Two Different Phospholipases C, Isc1 and Pgc1, Cooperate To Regulate Mitochondrial Function

. 2022 Dec 21 ; 10 (6) : e0248922. [epub] 20221115

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36377885

The absence of Isc1, the yeast homologue of mammalian neutral sphingomyelinase type 2, leads to severe mitochondrial dysfunction. We show that the deletion of another type C phospholipase, the phosphatidylglycerol (PG)-specific phospholipase Pgc1, rescues this defect. Phosphatidylethanolamine (PE) levels and cytochrome c oxidase activity, which were reduced in isc1Δ cells, were restored to wild-type levels in the pgc1Δ isc1Δ mutant. The Pgc1 substrate PG inhibited the in vitro activities of Isc1 and the phosphatidylserine decarboxylase Psd1, an enzyme crucial for PE biosynthesis. We also identify a mechanism by which the balance between the current demand for PG and its consumption is controlled. We document that the product of PG hydrolysis, diacylglycerol, competes with the substrate of PG-phosphate synthase, Pgs1, and thereby inhibits the biosynthesis of excess PG. This feedback loop does not work in the absence of Pgc1, which catalyzes PG degradation. Finally, Pgc1 activity is partially inhibited by products of Isc1-mediated hydrolysis. The described functional interconnection of the two phospholipases contributes significantly to lipid homeostasis throughout the cellular architecture. IMPORTANCE In eukaryotic cells, mitochondria are constantly adapting to changes in the biological activity of the cell, i.e., changes in nutrient availability and environmental stresses. We propose a model in which this adaptation is mediated by lipids. Specifically, we show that mitochondrial phospholipids regulate the biosynthesis of cellular sphingolipids and vice versa. To do this, lipids move by free diffusion, which does not require energy and works under any condition. This model represents a simple way for the cell to coordinate mitochondrial structure and performance with the actual needs of overall cellular metabolism. Its simplicity makes it a universally applicable principle of cellular regulation.

Zobrazit více v PubMed

Dickson RC. 2010. Roles for sphingolipids in Saccharomyces cerevisiae. Adv Exp Med Biol 688:217–231. doi:10.1007/978-1-4419-6741-1_15. PubMed DOI PMC

Liu M, Huang C, Polu SR, Schneiter R, Chang A. 2012. Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast. J Cell Sci 125:2428–2435. doi:10.1242/jcs.100578. PubMed DOI PMC

Piña F, Yagisawa F, Obara K, Gregerson JD, Kihara A, Niwa M. 2018. Sphingolipids activate the endoplasmic reticulum stress surveillance pathway. J Cell Biol 217:495–505. doi:10.1083/jcb.201708068. PubMed DOI PMC

Ogretmen B. 2018. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 18:33–50. doi:10.1038/nrc.2017.96. PubMed DOI PMC

Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya N, Jagannath MR. 2013. Sphingolipid metabolic pathway: an overview of major roles played in human diseases. J Lipids 2013:178910. doi:10.1155/2013/178910. PubMed DOI PMC

Sui J, He M, Wang Y, Zhao X, He Y, Shi B. 2019. Sphingolipid metabolism in type 2 diabetes and associated cardiovascular complications. Exp Ther Med 18:3603–3614. doi:10.3892/etm.2019.7981. PubMed DOI PMC

Sawai H, Okamoto Y, Luberto C, Mao C, Bielawska A, Domae N, Hannun YA. 2000. Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae. J Biol Chem 275:39793–39798. doi:10.1074/jbc.M007721200. PubMed DOI

Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, Hannun YA. 2006. The extended family of neutral sphingomyelinases. Biochemistry 45:11247–11256. doi:10.1021/bi061307z. PubMed DOI

Kitagaki H, Cowart LA, Matmati N, Vaena de Avalos S, Novgorodov SA, Zeidan YH, Bielawski J, Obeid LM, Hannun YA. 2007. Isc1 regulates sphingolipid metabolism in yeast mitochondria. Biochim Biophys Acta 1768:2849–2861. doi:10.1016/j.bbamem.2007.07.019. PubMed DOI PMC

Swinnen E, Wilms T, Idkowiak-Baldys J, Smets B, De Snijder P, Accardo S, Ghillebert R, Thevissen K, Cammue B, De Vos D, Bielawski J, Hannun YA, Winderickx J. 2014. The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae. Mol Biol Cell 25:196–211. doi:10.1091/mbc.E13-06-0340. PubMed DOI PMC

