirak D, Kriz J, Herynek V et al (2004) MRI of transplanted pancreatic islets. Magn Reson Med 52:1228–1233 DOI
Speier S, Nyqvist D, Cabrera O, Yu J, Molano RD, Pileggi A, Moede T, Köhler M, Wilbertz J, Leibiger B, Ricordi C, Leibiger IB, Caicedo A, Berggren PO (2008) Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med 14:574–578 DOI
Saudek F, Jirak D, Girman P et al (2010) Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation 90:1602–1606 DOI
Cantarelli E, Piemonti L (2011) Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep 11:364–374 DOI
Rajab A (2010) Islet transplantation: alternative sites. Curr Diab Rep 10:332–337 DOI
Bonner-Weir S, Orci L (1982) New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 31:883–889 DOI
Addison P, Fatakhova K, Rodriguez Rilo HL (2020) Considerations for an alternative site of islet cell transplantation. J Diabetes Sci Technol 14:338–344 DOI
Yasunami Y, Lacy PE, Finke EH (1983) A new site for islet transplantation--a peritoneal-omental pouch. Transplantation 36:181–182 DOI
Ao Z, Matayoshi K, Lakey JR, Rajotte RV, Warnock GL (1993) Survival and function of purified islets in the omental pouch site of outbred dogs. Transplantation 56:524–529 DOI
Kin T, Korbutt GS, Rajotte RV (2003) Survival and metabolic function of syngeneic rat islet grafts transplanted in the omental pouch. Am J Transplant 3:281–285 DOI
Stice MJ, Dunn TB, Bellin MD, Skube ME, Beilman GJ (2018) Omental Pouch Technique for Combined Site Islet Autotransplantation Following Total Pancreatectomy. Cell Transplant 27:1561–1568 DOI
Espes D, Lau J, Quach M, Ullsten S, Christoffersson G, Carlsson PO (2016) Rapid restoration of vascularity and oxygenation in mouse and human islets transplanted to omentum may contribute to their superior function compared to intraportally transplanted islets. Am J Transplant 16:3246–3254 DOI
Jacobs-Tulleneers-Thevissen D, Bartholomeus K, Suenens K, Vermeulen I, Ling Z, Hellemans KH, in’t Veld P, Pipeleers-Marichal M, Pipeleers D (2010) Human islet cell implants in a nude rat model of diabetes survive better in omentum than in liver with a positive influence of beta cell number and purity. Diabetologia 53:1690–1699 DOI
Bartholomeus K, Jacobs-Tulleneers-Thevissen D, Shouyue S, Suenens K, in’t Veld PA, Pipeleers-Marichal M, Pipeleers DG, Hellemans K (2013) Omentum is better site than kidney capsule for growth, differentiation, and vascularization of immature porcine beta-cell implants in immunodeficient rats. Transplantation 96:1026–1033 DOI
Pellicciaro M, Vella I, Lanzoni G, Tisone G, Ricordi C (2017) The greater omentum as a site for pancreatic islet transplantation. CellR4 5:1–12
Baidal D, Ricordi C, Berman D et al (2018) Long-Term Function of Islet Allografts Transplanted on the Omentum Using a Biological Scaffold. Diabetes 67:140-OR DOI
Berman DM, O'Neil JJ, Coffey LC et al (2009) Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am J Transplant 9:91–104 DOI
Berman DM, Molano RD, Fotino C, Ulissi U, Gimeno J, Mendez AJ, Kenyon NM, Kenyon NS, Andrews DM, Ricordi C, Pileggi A (2016) Bioengineering the endocrine pancreas: intraomental islet transplantation within a biologic resorbable scaffold. Diabetes 65:1350–1361 DOI
Baidal DA, Ricordi C, Berman DM, Alvarez A, Padilla N, Ciancio G, Linetsky E, Pileggi A, Alejandro R (2017) Bioengineering of an intraabdominal endocrine pancreas. N Engl J Med 376:1887–1889 DOI
Eriksson O, Selvaraju R, Eich T, Willny M, Brismar TB, Carlbom L, Ahlström H, Tufvesson G, Lundgren T, Korsgren O (2016) Positron emission tomography to assess the outcome of intraportal islet transplantation. Diabetes 65:2482–2489 DOI
Fowler M, Virostko J, Chen Z, Poffenberger G, Radhika A, Brissova M, Shiota M, Nicholson WE, Shi Y, Hirshberg B, Harlan DM, Jansen ED, Powers AC (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation 79:768–776 DOI
Jirak D, Kriz J, Strzelecki M, Yang J, Hasilo C, White DJ, Foster PJ (2009) Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. MAGMA 22:257–265 DOI
Kim JE, Kalimuthu S, Ahn BC (2015) In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 49:3–10 DOI
Virostko J, Radhika A, Poffenberger G, Chen Z, Brissova M, Gilchrist J, Coleman B, Gannon M, Jansen ED, Powers AC (2010) Bioluminescence imaging in mouse models quantifies beta cell mass in the pancreas and after islet transplantation. Mol Imaging Biol 12:42–53 DOI
Lu Y, Dang H, Middleton B, Zhang Z, Washburn L, Campbell-Thompson M, Atkinson MA, Gambhir SS, Tian J, Kaufman DL (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther 9:428–435 DOI
Chen X, Zhang X, Larson CS, Baker MS, Kaufman DB (2006) In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation 81:1421–1427 DOI
Galisova A, Herynek V, Swider E et al (2019) A trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, Fluorescence, and bioluminescence imaging. Mol Imaging Biol 21:454–464 DOI
Kakabadze Z, Gupta S, Pileggi A, Molano RD, Ricordi C, Shatirishvili G, Loladze G, Mardaleishvili K, Kakabadze M, Berishvili E (2013) Correction of diabetes mellitus by transplanting minimal mass of syngeneic islets into vascularized small intestinal segment. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 13:2550–2557 DOI
Papas KK, Colton CK, Qipo A, Wu H, Nelson RA, Hering BJ, Weir GC, Koulmanda M (2010) Prediction of marginal mass required for successful islet transplantation. J Investig Surg 23:28–34 DOI
Pepper AR, Pawlick R, Gala-Lopez B, MacGillivary A, Mazzuca DM, White DJG, Toleikis PM, Shapiro AMJ (2015) Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation 99:2294–2300 DOI
Girman P, Kriz J, Balaz P (2015) Rat experimental transplantation surgery: a practical guide. Springer International Publishing, Cham
Montaña E, Bonner-Weir S, Weir GC (1993) Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin diabetic C57BL/6 mice. J Clin Invest. 91(3):780–787 DOI
Virostko J, Chen Z, Fowler M, Poffenberger G, Powers AC, Jansen ED (2004) Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants. Mol Imaging 3:333–342 DOI
Chen X, Kaufman DB (2009) Bioluminescent imaging of transplanted islets. Methods Mol Biol 574:75–85 DOI