Effects of Charged Surface on Electrochemical Sensitivity to Protein Dimerization

. 2025 Nov 11 ; 97 (44) : 24787-24794. [epub] 20251031

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41170707

Protein dimerization is a crucial biological process in which proteins interact into homo- or heterodimers to form a functional assembly. Understanding and modulating the molecular mechanisms of protein dimerization and their function represent the cutting edge of research and provide multiple entries for biomedical applications. Label-free methods sensitive to homodimer formation are still required. Electrochemical methods are sensitive to small structural changes due to the presence of a surface and polarization to high negative/positive potentials, where partial denaturation/unfolding can appear. Since the dimeric structure is usually more flexible, the electric field effects induce more salient structural changes close to the electrode surface, accompanied by higher chronopotentiometric/voltammetric responses. Serum albumin and anterior gradient receptor-2 were studied as model homodimeric proteins.

Zobrazit více v PubMed

Dang D. T.. Molecular Approaches to Protein Dimerization: Opportunities for Supramolecular Chemistry. Front. Chem. 2022;10:829312. doi: 10.3389/fchem.2022.829312. PubMed DOI PMC

Marianayagam N. J., Sunde M., Matthews J. M.. The power of two: protein dimerization in biology. Trends Biochem. Sci. 2004;29(11):618–625. doi: 10.1016/j.tibs.2004.09.006. PubMed DOI

Mei G., Di Venere A., Rosato N., Finazzi-Agrò A.. The importance of being dimeric. FEBS J. 2005;272(1):16–27. doi: 10.1111/j.1432-1033.2004.04407.x. PubMed DOI

Hadden M. K., Blagg B. S. J.. Dimeric Approaches to Anti-Cancer Chemotherapeutics. Anticancer Agents Med. Chem. 2008;8(7):807–816. doi: 10.2174/187152008785914743. PubMed DOI PMC

Heckmeier P. J., Agam G., Teese M. G., Hoyer M., Stehle R., Lamb D. C., Langosch D.. Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy. Biophys. J. 2020;119(1):99–114. doi: 10.1016/j.bpj.2020.05.025. PubMed DOI PMC

Lahiri J., Sandhu S., Levine B. G., Dantus M.. Human Serum Albumin Dimerization Enhances the S2 Emission of Bound Cyanine IR806. J. Phys. Chem. Lett. 2022;13(7):1825–1832. doi: 10.1021/acs.jpclett.1c03735. PubMed DOI

Mirdha L., Chakraborty H.. Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases. Eur. Biophys. J. 2021;50(5):671–685. doi: 10.1007/s00249-021-01505-9. PubMed DOI

Ansari M. Z., Kumar A., Ahari D., Priyadarshi A., Lolla P., Bhandari R., Swaminathan R.. Protein charge transfer absorption spectra: an intrinsic probe to monitor structural and oligomeric transitions in proteins. Faraday Discuss. 2018;207(0):91–113. doi: 10.1039/C7FD00194K. PubMed DOI

Bhattacharya A., Prajapati R., Chatterjee S., Mukherjee T. K.. Concentration-Dependent Reversible Self-Oligomerization of Serum Albumins through Intermolecular β-Sheet Formation. Langmuir. 2014;30(49):14894–14904. doi: 10.1021/la5034959. PubMed DOI

Kumari N., Yadav S.. Modulation of protein oligomerization: An overview. Prog. Biophys. Mol. Biol. 2019;149:99–113. doi: 10.1016/j.pbiomolbio.2019.03.003. PubMed DOI

Siebenmorgen T., Zacharias M.. Computational prediction of protein–protein binding affinities. WIREs Comput. Mol. Sci. 2020;10(3):e1448. doi: 10.1002/wcms.1448. DOI

Ostatná V., Cernocká H., Galicová T., Hason S.. Electrochemical analysis of proteins important in cancer: Behavior of anterior gradient receptors, p53 protein and their complexes at charged surfaces. Curr. Opin. Electrochem. 2023;39:101269. doi: 10.1016/j.coelec.2023.101269. DOI

Palecek E., Tkac J., Bartosik M., Bertok T., Ostatna V., Palecek J.. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem. Rev. 2015;115(5):2045–2108. doi: 10.1021/cr500279h. PubMed DOI PMC

Bartosik, M. ; Doneux, T. ; Pechan, Z. ; Ostatna, V. ; Palecek, E. . Electrochemical Detection of Proteins. Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd, 2009.

