Plasma Membrane Protein Nce102 Modulates Morphology and Function of the Yeast Vacuole

. 2020 Oct 23 ; 10 (11) : . [epub] 20201023

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33114062

Grantová podpora
19-04052S Grantová Agentura České Republiky
CZ.2.16/3.1.00/21527 European Regional Development Fund

Membrane proteins are targeted not only to specific membranes in the cell architecture, but also to distinct lateral microdomains within individual membranes to properly execute their biological functions. Yeast tetraspan protein Nce102 has been shown to migrate between such microdomains within the plasma membrane in response to an acute drop in sphingolipid levels. Combining microscopy and biochemistry methods, we show that upon gradual ageing of a yeast culture, when sphingolipid demand increases, Nce102 migrates from the plasma membrane to the vacuole. Instead of being targeted for degradation it localizes to V-ATPase-poor, i.e., ergosterol-enriched, domains of the vacuolar membrane, analogous to its plasma membrane localization. We discovered that, together with its homologue Fhn1, Nce102 modulates vacuolar morphology, dynamics, and physiology. Specifically, the fusing of vacuoles, accompanying a switch of fermenting yeast culture to respiration, is retarded in the strain missing both proteins. Furthermore, the absence of either causes an enlargement of ergosterol-rich vacuolar membrane domains, while the vacuoles themselves become smaller. Our results clearly show decreased stability of the V-ATPase in the absence of either Nce102 or Fhn1, a possible result of the disruption of normal microdomain morphology of the vacuolar membrane. Therefore, the functionality of the vacuole as a whole might be compromised in these cells.

Zobrazit více v PubMed

Grossmann G., Malinsky J., Stahlschmidt W., Loibl M., Weig-Meckl I., Frommer W.B., Opekarová M., Tanner W. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 2008;183:1075–1088. doi: 10.1083/jcb.200806035. PubMed DOI PMC

Gournas C., Prévost M., Krammer E., André B. Function and Regulation of Fungal Amino Acid Transporters: Insights from Predicted Structure. In: Ramos J., Sychrová H., Kschischo M., editors. Yeast Membrane Transport. Volume 892. Springer International Publishing; Cham, Germany: 2016. pp. 69–106. Advances in Experimental Medicine and Biology. PubMed

Busto J.V., Elting A., Haase D., Spira F., Kuhlman J., Schäfer-Herte M., Wedlich-Söldner R. Lateral plasma membrane compartmentalization links protein function and turnover. EMBO J. 2018;37:1–17. doi: 10.15252/embj.201899473. PubMed DOI PMC

Kubalová D., Káňovičová P., Veselá P., Awadová T., Džugasová V., Daum G., Malínský J., Balážová M. The lipid droplet protein Pgc1 controls the subcellular distribution of phosphatidylglycerol. FEMS Yeast Res. 2019;19:foz045. doi: 10.1093/femsyr/foz045. PubMed DOI

Grousl T., Opekarová M., Stradalova V., Hasek J., Malinsky J. Evolutionarily conserved 5′-3′ exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast. PLoS ONE. 2015;10:e0122770. doi: 10.1371/journal.pone.0122770. PubMed DOI PMC

Vaškovičová K., Awadová T., Veselá P., Balážová M., Opekarová M., Malinsky J. mRNA decay is regulated via sequestration of the conserved 5′-3′ exoribonuclease Xrn1 at eisosome in yeast. Eur. J. Cell Biol. 2017;96:591–599. doi: 10.1016/j.ejcb.2017.05.001. PubMed DOI

Berchtold D., Piccolis M., Chiaruttini N., Riezman I., Riezman H., Roux A., Walther T.C., Loewith R. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 2012;14:542–547. doi: 10.1038/ncb2480. PubMed DOI

Niles B.J., Mogri H., Hill A., Vlahakis A., Powers T. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. USA. 2012;109:1536–1541. doi: 10.1073/pnas.1117563109. PubMed DOI PMC

Cleves A.E., Cooper D.N.W., Barondes S.H., Kelly R.B. A new pathway for protein export in Saccharomyces cerevisiae. J. Cell Biol. 1996;133:1017–1026. doi: 10.1083/jcb.133.5.1017. PubMed DOI PMC

