Conserved mechanism of Xrn1 regulation by glycolytic flux and protein aggregation

. 2024 Oct 15 ; 10 (19) : e38786. [epub] 20241001

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39416838
Odkazy

PubMed 39416838
PubMed Central PMC11481674
DOI 10.1016/j.heliyon.2024.e38786
PII: S2405-8440(24)14817-7
Knihovny.cz E-zdroje

The regulation of gene expression in eukaryotes relies largely on the action of exoribonucleases, evolutionarily conserved enzymes that digest decapped messenger RNAs in the 5'-3' direction. The activity of Xrn1, the major yeast exoribonuclease, is regulated by targeted changes in its cellular localisation in direct response to the cell's metabolic state. When fermentable carbon sources are available, active Xrn1 is diffusely localised in the cytosol. Upon depletion of these sources, Xrn1 is sequestered at the plasma membrane-associated protein complex, the eisosome, and becomes inactive. Although this phenomenon has been described previously, the molecular mechanisms underlying these changes remain unknown. We report that the binding of Xrn1 to the plasma membrane is subject to glycolytic flux, rather than the availability of a fermentable carbon source, is independent of TORC1 activity and requires the core eisosomal proteins Pil1 and Lsp1. We identify the SH3-like domain of the Xrn1 protein as a putative interaction domain. In addition, we show that when expressed in Saccharomyces cerevisiae, the human orthologue of Xrn1 mirrors its yeast counterpart, i.e., it segregates to the eisosome under conditions of halted glycolysis. Our results not only advance our understanding of Xrn1 regulation but also indicate that this regulatory principle is conserved from yeast to humans.

Zobrazit více v PubMed

Garneau N.L., Wilusz J., Wilusz C.J. The highways and byways of mRNA decay, Nat. Rev. Mol. Cell Biol. 2007;8:113–126. doi: 10.1038/nrm2104. PubMed DOI

Pashler A.L., Towler B.P., Jones C.I., Newbury S.F. The roles of the exoribonucleases DIS3L2 and XRN1 in human disease, Biochem. Soc. Trans. 2016;44:1377–1384. doi: 10.1042/bst20160107. PubMed DOI

Braun K.A., Young E.T. Coupling mRNA synthesis and decay. Mol. Cell Biol. 2014;34:4078–4087. doi: 10.1128/MCB.00535-14. PubMed DOI PMC

Nagarajan V.K., Jones C.I., Newbury S.F., Green P.J. XRN 5’→3’ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta Gene Regul Mech. 2013;1829:590–603. doi: 10.1016/j.bbagrm.2013.03.005. PubMed DOI PMC

Araki Y., Takahashi S., Kobayashi T., Kajiho H., Hoshino S.I., Katada T. Ski7p G protein interacts with the exosome and the ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J. 2001;20:4684–4693. doi: 10.1093/emboj/20.17.4684. PubMed DOI PMC

Halbach F., Reichelt P., Rode M., Conti E. The yeast ski complex: crystal structure and RNA channeling to the exosome complex, Cell. 2013;154:814–826. doi: 10.1016/j.cell.2013.07.017. PubMed DOI

Chen C.Y.A., Bin Shyu A., Deadenylation, P-bodies Adv. Exp Med Biol. 2013;768:183–195. doi: 10.1007/978-1-4614-5107-5_11. PubMed DOI PMC

Łabno A., Tomecki R., Dziembowski A. Cytoplasmic RNA decay pathways - enzymes and mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:3125–3147. doi: 10.1016/j.bbamcr.2016.09.023. PubMed DOI

Johnson A.W., Kolodner R.D. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell Biol. 1995;15:2719–2727. doi: 10.1128/MCB.15.5.2719. PubMed DOI PMC

Anderson J.S.J., Parker R. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 1998;17:1497–1506. doi: 10.1093/emboj/17.5.1497. PubMed DOI PMC

Grousl T., Opekarová M., Stradalova V., Hasek J., Malinsky J. Evolutionarily conserved 5′-3′ exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast. PLoS One. 2015;10 doi: 10.1371/journal.pone.0122770. PubMed DOI PMC

Vaškovičová K., Awadová T., Veselá P., Balážová M., Opekarová M., Malinsky J. mRNA decay is regulated via sequestration of the conserved 5′-3′ exoribonuclease Xrn1 at eisosome in yeast. Eur. J. Cell Biol. 2017;96:591–599. doi: 10.1016/j.ejcb.2017.05.001. PubMed DOI

Sheth U., Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science. 1979;300(2003):805–808. doi: 10.1126/science.1082320. PubMed DOI PMC

Hsu C.L., Stevens A. Yeast cells lacking 5’-->3’ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5’ cap structure. Mol. Cell Biol. 1993;13:4826–4835. doi: 10.1128/MCB.13.8.4826. PubMed DOI PMC

