Effects of Charged Surface on Electrochemical Sensitivity to Protein Dimerization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41170707
PubMed Central
PMC12613150
DOI
10.1021/acs.analchem.5c05281
Knihovny.cz E-zdroje
- MeSH
- elektrochemické techniky * metody MeSH
- elektrody MeSH
- lidé MeSH
- multimerizace proteinu * MeSH
- povrchové vlastnosti MeSH
- sérový albumin * chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- sérový albumin * MeSH
Protein dimerization is a crucial biological process in which proteins interact into homo- or heterodimers to form a functional assembly. Understanding and modulating the molecular mechanisms of protein dimerization and their function represent the cutting edge of research and provide multiple entries for biomedical applications. Label-free methods sensitive to homodimer formation are still required. Electrochemical methods are sensitive to small structural changes due to the presence of a surface and polarization to high negative/positive potentials, where partial denaturation/unfolding can appear. Since the dimeric structure is usually more flexible, the electric field effects induce more salient structural changes close to the electrode surface, accompanied by higher chronopotentiometric/voltammetric responses. Serum albumin and anterior gradient receptor-2 were studied as model homodimeric proteins.
Zobrazit více v PubMed
Dang D. T.. Molecular Approaches to Protein Dimerization: Opportunities for Supramolecular Chemistry. Front. Chem. 2022;10:829312. doi: 10.3389/fchem.2022.829312. PubMed DOI PMC
Marianayagam N. J., Sunde M., Matthews J. M.. The power of two: protein dimerization in biology. Trends Biochem. Sci. 2004;29(11):618–625. doi: 10.1016/j.tibs.2004.09.006. PubMed DOI
Mei G., Di Venere A., Rosato N., Finazzi-Agrò A.. The importance of being dimeric. FEBS J. 2005;272(1):16–27. doi: 10.1111/j.1432-1033.2004.04407.x. PubMed DOI
Hadden M. K., Blagg B. S. J.. Dimeric Approaches to Anti-Cancer Chemotherapeutics. Anticancer Agents Med. Chem. 2008;8(7):807–816. doi: 10.2174/187152008785914743. PubMed DOI PMC
Heckmeier P. J., Agam G., Teese M. G., Hoyer M., Stehle R., Lamb D. C., Langosch D.. Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy. Biophys. J. 2020;119(1):99–114. doi: 10.1016/j.bpj.2020.05.025. PubMed DOI PMC
Lahiri J., Sandhu S., Levine B. G., Dantus M.. Human Serum Albumin Dimerization Enhances the S2 Emission of Bound Cyanine IR806. J. Phys. Chem. Lett. 2022;13(7):1825–1832. doi: 10.1021/acs.jpclett.1c03735. PubMed DOI
Mirdha L., Chakraborty H.. Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases. Eur. Biophys. J. 2021;50(5):671–685. doi: 10.1007/s00249-021-01505-9. PubMed DOI
Ansari M. Z., Kumar A., Ahari D., Priyadarshi A., Lolla P., Bhandari R., Swaminathan R.. Protein charge transfer absorption spectra: an intrinsic probe to monitor structural and oligomeric transitions in proteins. Faraday Discuss. 2018;207(0):91–113. doi: 10.1039/C7FD00194K. PubMed DOI
Bhattacharya A., Prajapati R., Chatterjee S., Mukherjee T. K.. Concentration-Dependent Reversible Self-Oligomerization of Serum Albumins through Intermolecular β-Sheet Formation. Langmuir. 2014;30(49):14894–14904. doi: 10.1021/la5034959. PubMed DOI
Kumari N., Yadav S.. Modulation of protein oligomerization: An overview. Prog. Biophys. Mol. Biol. 2019;149:99–113. doi: 10.1016/j.pbiomolbio.2019.03.003. PubMed DOI
Siebenmorgen T., Zacharias M.. Computational prediction of protein–protein binding affinities. WIREs Comput. Mol. Sci. 2020;10(3):e1448. doi: 10.1002/wcms.1448. DOI
Ostatná V., Cernocká H., Galicová T., Hason S.. Electrochemical analysis of proteins important in cancer: Behavior of anterior gradient receptors, p53 protein and their complexes at charged surfaces. Curr. Opin. Electrochem. 2023;39:101269. doi: 10.1016/j.coelec.2023.101269. DOI
Palecek E., Tkac J., Bartosik M., Bertok T., Ostatna V., Palecek J.. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem. Rev. 2015;115(5):2045–2108. doi: 10.1021/cr500279h. PubMed DOI PMC
Bartosik, M. ; Doneux, T. ; Pechan, Z. ; Ostatna, V. ; Palecek, E. . Electrochemical Detection of Proteins. Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd, 2009.