Fröhlich F., Moreira K., Aguilar P.S., Hubner N.C., Mann M., Walter P., Walther T.C. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J. Cell Biol. 2009;185:1227–1242. doi: 10.1083/jcb.200811081. PubMed DOI PMC

García-Marqués S., Randez-Gil F., Dupont S., Garre E., Prieto J.A. Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status. BBA Mol. Cell Res. 2016;1863:1319–1333. doi: 10.1016/j.bbamcr.2016.03.025. PubMed DOI

Malinsky J., Opekarová M. New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells. Volume 325. Academic Press; Cambridge, MA, USA: 2016. PubMed

Zahumensky J., Malinsky J. Role of MCC/eisosome in fungal lipid homeostasis. Biomolecules. 2019;9:305. doi: 10.3390/biom9080305. PubMed DOI PMC

Loibl M., Grossmann G., Stradalova V., Klingl A., Rachel R., Tanner W., Malinsky J., Opekarová M. C terminus of Nce102 determines the structure and function of microdomains in the Saccharomyces cerevisiae plasma membrane. Eukaryot. Cell. 2010;9:1184–1192. doi: 10.1128/EC.00006-10. PubMed DOI PMC

Kabeche R., Baldissard S., Hammond J., Howard L., Moseley J.B. The filament-forming protein Pil1 assembles linear eisosomes in fission yeast. Mol. Biol. Cell. 2011;22:4059–4067. doi: 10.1091/mbc.e11-07-0605. PubMed DOI PMC

Athanasopoulos A., Gournas C., Amillis S., Sophianopoulou V. Characterization of AnNce102 and its role in eisosome stability and sphingolipid biosynthesis. Sci. Rep. 2015;5:15200. doi: 10.1038/srep15200. PubMed DOI PMC

Stradalova V., Stahlschmidt W., Grossmann G., Blazikova M., Rachel R., Tanner W., Malinsky J. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J. Cell Sci. 2009;122:2887–2894. doi: 10.1242/jcs.051227. PubMed DOI

Moeller C.H., Thomson W.W. An ultrastructural study of the yeast tonoplast during the shift from exponential to stationary phase. J. Ultrastruct. Res. 1979;68:28–37. doi: 10.1016/S0022-5320(79)90139-4. PubMed DOI

Toulmay A., Prinz W.A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 2013;202:35–44. doi: 10.1083/jcb.201301039. PubMed DOI PMC

Malínská K., Malínský J., Opekarová M., Tanner W. Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells. Mol. Biol. Cell. 2003;14:4427–4436. doi: 10.1091/mbc.e03-04-0221. PubMed DOI PMC

Malinska K., Malinsky J., Opekarova M., Tanner W. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J. Cell Sci. 2004;117:6031–6041. doi: 10.1242/jcs.01493. PubMed DOI

Grossmann G., Opekarová M., Malinsky J., Weig-Meckl I., Tanner W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 2007;26:1–8. doi: 10.1038/sj.emboj.7601466. PubMed DOI PMC

Rachel R., Wyschkony I., Riehl S., Huber H. The ultrastructure of Ignicoccus: Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea. 2002;1:9–18. doi: 10.1155/2002/307480. PubMed DOI PMC

Wiederhold E., Gandhi T., Permentier H.P., Breitling R., Poolman B., Slotboom D.J. The yeast vacuolar membrane proteome. Mol. Cell. Proteom. 2009;8:380–392. doi: 10.1074/mcp.M800372-MCP200. PubMed DOI

Bevis B.J., Hammond A.T., Reinke C.A., Glick B.S. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nat. Cell Biol. 2002;4:750–756. doi: 10.1038/ncb852. PubMed DOI

Wang C.W., Miao Y.H., Chang Y.S. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J. Cell Biol. 2014;206:357–366. doi: 10.1083/jcb.201404115. PubMed DOI PMC

DeRisi J.L., Iyer V.R., Brown P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997;278:680–686. doi: 10.1126/science.278.5338.680. PubMed DOI

