Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- biologický transport MeSH
- buněčná membrána chemie metabolismus MeSH
- detergenty MeSH
- houby chemie metabolismus MeSH
- membránové mikrodomény chemie metabolismus MeSH
- rostlinné buňky chemie metabolismus MeSH
- rostliny chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- detergenty MeSH
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Citace poskytuje Crossref.org
Guidelines for naming and studying plasma membrane domains in plants
Plasma Membrane Protein Nce102 Modulates Morphology and Function of the Yeast Vacuole
Role of MCC/Eisosome in Fungal Lipid Homeostasis
Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging
Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans