Microdomain Protein Nce102 Is a Local Sensor of Plasma Membrane Sphingolipid Balance

. 2022 Aug 31 ; 10 (4) : e0196122. [epub] 20220627

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid35758748

Grantová podpora
I01 BX002624 BLRD VA - United States
IK6 BX005386 BLRD VA - United States
R01 AI047837 NIAID NIH HHS - United States
R01 AI116420 NIAID NIH HHS - United States
R01 AI125770 NIAID NIH HHS - United States

Sphingolipids are essential building blocks of eukaryotic membranes and important signaling molecules that are regulated tightly in response to environmental and physiological inputs. While their biosynthetic pathway has been well-described, the mechanisms that facilitate the perception of sphingolipid levels at the plasma membrane remain to be uncovered. In Saccharomyces cerevisiae, the Nce102 protein has been proposed to function as a sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that the production of Nce102 increases following sphingolipid biosynthesis inhibition and that Nce102 is internalized when excess sphingolipid precursors are supplied. This finding suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. The physiological role of Nce102 in the regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of hydroxylated complex sphingolipids in response to heat stress in the nce102Δ deletion mutant. We also demonstrate that Nce102 behaves analogously in the widespread human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species. IMPORTANCE Microorganisms are challenged constantly by their rapidly changing environment. To survive, they have developed diverse mechanisms to quickly perceive stressful situations and adapt to them appropriately. The primary site of both stress sensing and adaptation is the plasma membrane. We identified the yeast protein Nce102 as a marker of local sphingolipid levels and fluidity in the plasma membrane. Nce102 is an important structural and functional component of the membrane compartment Can1 (MCC), a plasma membrane microdomain stabilized by a large cytosolic hemitubular protein scaffold, the eisosome. The MCC/eisosomes are widely conserved among fungi and unicellular algae. To determine if Nce102 carries out similar functions in other organisms, we analyzed the human fungal pathogen Candida albicans and found that Nce102 responds to sphingolipid levels also in this organism, which has potential applications for the development of novel therapeutic approaches. The presented study represents a valuable model for how organisms regulate plasma membrane sphingolipids.

Zobrazit více v PubMed

Malínská K, Malínský J, Opekarová M, Tanner W. 2003. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell 14:4427–4436. doi:10.1091/mbc.e03-04-0221. PubMed DOI PMC

Young ME, Karpova TS, Brugger B, Moschenross DM, Wang GK, Schneiter R, Wieland FT, Cooper JA. 2002. The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation. Mol Cell Biol 22:927–934. doi:10.1128/MCB.22.3.927-934.2002. PubMed DOI PMC

Malinska K, Malinsky J, Opekarova M, Tanner W. 2004. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J Cell Sci 117:6031–6041. doi:10.1242/jcs.01493. PubMed DOI

Grossmann G, Opekarová M, Malinsky J, Weig-Meckl I, Tanner W. 2007. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J 26:1–8. doi:10.1038/sj.emboj.7601466. PubMed DOI PMC

Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarová M, Tanner W. 2008. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J Cell Biol 183:1075–1088. doi:10.1083/jcb.200806035. PubMed DOI PMC

Fröhlich F, Moreira K, Aguilar PS, Hubner NC, Mann M, Walter P, Walther TC. 2009. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J Cell Biol 185:1227–1242. doi:10.1083/jcb.200811081. PubMed DOI PMC

Bianchi F, Syga Ł, Moiset G, Spakman D, Schavemaker PE, Punter CM, Seinen A-B, van Oijen AM, Robinson A, Poolman B. 2018. Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nat Commun 9:501. doi:10.1038/s41467-018-02864-2. PubMed DOI PMC

Busto JV, Elting A, Haase D, Spira F, Kuhlman J, Schäfer‐Herte M, Wedlich‐Söldner R. 2018. Lateral plasma membrane compartmentalization links protein function and turnover. EMBO J 37:e99473. doi:10.15252/embj.201899473. PubMed DOI PMC

Stradalova V, Stahlschmidt W, Grossmann G, Blazikova M, Rachel R, Tanner W, Malinsky J. 2009. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J Cell Sci 122:2887–2894. doi:10.1242/jcs.051227. PubMed DOI

Zhang X, Lester RL, Dickson RC. 2004. Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem 279:22030–22038. doi:10.1074/jbc.M400299200. PubMed DOI

Walther TC, Brickner JH, Aguilar PS, Bernales S, Pantoja C, Walter P. 2006. Eisosomes mark static sites of endocytosis. Nature 439:998–1003. doi:10.1038/nature04472. PubMed DOI

Ziółkowska NE, Karotki L, Rehman M, Huiskonen JT, Walther TC. 2011. Eisosome-driven plasma membrane organization is mediated by BAR domains. Nat Struct Mol Biol 18:854–856. doi:10.1038/nsmb.2080. PubMed DOI

Karotki L, Huiskonen JT, Stefan CJ, Ziółkowska NE, Roth R, Surma MA, Krogan NJ, Emr SD, Heuser J, Grünewald K, Walther TC. 2011. Eisosome proteins assemble into a membrane scaffold. J Cell Biol 195:889–902. doi:10.1083/jcb.201104040. PubMed DOI PMC

Olivera-Couto A, Grana M, Harispe L, Aguilar PS. 2011. The eisosome core is composed of BAR domain proteins. Mol Biol Cell 22:2360–2372. doi:10.1091/mbc.E10-12-1021. PubMed DOI PMC

Kabeche R, Baldissard S, Hammond J, Howard L, Moseley JB. 2011. The filament-forming protein Pil1 assembles linear eisosomes in fission yeast. Mol Biol Cell 22:4059–4067. doi:10.1091/mbc.E11-07-0605. PubMed DOI PMC

Kabeche R, Roguev A, Krogan NJ, Moseley JB. 2014. A Pil1-Sle1-Syj1-Tax4 functional pathway links eisosomes with PI(4,5)P2 regulation. J Cell Sci 127:1318–1326. doi:10.1242/jcs.143545. PubMed DOI PMC

Athanasopoulos A, Gournas C, Amillis S, Sophianopoulou V. 2015. Characterization of AnNce102 and its role in eisosome stability and sphingolipid biosynthesis. Sci Rep 5:15200. doi:10.1038/srep15200. PubMed DOI PMC

Loibl M, Grossmann G, Stradalova V, Klingl A, Rachel R, Tanner W, Malinsky J, Opekarová M. 2010. C terminus of Nce102 determines the structure and function of microdomains in the Saccharomyces cerevisiae plasma membrane. Eukaryot Cell 9:1184–1192. doi:10.1128/EC.00006-10. PubMed DOI PMC

Kübler E, Dohlman HG, Lisanti MP. 1996. Identification of Triton X-100 insoluble membrane domains in the yeast Saccharomyces cerevisiae: lipid requirements for targeting of heterotrimeric G-protein subunits. J Biol Chem 271:32975–32980. doi:10.1074/jbc.271.51.32975. PubMed DOI

Bagnat M, Keranen S, Shevchenko A, Shevchenko A, Simons K. 2000. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 97:3254–3259. doi:10.1073/pnas.97.7.3254. PubMed DOI PMC

Souza CM, Pichler H. 2007. Lipid requirements for endocytosis in yeast. Biochim Biophys Acta 1771:442–454. doi:10.1016/j.bbalip.2006.08.006. PubMed DOI

Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB, Lester RL. 1997. Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem 272:30196–30200. doi:10.1074/jbc.272.48.30196. PubMed DOI

Cowart LA, Okamoto Y, Pinto FR, Gandy JL, Almeida JS, Hannun YA. 2003. Roles for sphingolipid biosynthesis in mediation of specific programs of the heat stress response determined through gene expression profiling. J Biol Chem 278:30328–30338. doi:10.1074/jbc.M300656200. PubMed DOI

Jenkins GM. 2003. The emerging role for sphingolipids in the eukaryotic heat shock response. Cell Mol Life Sci 60:701–710. doi:10.1007/s00018-003-2239-0. PubMed DOI PMC

Dickson RC. 2010. Roles for sphingolipids in saccharomyces cerevisiae. Adv Exp Med Biol 688:217–231. doi:10.1007/978-1-4419-6741-1_15. PubMed DOI PMC

Piña F, Yagisawa F, Obara K, Gregerson JD, Kihara A, Niwa M. 2018. Sphingolipids activate the endoplasmic reticulum stress surveillance pathway. J Cell Biol 217:495–505. doi:10.1083/jcb.201708068. PubMed DOI PMC

Daquinag A, Fadri M, Jung SY, Qin J, Kunz J. 2007. The yeast PH domain proteins Slm1 and Slm2 are targets of sphingolipid signaling during the response to heat stress. Mol Cell Biol 27:633–650. doi:10.1128/MCB.00461-06. PubMed DOI PMC

Berchtold D, Piccolis M, Chiaruttini N, Riezman I, Riezman H, Roux A, Walther TC, Loewith R. 2012. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol 14:542–547. doi:10.1038/ncb2480. PubMed DOI

Riggi M, Kusmider B, Loewith R. 2020. The flipside of the TOR coin—TORC2 and plasma membrane homeostasis at a glance. J Cell Sci 133:jcs242040. doi:10.1242/jcs.242040. PubMed DOI

Zahumensky M. 2019. Role of MCC/eisosome in fungal lipid homeostasis. Biomolecules 9:305. doi:10.3390/biom9080305. PubMed DOI PMC

Tabuchi M, Audhya A, Parsons AB, Boone C, Emr SD. 2006. The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol 26:5861–5875. doi:10.1128/MCB.02403-05. PubMed DOI PMC

Niles BJ, Mogri H, Hill A, Vlahakis A, Powers T. 2012. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc Natl Acad Sci USA 109:1536–1541. doi:10.1073/pnas.1117563109. PubMed DOI PMC

Wells GB, Lester RL. 1983. The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids. J Biol Chem 258:10200–10203. doi:10.1016/S0021-9258(17)44439-5. PubMed DOI

Qie L, Nagiec MM, Baltisberger JA, Lester RL, Dickson RC. 1997. Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long chain bases into sphingolipids. J Biol Chem 272:16110–16117. doi:10.1074/jbc.272.26.16110. PubMed DOI

Mao C, Wadleigh M, Jenkins GM, Hannun YA, Obeid LM. 1997. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem 272:28690–28694. doi:10.1074/jbc.272.45.28690. PubMed DOI

Zanolari B, Friant S, Funato K, Sütterlin C, Stevenson BJ, Riezman H. 2000. Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J 19:2824–2833. doi:10.1093/emboj/19.12.2824. PubMed DOI PMC

Funato K, Lombardi R, Vallée B, Riezman H. 2003. Lcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae. J Biol Chem 278:7325–7334. doi:10.1074/jbc.M209925200. PubMed DOI

Kondo N, Ohno Y, Yamagata M, Obara T, Seki N, Kitamura T, Naganuma T, Kihara A. 2014. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat Commun 5:5338. doi:10.1038/ncomms6338. PubMed DOI

Pimentel FSA, Machado CM, De-Souza EA, Fernandes CM, De-Queiroz ALFV, Silva GFS, Del Poeta M, Montero-Lomeli M, Masuda CA. 2022. Sphingolipid depletion suppresses UPR activation and promotes galactose hypersensitivity in yeast models of classic galactosemia. Biochim Biophys Acta Mol Basis Dis 1868:166389. doi:10.1016/j.bbadis.2022.166389. PubMed DOI PMC

Vaskovicova K, Vesela P, Zahumensky J, Folkova D, Balazova M, Malinsky J. 2020. Plasma membrane protein Nce102 modulates morphology and function of the yeast vacuole. Biomolecules 10:1476. doi:10.3390/biom10111476. PubMed DOI PMC

Babst M, Wendland B, Estepa EJ, Emr SD. 1998. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993. doi:10.1093/emboj/17.11.2982. PubMed DOI PMC

Popolo L, Vanoni M, Alberghina L. 1982. Control of the yeast cell cycle by protein synthesis. Exp Cell Res 142:69–78. doi:10.1016/0014-4827(82)90410-4. PubMed DOI

Montefusco DJ, Matmati N, Hannun YA. 2014. The yeast sphingolipid signaling landscape. Chem Phys Lipids 177:26–40. doi:10.1016/j.chemphyslip.2013.10.006. PubMed DOI PMC

Chauhan N, Han G, Somashekarappa N, Gable K, Dunn T, Kohlwein SD. 2016. Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1. J Biol Chem 291:2524–2534. doi:10.1074/jbc.M115.693200. PubMed DOI PMC

Sun Y, Taniguchi R, Tanoue D, Yamaji T, Takematsu H, Mori K, Fujita T, Kawasaki T, Kozutsumi Y. 2000. Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol 20:4411–4419. doi:10.1128/MCB.20.12.4411-4419.2000. PubMed DOI PMC

Slater ML. 1973. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J Bacteriol 113:263–270. doi:10.1128/jb.113.1.263-270.1973. PubMed DOI PMC

Rossio V, Yoshida S. 2011. Spatial regulation of Cdc55-PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast. J Cell Biol 193:445–454. doi:10.1083/jcb.201101134. PubMed DOI PMC

Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T. 1995. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun 211:396–403. doi:10.1006/bbrc.1995.1827. PubMed DOI

Huang X, Liu J, Dickson RC. 2012. Down-regulating sphingolipid synthesis increases yeast lifespan. PLoS Genet 8:e1002493. doi:10.1371/journal.pgen.1002493. PubMed DOI PMC

Tanigawa M, Kihara A, Terashima M, Takahara T, Maeda T. 2012. Sphingolipids regulate the yeast high-osmolarity glycerol response pathway. Mol Cell Biol 32:2861–2870. doi:10.1128/MCB.06111-11. PubMed DOI PMC

Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD. 2000. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290:341–344. doi:10.1126/science.290.5490.341. PubMed DOI

Rispal D, Eltschinger S, Stahl M, Vaga S, Bodenmiller B, Abraham Y, Filipuzzi I, Movva NR, Aebersold R, Helliwell SB, Loewith R. 2015. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J Biol Chem 290:14963–14978. doi:10.1074/jbc.M114.627794. PubMed DOI PMC

Demuyser L, Swinnen E, Fiori A, Herrera-Malaver B, Verstrepen K, Van Dijck P. 2017. Mitochondrial cochaperone Mge1 is involved in regulating susceptibility to fluconazole in Saccharomyces cerevisiae and Candida species. mBio 8:e00201-17. doi:10.1128/mBio.00201-17. PubMed DOI PMC

Jahnke L, Klein HP. 1983. Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J Bacteriol 155:488–492. doi:10.1128/jb.155.2.488-492.1983. PubMed DOI PMC

Gleason JE, Corrigan DJ, Cox JE, Reddi AR, McGinnis LA, Culotta VC. 2011. Analysis of hypoxia and hypoxia-like states through metabolite profiling. PLoS One 6:e24741. doi:10.1371/journal.pone.0024741. PubMed DOI PMC

Sharma SC. 2006. Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae. FEMS Yeast Res 6:1047–1051. doi:10.1111/j.1567-1364.2006.00149.x. PubMed DOI

Degreif D, de Rond T, Bertl A, Keasling JD, Budin I. 2017. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth. Metab Eng 41:46–56. doi:10.1016/j.ymben.2017.03.002. PubMed DOI

Ingram LO. 1976. Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678. doi:10.1128/jb.125.2.670-678.1976. PubMed DOI PMC

Hazel JR. 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42. doi:10.1146/annurev.ph.57.030195.000315. PubMed DOI

Jones RP, Greenfield PF. 1987. Ethanol and the fluidity of the yeast plasma membrane. Yeast 3:223–232. doi:10.1002/yea.320030403. PubMed DOI

Alexandre H, Berlot JP, Charpentier C. 1994. Effect of ethanol on membrane fluidity of protoplasts from Saccharomyces cerevisiae and Kloeckera apiculata grown with or without ethanol, measured by fluorescence anisotropy. Biotechnol Tech 8:295–300. doi:10.1007/BF02428970. DOI

Jenkins GM, Richards A, Wahl T, Mao C, Obeid L, Hannun Y. 1997. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem 272:32566–32572. doi:10.1074/jbc.272.51.32566. PubMed DOI

Wells GB, Dickson RC, Lester RL. 1998. Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis. J Biol Chem 273:7235–7243. doi:10.1074/jbc.273.13.7235. PubMed DOI

Aresta-Branco F, Cordeiro AM, Marinho HS, Cyrne L, Antunes F, de Almeida RFM. 2011. Gel domains in the plasma membrane of Saccharomyces cerevisiae. J Biol Chem 286:5043–5054. doi:10.1074/jbc.M110.154435. PubMed DOI PMC

Malinsky J, Opekarová M. 2016. New insight into the roles of membrane microdomains in physiological activities of fungal cells. Int Rev Cell Mol Biol 325:119–180. doi:10.1016/bs.ircmb.2016.02.005. PubMed DOI

García-Marqués S, Randez-Gil F, Dupont S, Garre E, Prieto JA. 2016. Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status. Biochim Biophys Acta 1863:1319–1333. doi:10.1016/j.bbamcr.2016.03.025. PubMed DOI

Lee J-HH, Heuser JE, Roth R, Goodenough U. 2015. Eisosome ultrastructure and evolution in fungi, microalgae, and lichens. Eukaryot Cell 14:1017–1042. doi:10.1128/EC.00106-15. PubMed DOI PMC

Neville BA, d'Enfert C, Bougnoux M-E. 2015. Candida albicans commensalism in the gastrointestinal tract. FEMS Yeast Res 15:fov081. doi:10.1093/femsyr/fov081. PubMed DOI