Gasch A.P., Spellman P.T., Kao C.M., Carmel-Harel O., Eisen M.B., Storz G., Botstein D., Brown P.O. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 2000;11:4241–4257. doi: 10.1091/mbc.11.12.4241. PubMed DOI PMC

Segal E., Shapira M., Regev A., Pe’er D., Botstein D., Koller D., Friedman N. Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 2003;34:166–176. doi: 10.1038/ng1165. PubMed DOI

Gournas C., Gkionis S., Carquin M., Twyffels L., Tyteca D., André B. Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains -Supplement. Proc. Natl. Acad. Sci. USA. 2018;115:E3145–E3154. doi: 10.1073/pnas.1719462115. PubMed DOI PMC

Babst M., Wendland B., Estepa E.J., Emr S.D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 1998;17:2982–2993. doi: 10.1093/emboj/17.11.2982. PubMed DOI PMC

Thayer N.H., Leverich C.K., Fitzgibbon M.P., Nelson Z.W., Henderson K.A., Gafken P.R., Hsu J.J., Gottschling D.E. Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc. Natl. Acad. Sci. USA. 2014;111:14019–14026. doi: 10.1073/pnas.1416079111. PubMed DOI PMC

Young M.E., Karpova T.S., Brugger B., Moschenross D.M., Wang G.K., Schneiter R., Wieland F.T., Cooper J.A. The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation. Mol. Cell. Biol. 2002;22:927–934. doi: 10.1128/MCB.22.3.927-934.2002. PubMed DOI PMC

Malinsky J., Opekarová M., Grossmann G., Tanner W. Membrane Microdomains, Rafts, and Detergent-Resistant Membranes in Plants and Fungi. Annu. Rev. Plant Biol. 2013;64:501–529. doi: 10.1146/annurev-arplant-050312-120103. PubMed DOI

Riggi M., Kusmider B., Loewith R. The flipside of the TOR coin—TORC2 and plasma membrane homeostasis at a glance. J. Cell Sci. 2020;133:jcs242040. doi: 10.1242/jcs.242040. PubMed DOI

Gournas C., Saliba E., Krammer E.-M., Barthelemy C., Prévost M., André B. Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. Mol. Biol. Cell. 2017;28:2819–2832. doi: 10.1091/mbc.e17-02-0104. PubMed DOI PMC

Bianchi F., Syga L., Moiset G., Spakman D., Schavemaker P.E., Punter C.M., Seinen A.-B.B., Van Oijen A.M., Robinson A., Poolman B., et al. Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nat. Commun. 2018;9:501. doi: 10.1038/s41467-018-02864-2. PubMed DOI PMC

Zhang L.B., Tang L., Guan Y., Feng M.G. Subcellular localization of Sur7 and its pleiotropic effect on cell wall integrity, multiple stress responses, and virulence of Beauveria bassiana. Appl. Microbiol. Biotechnol. 2020;104:6669–6678. doi: 10.1007/s00253-020-10736-3. PubMed DOI

Dawaliby R., Mayer A. Microautophagy of the Nucleus Coincides with a Vacuolar Diffusion Barrier at Nuclear–Vacuolar Junctions. Mol. Biol. Cell. 2010;21:4173–4183. doi: 10.1091/mbc.e09-09-0782. PubMed DOI PMC

Levine T.P., Munro S. Dual targeting of Osh1p, a yeast homologue of oxysterol-binding protein, to both the Golgi and the nucleus-vacuole junction. Mol. Biol. Cell. 2001;12:1633–1644. doi: 10.1091/mbc.12.6.1633. PubMed DOI PMC

Murley A., Sarsam R.D., Toulmay A., Yamada J., Prinz W.A., Nunnari J. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J. Cell Biol. 2015;209:539–548. doi: 10.1083/jcb.201502033. PubMed DOI PMC

Manik M.K., Yang H., Tong J., Im Y.J. Structure of Yeast OSBP-Related Protein Osh1 Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole Junction. Structure. 2017;25:617–629. doi: 10.1016/j.str.2017.02.010. PubMed DOI