Fröhlich F, Moreira K, Aguilar PS, Hubner NC, Mann M, Walter P, Walther TC. 2009. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J Cell Biol 185:1227–1242. doi:10.1083/jcb.200811081. PubMed DOI PMC

Berchtold D, Piccolis M, Chiaruttini N, Riezman I, Riezman H, Roux A, Walther TC, Loewith R. 2012. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol 14:542–547. doi:10.1038/ncb2480. PubMed DOI

Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin DE, Hall MN. 2008. TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell 7:1819–1830. doi:10.1128/EC.00088-08. PubMed DOI PMC

Jacinto E, Lorberg A. 2008. TOR regulation of AGC kinases in yeast and mammals. Biochem J 410:19–37. doi:10.1042/BJ20071518. PubMed DOI

Liu K, Zhang X, Lester RL, Dickson RC. 2005. The sphingoid long chain base phytosphingosine activates AGC-type protein kinases in Saccharomyces cerevisiae including Ypk1, Ypk2, and Sch9. J Biol Chem 280:22679–22687. doi:10.1074/jbc.M502972200. PubMed DOI

Zhang X, Lester RL, Dickson RC. 2004. Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem 279:22030–22038. doi:10.1074/jbc.M400299200. PubMed DOI

Teixeira V, Medeiros TC, Vilaça R, Moradas-Ferreira P, Costa V. 2014. Reduced TORC1 signaling abolishes mitochondrial dysfunctions and shortened chronological lifespan of Isc1p-deficient cells. Microb Cell 1:21–36. doi:10.15698/mic2014.01.121. PubMed DOI PMC

Rego A, Cooper KF, Snider J, Hannun YA, Costa V, Côrte-Real M, Chaves SR. 2018. Acetic acid induces Sch9p-dependent translocation of Isc1p from the endoplasmic reticulum into mitochondria. Biochim Biophys Acta 1863:576–583. doi:10.1016/j.bbalip.2018.02.008. PubMed DOI PMC

Vaena de Avalos S, Su X, Zhang M, Okamoto Y, Dowhan W, Hannun YA. 2005. The phosphatidylglycerol/cardiolipin biosynthetic pathway is required for the activation of inositol phosphosphingolipid phospholipase C, Isc1p, during growth of Saccharomyces cerevisiae. J Biol Chem 280:7170–7177. doi:10.1074/jbc.M411058200. PubMed DOI

Kubalová D, Káňovičová P, Veselá P, Awadová T, Džugasová V, Daum G, Malínský J, Balážová M. 2019. The lipid droplet protein Pgc1 controls the subcellular distribution of phosphatidylglycerol. FEMS Yeast Res 19:foz045. doi:10.1093/femsyr/foz045. PubMed DOI

Chang SC, Heacock PN, Clancey CJ, Dowhan W. 1998. The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae. J Biol Chem 273:9829–9836. doi:10.1074/jbc.273.16.9829. PubMed DOI

Pokorná L, Čermáková P, Horváth A, Baile MG, Claypool SM, Griač P, Malínský J, Balážová M. 2016. Specific degradation of phosphatidylglycerol is necessary for proper mitochondrial morphology and function. Biochim Biophys Acta 1857:34–45. doi:10.1016/j.bbabio.2015.10.004. PubMed DOI PMC

Káňovičová P, Čermáková P, Kubalová D, Bábelová L, Veselá P, Valachovič M, Zahumenský J, Horváth A, Malínský J, Balážová M. 2022. Blocking phosphatidylglycerol degradation in yeast defective in cardiolipin remodeling results in a new model of the Barth syndrome cellular phenotype. J Biol Chem 298:101462. doi:10.1016/j.jbc.2021.101462. PubMed DOI PMC

Rego A, Mendes F, Costa V, Chaves SR, Côrte-Real M. 2020. Pkh1p-Ypk1p and Pkh1p-Sch9p pathways are activated by acetic acid to induce a mitochondrial-dependent regulated cell death. Oxid Med Cell Longev 2020:7095078. doi:10.1155/2020/7095078. PubMed DOI PMC

Birner R, Bürgermeister M, Schneiter R, Daum G. 2001. Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae. Mol Biol Cell 12:997–1007. doi:10.1091/mbc.12.4.997. PubMed DOI PMC

Gohil VM, Thompson MN, Greenberg ML. 2005. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae. J Biol Chem 280:35410–35416. doi:10.1074/jbc.M505478200. PubMed DOI