Alvarez FJ, Douglas LM, Rosebrock A, Konopka JB. 2008. The Sur7 protein regulates plasma membrane organization and prevents intracellular cell wall growth in Candida albicans. Mol Biol Cell 19:5214–5225. doi:10.1091/mbc.e08-05-0479. PubMed DOI PMC

Pohl A, López-Montero I, Rouvière F, Giusti F, Devaux PF. 2009. Rapid transmembrane diffusion of ceramide and dihydroceramide spin-labelled analogues in the liquid ordered phase. Mol Membr Biol 26:194–204. doi:10.1080/09687680902733815. PubMed DOI

Sawai H, Okamoto Y, Luberto C, Mao C, Bielawska A, Domae N, Hannun YA. 2000. Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae. J Biol Chem 275:39793–39798. doi:10.1074/jbc.M007721200. PubMed DOI

Kitagaki H, Cowart LA, Matmati N, Vaena de Avalos S, Novgorodov SA, Zeidan YH, Bielawski J, Obeid LM, Hannun YA. 2007. Isc1 regulates sphingolipid metabolism in yeast mitochondria. Biochim Biophys Acta 1768:2849–2861. doi:10.1016/j.bbamem.2007.07.019. PubMed DOI PMC

Hoffmann PC, Bharat TAM, Wozny MR, Boulanger J, Miller EA, Kukulski W. 2019. Tricalbins contribute to cellular lipid flux and form curved ER-PM contacts that are bridged by rod-shaped structures. Dev Cell 51:488–502.e8. doi:10.1016/j.devcel.2019.09.019. PubMed DOI PMC

Ikeda A, Schlarmann P, Kurokawa K, Nakano A, Riezman H, Funato K. 2020. Tricalbins are required for non-vesicular ceramide transport at ER-Golgi contacts and modulate lipid droplet biogenesis. iScience 23:101603. doi:10.1016/j.isci.2020.101603. PubMed DOI PMC

Moreira KE, Walther TC, Aguilar PS, Walter P. 2009. Pil1 controls eisosome biogenesis. Mol Biol Cell 20:809–818. doi:10.1091/mbc.e08-03-0313. PubMed DOI PMC

Vaškovičová K, Awadová T, Veselá P, Balážová M, Opekarová M, Malinsky J. 2017. mRNA decay is regulated via sequestration of the conserved 5′-3′ exoribonuclease Xrn1 at eisosome in yeast. Eur J Cell Biol 96:591–599. doi:10.1016/j.ejcb.2017.05.001. PubMed DOI

Gournas C, Gkionis S, Carquin M, Twyffels L, Tyteca D, André B. 2018. Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains. Proc Natl Acad Sci USA 115:E3145–E3154. doi:10.1073/pnas.1719462115. PubMed DOI PMC

Moharir A, Gay L, Appadurai D, Keener J, Babst M. 2018. Eisosomes are metabolically regulated storage compartments for APC-type nutrient transporters. Mol Biol Cell 29:2113–2127. doi:10.1091/mbc.E17-11-0691. PubMed DOI PMC

Busto JV, Wedlich-Söldner R. 2019. Integration through separation—the role of lateral membrane segregation in nutrient uptake. Front Cell Dev Biol 7:97. doi:10.3389/fcell.2019.00097. PubMed DOI PMC

Aronova S, Wedaman K, Anderson S, Yates J, Powers T. 2007. Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell 18:2779–2794. doi:10.1091/mbc.e07-03-0274. PubMed DOI PMC

MacGilvray ME, Shishkova E, Place M, Wagner ER, Coon JJ, Gasch AP. 2020. Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. J Proteome Res 19:3405–3417. doi:10.1021/acs.jproteome.0c00253. PubMed DOI PMC

Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB. 2021. In‐depth and 3‐dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22:e51121. doi:10.15252/embr.202051121. PubMed DOI PMC

Holt LJ, Tuch BB, Villén J, Johnson AD, Gygi SP, Morgan DO. 2009. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682–1686. doi:10.1126/science.1172867. PubMed DOI PMC

Moreira KE, Schuck S, Schrul B, Fröhlich F, Moseley JB, Walther TC, Walter P. 2012. Seg1 controls eisosome assembly and shape. J Cell Biol 198:405–420. doi:10.1083/jcb.201202097. PubMed DOI PMC

Chung N, Jenkins G, Hannun YA, Heitman J, Obeid LM. 2000. Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem 275:17229–17232. doi:10.1074/jbc.C000229200. PubMed DOI