Dorcak V., Bartosik M., Ostatna V., Palecek E., Heyrovsky M.. Interaction of biomacromolecules with surfaces viewed by electrochemical methods. Electroanalysis. 2009;21(3–5):662–665. doi: 10.1002/elan.200804433. DOI
Ostatna V., West R. M.. Effects of ex situ chronopotentiometric analysis on stability of bovine serum albumin on mercury electrodes. J. Electroanal. Chem. 2020;860:113884. doi: 10.1016/j.jelechem.2020.113884. DOI
Ben-Nissan G., Sharon M.. Capturing Protein Structural Kinetics by Mass Spectrometry. Chem. Soc. Rev. 2011;40:3627–3637. doi: 10.1039/c1cs15052a. PubMed DOI
Rimankova L., Cernocka H., Tihlarikova E., Nedela V., Ostatna V.. Chronopotentiometric sensing of native, oligomeric, denatured and aggregated serum albumin at charged surfaces. Bioelectrochemistry. 2022;145(1–2):108100. doi: 10.1016/j.bioelechem.2022.108100. PubMed DOI
Palecek E., Ostatná V., Cernocká H., Joerger A. C., Fersht A. R.. Electrocatalytic Monitoring of Metal Binding and Mutation-Induced Conformational Changes in p53 at Picomole Level. J. Am. Chem. Soc. 2011;133(18):7190–7196. doi: 10.1021/ja201006s. PubMed DOI
Cernocka H., Fojt L., Adamik M., Brazdova M., Palecek E., Ostatna V.. Interfacial properties of p53-DNA complexes containing various recognition elements. J. Electroanal. Chem. 2019;848:113300. doi: 10.1016/j.jelechem.2019.113300. DOI
Kasalova V., Hrstka R., Hernychova L., Coufalova D., Ostatna V.. Chronopotentiometric sensing of anterior gradient 2 protein. Electrochim. Acta. 2017;240:250–257. doi: 10.1016/j.electacta.2017.04.090. DOI
Palecek E., Ostatna V., Masarik M., Bertoncini C. W., Jovin T. M.. Changes in interfacial properties of alpha-synuclein preceding its aggregation. Analyst. 2008;133(1):76–84. doi: 10.1039/B712812F. PubMed DOI
Cagir B., Gelmann A., Park J., Fava T., Tankelevitch A., Bittner E. W., Weaver E. J., Palazzo J. P., Weinberg D., Fry R. D.. et al. Guanylyl cyclase C messenger RNA is a biomarker for recurrent stage II colorectal cancer. Ann. Int. Med. 1999;131(11):805–812. doi: 10.7326/0003-4819-131-11-199912070-00002. PubMed DOI
Cernocka H., Izadi N., Ostatna V., Strmecki S.. BSA-Polysaccharide Interactions at Negatively Charged Electrode Surface. Effects of Current Density. Electroanalysis. 2019;31(10):2007–2011. doi: 10.1002/elan.201900231. DOI
Cernocka H., Ostatna V., Palecek E.. Fast-scan cyclic voltammetry with thiol-modified mercury electrodes distinguishes native from denatured BSA. Electrochem. Commun. 2015;61:114–116. doi: 10.1016/j.elecom.2015.10.017. DOI
Ostatna V., Cernocka H., Palecek E.. Protein structure-sensitive electrocatalysis at DTT-modified electrodes. J. Am. Chem. Soc. 2010;132(27):9408–9413. doi: 10.1021/ja102427y. PubMed DOI
Ostatna V., Dogan B., Uslu B., Ozkan S., Palecek E.. Native and denatured bovine serum albumin. D.c. polarography, stripping voltammetry and constant current chronopotentiometry. J. Electroanal. Chem. 2006;593:172–178. doi: 10.1016/j.jelechem.2006.03.037. DOI
Peters T., Stewart A. J.. Albumin research in the 21st century Preface. Biochim. Biophys. Acta Gen. Subj. 2013;1830(12):5351–5353. doi: 10.1016/j.bbagen.2013.05.012. PubMed DOI
Peters, T. All About Albumin; Academic Press, 1995. 10.1016/B978-012552110-9/50004-0 DOI
Naldi M., Baldassarre M., Nati M., Laggetta M., Giannone F. A., Domenicali M., Bernardi M., Caraceni P., Bertucci C.. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases. J. Pharm. Biomed. Anal. 2015;112:169–175. doi: 10.1016/j.jpba.2014.12.001. PubMed DOI
Ferrer M. L., Duchowicz R., Carrasco B., de la Torre J. G., Acuña A. U.. The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study. Biophys. J. 2001;80(5):2422–2430. doi: 10.1016/S0006-3495(01)76211-X. PubMed DOI PMC
Murray E., McKenna E. O., Burch L. R., Dillon J., Langridge-Smith P., Kolch W., Pitt A., Hupp T. R.. Microarray-formatted clinical biomarker assay development using peptide aptamers to anterior gradient-2. Biochemistry. 2007;46(48):13742–13751. doi: 10.1021/bi7008739. PubMed DOI