Bürgermeister M, Birner-Grünberger R, Heyn M, Daum G. 2004. Contribution of different biosynthetic pathways to species selectivity of aminoglycerophospholipids assembled into mitochondrial membranes of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1686:148–160. doi:10.1016/j.bbalip.2004.09.005. PubMed DOI

Tasseva G, Bai HD, Davidescu M, Haromy A, Michelakis E, Vance JE. 2013. Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J Biol Chem 288:4158–4173. doi:10.1074/jbc.M112.434183. PubMed DOI PMC

Böttinger L, Horvath SE, Kleinschroth T, Hunte C, Daum G, Pfanner N, Becker T. 2012. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J Mol Biol 423:677–686. doi:10.1016/j.jmb.2012.09.001. PubMed DOI PMC

Schuiki I, Daum G. 2009. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life 61:151–162. doi:10.1002/iub.159. PubMed DOI

Simocková M, Holic R, Tahotná D, Patton-Vogt J, Griac P. 2008. Yeast Pgc1p (YPL206c) controls the amount of phosphatidylglycerol via a phospholipase C-type degradation mechanism. J Biol Chem 283:17107–17115. doi:10.1074/jbc.M800868200. PubMed DOI PMC

Schlame M, Greenberg ML. 2017. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta 1862:3–7. doi:10.1016/j.bbalip.2016.08.010. PubMed DOI PMC

Allan D, Thomas P, Michell RH. 1978. Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature. Nature 276:289–290. doi:10.1038/276289a0. PubMed DOI

Pagano RE, Longmuir KJ. 1985. Phosphorylation, transbilayer movement, and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblasts. J Biol Chem 260:1909–1916. doi:10.1016/S0021-9258(18)89679-X. PubMed DOI

Okamoto Y, Vaena De Avalos S, Hannun YA. 2002. Structural requirements for selective binding of ISC1 to anionic phospholipids. J Biol Chem 277:46470–46477. doi:10.1074/jbc.M207779200. PubMed DOI

Zhong Q, Greenberg ML. 2003. Regulation of phosphatidylglycerophosphate synthase by inositol in Saccharomyces cerevisiae is not at the level of PGS1 mRNA abundance. J Biol Chem 278:33978–33984. doi:10.1074/jbc.M305242200. PubMed DOI

He Q, Greenberg ML. 2004. Post-translational regulation of phosphatidylglycerolphosphate synthase in response to inositol. Mol Microbiol 53:1243–1249. doi:10.1111/j.1365-2958.2004.04202.x. PubMed DOI

Ruggiano A, Mora G, Buxó L, Carvalho P. 2016. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. EMBO J 35:1644–1655. doi:10.15252/embj.201593106. PubMed DOI PMC

Ogushi F, Ishitsuka R, Kobayashi T, Sugita Y. 2012. Rapid flip-flop motions of diacylglycerol and ceramide in phospholipid bilayers. Chem Phys Lett 522:96–102. doi:10.1016/j.cplett.2011.11.057. DOI

Zahumenský J, Mota Fernandes C, Veselá P, Del Poeta M, Konopka JB, Malínský J. 2022. Microdomain protein Nce102 is a local sensor of plasma membrane sphingolipid balance. Microbiol Spectr 10:e01961-22. doi:10.1128/spectrum.01961-22. PubMed DOI PMC

Zahumensky J, Malinsky J. 2019. Role of MCC/eisosome in fungal lipid homeostasis. Biomolecules 9:305. doi:10.3390/biom9080305. PubMed DOI PMC

Joshi AS, Thompson MN, Fei N, Hüttemann M, Greenberg ML. 2012. Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 287:17589–17597. doi:10.1074/jbc.M111.330167. PubMed DOI PMC

Griac P, Swede MJ, Henry SA. 1996. The role of phosphatidylcholine biosynthesis in the regulation of the INO1 gene of yeast. J Biol Chem 271:25692–25698. doi:10.1074/jbc.271.41.25692. PubMed DOI

Voth WP, Jiang YW, Stillman DJ. 2003. New ‘marker swap’ plasmids for converting selectable markers on budding yeast gene disruptions and plasmids. Yeast 20:985–993. doi:10.1002/yea.1018. PubMed DOI

Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96. doi:10.1016/s0076-6879(02)50957-5. PubMed DOI

Valachovič M, Hapala I. 2017. Biosynthetic approaches to squalene production: the case of yeast. Methods Mol Biol 1494:95–106. doi:10.1007/978-1-4939-6445-1_7. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...