Dorcak V., Bartosik M., Ostatna V., Palecek E., Heyrovsky M.. Interaction of biomacromolecules with surfaces viewed by electrochemical methods. Electroanalysis. 2009;21(3–5):662–665. doi: 10.1002/elan.200804433. DOI

Ostatna V., West R. M.. Effects of ex situ chronopotentiometric analysis on stability of bovine serum albumin on mercury electrodes. J. Electroanal. Chem. 2020;860:113884. doi: 10.1016/j.jelechem.2020.113884. DOI

Ben-Nissan G., Sharon M.. Capturing Protein Structural Kinetics by Mass Spectrometry. Chem. Soc. Rev. 2011;40:3627–3637. doi: 10.1039/c1cs15052a. PubMed DOI

Rimankova L., Cernocka H., Tihlarikova E., Nedela V., Ostatna V.. Chronopotentiometric sensing of native, oligomeric, denatured and aggregated serum albumin at charged surfaces. Bioelectrochemistry. 2022;145(1–2):108100. doi: 10.1016/j.bioelechem.2022.108100. PubMed DOI

Palecek E., Ostatná V., Cernocká H., Joerger A. C., Fersht A. R.. Electrocatalytic Monitoring of Metal Binding and Mutation-Induced Conformational Changes in p53 at Picomole Level. J. Am. Chem. Soc. 2011;133(18):7190–7196. doi: 10.1021/ja201006s. PubMed DOI

Cernocka H., Fojt L., Adamik M., Brazdova M., Palecek E., Ostatna V.. Interfacial properties of p53-DNA complexes containing various recognition elements. J. Electroanal. Chem. 2019;848:113300. doi: 10.1016/j.jelechem.2019.113300. DOI

Kasalova V., Hrstka R., Hernychova L., Coufalova D., Ostatna V.. Chronopotentiometric sensing of anterior gradient 2 protein. Electrochim. Acta. 2017;240:250–257. doi: 10.1016/j.electacta.2017.04.090. DOI

Palecek E., Ostatna V., Masarik M., Bertoncini C. W., Jovin T. M.. Changes in interfacial properties of alpha-synuclein preceding its aggregation. Analyst. 2008;133(1):76–84. doi: 10.1039/B712812F. PubMed DOI

Cagir B., Gelmann A., Park J., Fava T., Tankelevitch A., Bittner E. W., Weaver E. J., Palazzo J. P., Weinberg D., Fry R. D.. et al. Guanylyl cyclase C messenger RNA is a biomarker for recurrent stage II colorectal cancer. Ann. Int. Med. 1999;131(11):805–812. doi: 10.7326/0003-4819-131-11-199912070-00002. PubMed DOI

Cernocka H., Izadi N., Ostatna V., Strmecki S.. BSA-Polysaccharide Interactions at Negatively Charged Electrode Surface. Effects of Current Density. Electroanalysis. 2019;31(10):2007–2011. doi: 10.1002/elan.201900231. DOI

Cernocka H., Ostatna V., Palecek E.. Fast-scan cyclic voltammetry with thiol-modified mercury electrodes distinguishes native from denatured BSA. Electrochem. Commun. 2015;61:114–116. doi: 10.1016/j.elecom.2015.10.017. DOI

Ostatna V., Cernocka H., Palecek E.. Protein structure-sensitive electrocatalysis at DTT-modified electrodes. J. Am. Chem. Soc. 2010;132(27):9408–9413. doi: 10.1021/ja102427y. PubMed DOI

Ostatna V., Dogan B., Uslu B., Ozkan S., Palecek E.. Native and denatured bovine serum albumin. D.c. polarography, stripping voltammetry and constant current chronopotentiometry. J. Electroanal. Chem. 2006;593:172–178. doi: 10.1016/j.jelechem.2006.03.037. DOI

Peters T., Stewart A. J.. Albumin research in the 21st century Preface. Biochim. Biophys. Acta Gen. Subj. 2013;1830(12):5351–5353. doi: 10.1016/j.bbagen.2013.05.012. PubMed DOI

Peters, T. All About Albumin; Academic Press, 1995. 10.1016/B978-012552110-9/50004-0 DOI

Naldi M., Baldassarre M., Nati M., Laggetta M., Giannone F. A., Domenicali M., Bernardi M., Caraceni P., Bertucci C.. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases. J. Pharm. Biomed. Anal. 2015;112:169–175. doi: 10.1016/j.jpba.2014.12.001. PubMed DOI

Ferrer M. L., Duchowicz R., Carrasco B., de la Torre J. G., Acuña A. U.. The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study. Biophys. J. 2001;80(5):2422–2430. doi: 10.1016/S0006-3495(01)76211-X. PubMed DOI PMC

Murray E., McKenna E. O., Burch L. R., Dillon J., Langridge-Smith P., Kolch W., Pitt A., Hupp T. R.. Microarray-formatted clinical biomarker assay development using peptide aptamers to anterior gradient-2. Biochemistry. 2007;46(48):13742–13751. doi: 10.1021/bi7008739. PubMed DOI