Bultynck G, Heath VL, Majeed AP, Galan J-M, Haguenauer-Tsapis R, Cyert MS. 2006. Slm1 and Slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease. Mol Cell Biol 26:4729–4745. doi:10.1128/MCB.01973-05. PubMed DOI PMC

Matmati N, Hannun YA. 2008. Thematic review series: sphingolipids. ISC1 (inositol phosphosphingolipid-phospholipase C), the yeast homologue of neutral sphingomyelinases. J Lipid Res 49:922–928. doi:10.1194/jlr.R800004-JLR200. PubMed DOI PMC

Haak D, Gable K, Beeler T, Dunn T. 1997. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem 272:29704–29710. doi:10.1074/jbc.272.47.29704. PubMed DOI

Douglas LM, Wang HX, Keppler-Ross S, Dean N, Konopka JB. 2012. Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. mBio 3:e00254-11. doi:10.1128/mBio.00254-11. PubMed DOI PMC

Douglas LM, Wang HX, Konopka JB. 2013. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans. mBio 4:e00723-13. doi:10.1128/mBio.00723-13. PubMed DOI PMC

Wang HX, Douglas LM, Veselá P, Rachel R, Malinsky J, Konopka JB. 2016. Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans. Mol Biol Cell 27:1663–1675. doi:10.1091/mbc.E16-01-0065. PubMed DOI PMC

Douglas LM, Konopka JB. 2019. Plasma membrane architecture protects Candida albicans from killing by copper. PLoS Genet 15:e1007911. doi:10.1371/journal.pgen.1007911. PubMed DOI PMC

Lanze CE, Zhou S, Konopka JB. 2021. The Sur7 cytoplasmic C terminus regulates morphogenesis and stress responses in Candida albicans. Mol Microbiol 116:1201–1215. doi:10.1111/mmi.14806. PubMed DOI PMC

Vaskovicova K, Stradalova V, Efenberk A, Opekarova M, Malinsky J. 2015. Assembly of fission yeast eisosomes in the plasma membrane of budding yeast: import of foreign membrane microdomains. Eur J Cell Biol 94:1–11. doi:10.1016/j.ejcb.2014.10.003. PubMed DOI

Balazova M, Babelova L, Durisova I, Vesela P, Kanovicova P, Zahumensky J, Malinsky J. 2022. Two different phospholipases C, Isc1 and Pgc1, cooperate to regulate mitochondrial function. bioRxiv 10.1101/2022.03.18.484854. PubMed DOI PMC

Stringer C, Wang T, Michaelos M, Pachitariu M. 2021. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18:100–106. doi:10.1038/s41592-020-01018-x. PubMed DOI

Singh A, Del Poeta M. 2016. Sphingolipidomics: an important mechanistic tool for studying fungal pathogens. Front Microbiol 7:501. doi:10.3389/fmicb.2016.00501. PubMed DOI PMC

Singh A, MacKenzie A, Girnun G, Del Poeta M. 2017. Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res 58:2017–2036. doi:10.1194/jlr.M078600. PubMed DOI PMC

Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W, Kurtz MB, Giacobbe RA, Bills GF, Cabello MA, Martín I, Peláez F, Harris GH. 1995. The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48:349–356. doi:10.7164/antibiotics.48.349. PubMed DOI

Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi:10.1139/o59-099. PubMed DOI

Clarke NG, Dawson RMC. 1981. Alkaline O→N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J 195:301–306. doi:10.1042/bj1950301. PubMed DOI PMC

Murphy EJ, Rosenberger T. 2010. Lipid-mediated signaling (methods in signal transduction series). CRC Press Taylor & Francis Group, Boca Raton, FL.

Spincemaille P, Cammue B, Thevissen K. 2014. Sphingolipids and mitochondrial function, lessons learned from yeast. Microb Cell 1:210–224. doi:10.15698/mic2014.07.156. PubMed DOI PMC

Rego A, Cooper KF, Snider J, Hannun YA, Costa V, Côrte-Real M, Chaves SR. 2018. Acetic acid induces Sch9p-dependent translocation of Isc1p from the endoplasmic reticulum into mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 1863:576–583. doi:10.1016/j.bbalip.2018.02.008. PubMed DOI PMC

Enloe B, Diamond A, Mitchell AP. 2000. A single-transformation gene function test in diploid Candida albicans. J Bacteriol 182:5730–5736. doi:10.1128/JB.182.20.5730-5736.2000. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...