Ostatná V., Vargová V., Hrstka R., Ďurech M., Vojtěšek B., Paleček E.. Effect of His6-tagging of anterior gradient 2 protein on its electro-oxidation. Electrochim. Acta. 2014;150(0):218–222. doi: 10.1016/j.electacta.2014.10.125. DOI
Vetráková L., Nedela V., Runstuk J., Heger D.. The morphology of ice and liquid brine in an environmental scanning electron microscope: a study of the freezing methods. Cryosphere. 2019;13(9):2385–2405. doi: 10.5194/tc-13-2385-2019. DOI
Dordevic B., Nedela V., Tihlaríková E., Trojan V., Havel L.. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI
Tihlaříková E., Neděla V., Đorđević B.. In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9(1):2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC
Huang L., Kou X., Zheng W., Xiao X., Li C., Liu M., Liu Y., Jiang L.. 05SAR-PAGE: Separation of protein dimerization and modification using a gel with 0.05% sarkosyl. Anal. Chim. Acta. 2020;1101:193–198. doi: 10.1016/j.aca.2019.12.013. PubMed DOI
Staronová T., Holcáková J., Vonka P., Hrstka R., Ostatná V.. Impact of galectin-1’s redox state on its lectin activity and monomer-dimer equilibrium. Focusing on oxidized Gal-1. Int. J. Biol. Macromol. 2025;295:139452. doi: 10.1016/j.ijbiomac.2025.139452. PubMed DOI
Cho M., Cummings R. D.. Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis. Biochemistry. 1996;35(40):13081–13088. doi: 10.1021/bi961181d. PubMed DOI
Rabe M., Verdes D., Seeger S.. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011;162(1):87–106. doi: 10.1016/j.cis.2010.12.007. PubMed DOI
Yamasaki M., Yano H., Aoki K.. Differential scanning calorimetric studies on bovine serum albumin: I. Effects of pH and ionic strength. Int. J. Biol. Macromol. 1990;12(4):263–268. doi: 10.1016/0141-8130(90)90007-W. PubMed DOI
Ostatna V., Cernocka H., Kurzatkowska K., Palecek E.. Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Anal. Chim. Acta. 2012;735:31–36. doi: 10.1016/j.aca.2012.05.012. PubMed DOI
Vacek J., Zatloukalova M., Dorcák V., Cifra M., Futera Z., Ostatná V.. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Microchim. Acta. 2023;190(11):442. doi: 10.1007/s00604-023-05999-2. PubMed DOI PMC
Harris G., Bradshaw M. L., Halsall D. J., Scott D. J., Unwin R. J., Norden A. G. W.. Is there reversible dimerization of albumin in blood plasma? And does it matter? Exp. Physiol. 2024;109(10):1663–1671. doi: 10.1113/EP092012. PubMed DOI PMC
Cernocka H., Vonka P., Kasalova V., Sommerova L., Vandova V., Hrstka R., Ostatna V.. AGR2-AGR3 hetero-oligomeric complexes: Identification and characterization. Bioelectrochemistry. 2021;140:107808. doi: 10.1016/j.bioelechem.2021.107808. PubMed DOI
Takada S., Gallo S., Silva S., Tanaka H., Pincheira O., Zuniga J., Villarroel M., Hidalgo X., Melo-Tanner J., Suzuki H.. et al. A Novel AGR2 Variant Causing Aberrant Monomer-Dimer Equilibrium Leading to Severe Respiratory and Digestive Symptoms. J. Clin. Immunol. 2025;45(1):55. doi: 10.1007/s10875-024-01847-x. PubMed DOI PMC
Clarke D. J., Murray E., Faktor J., Mohtar A., Vojtesek B., MacKay C. L., Smith P. L., Hupp T. R.. Mass spectrometry analysis of the oxidation states of the pro-oncogenic protein anterior gradient-2 reveals covalent dimerization via an intermolecular disulphide bond. Biochim. Biophys. Acta: Proteins Proteomics. 2016;1864(5):551–561. doi: 10.1016/j.bbapap.2016.02.011. PubMed DOI
Brychtova V., Mohtar A., Vojtesek B., Hupp T. R.. Mechanisms of anterior gradient-2 regulation and function in cancer. Semin. Cancer Biol. 2015;33:16–24. doi: 10.1016/j.semcancer.2015.04.005. PubMed DOI
Maurel M., Obacz J., Avril T., Ding Y. P., Papadodima O., Treton X., Daniel F., Pilalis E., Hörberg J., Hou W.. et al. Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation. EMBO Mol. Med. 2019;11(6):e10120. doi: 10.15252/emmm.201810120. PubMed DOI PMC