Ostatná V., Vargová V., Hrstka R., Ďurech M., Vojtěšek B., Paleček E.. Effect of His6-tagging of anterior gradient 2 protein on its electro-oxidation. Electrochim. Acta. 2014;150(0):218–222. doi: 10.1016/j.electacta.2014.10.125. DOI

Vetráková L., Nedela V., Runstuk J., Heger D.. The morphology of ice and liquid brine in an environmental scanning electron microscope: a study of the freezing methods. Cryosphere. 2019;13(9):2385–2405. doi: 10.5194/tc-13-2385-2019. DOI

Dordevic B., Nedela V., Tihlaríková E., Trojan V., Havel L.. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI

Tihlaříková E., Neděla V., Đorđević B.. In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9(1):2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC

Huang L., Kou X., Zheng W., Xiao X., Li C., Liu M., Liu Y., Jiang L.. 05SAR-PAGE: Separation of protein dimerization and modification using a gel with 0.05% sarkosyl. Anal. Chim. Acta. 2020;1101:193–198. doi: 10.1016/j.aca.2019.12.013. PubMed DOI

Staronová T., Holcáková J., Vonka P., Hrstka R., Ostatná V.. Impact of galectin-1’s redox state on its lectin activity and monomer-dimer equilibrium. Focusing on oxidized Gal-1. Int. J. Biol. Macromol. 2025;295:139452. doi: 10.1016/j.ijbiomac.2025.139452. PubMed DOI

Cho M., Cummings R. D.. Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis. Biochemistry. 1996;35(40):13081–13088. doi: 10.1021/bi961181d. PubMed DOI

Rabe M., Verdes D., Seeger S.. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011;162(1):87–106. doi: 10.1016/j.cis.2010.12.007. PubMed DOI

Yamasaki M., Yano H., Aoki K.. Differential scanning calorimetric studies on bovine serum albumin: I. Effects of pH and ionic strength. Int. J. Biol. Macromol. 1990;12(4):263–268. doi: 10.1016/0141-8130(90)90007-W. PubMed DOI

Ostatna V., Cernocka H., Kurzatkowska K., Palecek E.. Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Anal. Chim. Acta. 2012;735:31–36. doi: 10.1016/j.aca.2012.05.012. PubMed DOI

Vacek J., Zatloukalova M., Dorcák V., Cifra M., Futera Z., Ostatná V.. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Microchim. Acta. 2023;190(11):442. doi: 10.1007/s00604-023-05999-2. PubMed DOI PMC

Harris G., Bradshaw M. L., Halsall D. J., Scott D. J., Unwin R. J., Norden A. G. W.. Is there reversible dimerization of albumin in blood plasma? And does it matter? Exp. Physiol. 2024;109(10):1663–1671. doi: 10.1113/EP092012. PubMed DOI PMC

Cernocka H., Vonka P., Kasalova V., Sommerova L., Vandova V., Hrstka R., Ostatna V.. AGR2-AGR3 hetero-oligomeric complexes: Identification and characterization. Bioelectrochemistry. 2021;140:107808. doi: 10.1016/j.bioelechem.2021.107808. PubMed DOI

Takada S., Gallo S., Silva S., Tanaka H., Pincheira O., Zuniga J., Villarroel M., Hidalgo X., Melo-Tanner J., Suzuki H.. et al. A Novel AGR2 Variant Causing Aberrant Monomer-Dimer Equilibrium Leading to Severe Respiratory and Digestive Symptoms. J. Clin. Immunol. 2025;45(1):55. doi: 10.1007/s10875-024-01847-x. PubMed DOI PMC

Clarke D. J., Murray E., Faktor J., Mohtar A., Vojtesek B., MacKay C. L., Smith P. L., Hupp T. R.. Mass spectrometry analysis of the oxidation states of the pro-oncogenic protein anterior gradient-2 reveals covalent dimerization via an intermolecular disulphide bond. Biochim. Biophys. Acta: Proteins Proteomics. 2016;1864(5):551–561. doi: 10.1016/j.bbapap.2016.02.011. PubMed DOI

Brychtova V., Mohtar A., Vojtesek B., Hupp T. R.. Mechanisms of anterior gradient-2 regulation and function in cancer. Semin. Cancer Biol. 2015;33:16–24. doi: 10.1016/j.semcancer.2015.04.005. PubMed DOI

Maurel M., Obacz J., Avril T., Ding Y. P., Papadodima O., Treton X., Daniel F., Pilalis E., Hörberg J., Hou W.. et al. Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation. EMBO Mol. Med. 2019;11(6):e10120. doi: 10.15252/emmm.201810120. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...