Vasanthakumar T., Bueler S.A., Wu D., Beilsten-Edmands V., Robinson C.V., Rubinstein J.L. Structural comparison of the vacuolar and Golgi V-ATPases from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 2019;116:7272–7277. doi: 10.1073/pnas.1814818116. PubMed DOI PMC

Brett C.L., Kallay L., Hua Z., Green R., Chyou A., Zhang Y., Graham T.R., Donowitz M., Rao R. Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae. PLoS ONE. 2011;6:e17619. doi: 10.1371/journal.pone.0017619. PubMed DOI PMC

Gaigg B., Timischl B., Corbino L., Schneiter R. Synthesis of sphingolipids with very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. J. Biol. Chem. 2005;280:22515–22522. doi: 10.1074/jbc.M413472200. PubMed DOI

Yoshikawa K., Tanaka T., Furusawa C., Nagahisa K., Hirasawa T., Shimizu H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 2009;9:32–44. doi: 10.1111/j.1567-1364.2008.00456.x. PubMed DOI

Patton J.L., Srinivasan B., Dickson R.C., Lester R.L. Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae. J. Bacteriol. 1992;174:7180–7184. doi: 10.1128/JB.174.22.7180-7184.1992. PubMed DOI PMC

Malinsky J., Tanner W., Opekarova M. Transmembrane voltage: Potential to induce lateral microdomains. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2016;1861:806–811. doi: 10.1016/j.bbalip.2016.02.012. PubMed DOI

Michaillat L., Mayer A. Identification of Genes Affecting Vacuole Membrane Fragmentation in Saccharomyces cerevisiae. PLoS ONE. 2013;8:e54160. doi: 10.1371/journal.pone.0054160. PubMed DOI PMC

Sánchez-Pulido L., Martín-Belmonte F., Valencia A., Alonso M.A. MARVEL: A conserved domain involved in membrane apposition events. Trends Biochem. Sci. 2002;27:599–601. doi: 10.1016/S0968-0004(02)02229-6. PubMed DOI

Te Welscher Y.M., Jones L., Van Leeuwen M.R., Dijksterhuis J., De Kruijff B., Eitzen G., Breukink E. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob. Agents Chemother. 2010;54:2618–2625. doi: 10.1128/AAC.01794-09. PubMed DOI PMC

Audhya A., Loewith R., Parsons A.B., Gao L., Tabuchi M., Zhou H., Boone C., Hall M.N., Emr S.D. Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J. 2004;23:3747–3757. doi: 10.1038/sj.emboj.7600384. PubMed DOI PMC

Appadurai D., Gay L., Moharir A., Lang M.J., Duncan M.C., Schmidt O., Teis D., Vu T.N., Silva M., Jorgensen E.M., et al. Plasma membrane tension regulates eisosome structure and function. Mol. Biol. Cell. 2020;31:287–303. doi: 10.1091/mbc.E19-04-0218. PubMed DOI PMC

Tafur L., Kefauver J., Loewith R. Structural Insights into TOR Signaling. Genes (Basel) 2020;11:885. doi: 10.3390/genes11080885. PubMed DOI PMC

Kim J., Kim E. Rag GTPase in amino acid signaling. Amino Acids. 2016;48:915–928. doi: 10.1007/s00726-016-2171-x. PubMed DOI

Zanolari B., Friant S., Funato K., Suetterlin C., Stevenson B.J., Riezman H. Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J. 2000;19:2824–2833. doi: 10.1093/emboj/19.12.2824. PubMed DOI PMC

Friant S. Increased protein kinase or decreased PP2A activity bypasses sphingoid base requirement in endocytosis. EMBO J. 2000;19:2834–2844. doi: 10.1093/emboj/19.12.2834. PubMed DOI PMC

Lester R.L., Wells G.B., Oxford G., Dickson R.C. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J. Biol. Chem. 1993;268:845–856. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microdomain Protein Nce102 Is a Local Sensor of Plasma Membrane Sphingolipid Balance

. 2022 Aug 31 ; 10 (4) : e0196122. [epub] 20220627

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...