Larimer F.W., Stevens A. Disruption of the gene XRN1, coding for a 5′→3′ exoribonuclease, restricts yeast cell growth. Gene. 1990;95:85–90. doi: 10.1016/0378-1119(90)90417-P. PubMed DOI

Stradalova V., Stahlschmidt W., Grossmann G., Blazikova M., Rachel R., Tanner W., Malinsky J. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J. Cell Sci. 2009;122:2887–2894. doi: 10.1242/jcs.051227. PubMed DOI

Lee J.H., Heuser J.E., Roth R., Goodenough U. Eisosome ultrastructure and evolution in fungi, microalgae, and lichens. Eukaryot. Cell. 2015;14:1017–1042. doi: 10.1128/EC.00106-15. PubMed DOI PMC

Foderaro J., Douglas L., Konopka J. MCC/Eisosomes Regulate Cell Wall Synthesis and Stress Responses in Fungi, Journal of Fungi 3. 2017;61 doi: 10.3390/jof3040061. PubMed DOI PMC

Lanze C.E., Gandra R.M., Foderaro J.E., Swenson K.A., Douglas L.M., Konopka J.B. Plasma membrane MCC/eisosome domains promote stress resistance in fungi. Microbiol. Mol. Biol. Rev. 2020 doi: 10.1128/MMBR.00063-19. PubMed DOI PMC

Riggi M., Kusmider B., Loewith R. The flipside of the TOR coin - TORC2 and plasma membrane homeostasis at a glance, J. Cell Sci. 2020;133 doi: 10.1242/jcs.242040. PubMed DOI

Zahumensky J., Malinsky J. Role of MCC/eisosome in fungal lipid homeostasis. Biomolecules. 2019;9 doi: 10.3390/biom9080305. PubMed DOI PMC

Olivera-Couto A., Grana M., Harispe L., Aguilar P.S. The eisosome core is composed of BAR domain proteins, Mol. Biol. Cell. 2011;22:2360–2372. doi: 10.1091/mbc.e10-12-1021. PubMed DOI PMC

Karotki L., Huiskonen J.T., Stefan C.J., Ziółkowska N.E., Roth R., Surma M.A., Krogan N.J., Emr S.D., Heuser J., Grünewald K., Walther T.C. Eisosome proteins assemble into a membrane scaffold. JCB (J. Cell Biol.) 2011;195:889–902. doi: 10.1083/jcb.201104040. PubMed DOI PMC

Kefauver J.M., Hakala M., Zou L., Alba J., Espadas J., Tettamanti G., Estrozi L.F., Vanni S., Roux A., Desfosses A., Loewith R. CryoEM architecture of a native stretch-sensitive membrane microdomain. BioRxiv Preprint. 2023 doi: 10.1101/2023.08.25.554800. DOI

Walther T.C., Brickner J.H., Aguilar P.S., Bernales S., Pantoja C., Walter P. Eisosomes mark static sites of endocytosis. Nature. 2006;439:998–1003. doi: 10.1038/nature04472. PubMed DOI

Malinsky J., Opekarová M. Int Rev Cell Mol Biol. Elsevier Inc.; 2016. New insight into the roles of membrane microdomains in physiological activities of fungal cells; pp. 119–180. PubMed DOI

Athanasopoulos A., André B., Sophianopoulou V., Gournas C. Fungal plasma membrane domains. FEMS Microbiol. Rev. 2019;43:642–673. doi: 10.1093/femsre/fuz022. PubMed DOI

Gietz R.D., Schiestl R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007;2:31–34. doi: 10.1038/nprot.2007.13. PubMed DOI

Sheff M.A., Thorn K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast. 2004;21:661–670. doi: 10.1002/yea.1130. PubMed DOI

Vaskovicova K., Stradalova V., Efenberk A., Opekarova M., Malinsky J. Assembly of fission yeast eisosomes in the plasma membrane of budding yeast: import of foreign membrane microdomains. Eur. J. Cell Biol. 2015;94:1–11. doi: 10.1016/j.ejcb.2014.10.003. PubMed DOI

Libalova H., Zavodna T., Margaryan H., Elzeinova F., Milcova A., Vrbova K., Barosova H., Cervena T., Topinka J., Rössner P. Differential DNA damage response and cell fate in human lung cells after exposure to genotoxic compounds. Toxicol. Vitro. 2024;94 doi: 10.1016/j.tiv.2023.105710. PubMed DOI

Zahumensky J., Malinsky J. Live cell fluorescence microscopy – from sample preparation to numbers and plots. BioRxiv Preprint. 2024:2024. doi: 10.1101/2024.03.28.587214. 03.28.587214. DOI

Zahumenský J., Mota Fernandes C., Veselá P., Del Poeta M., Konopka J.B., Malínský J. Microdomain protein Nce102 is a local sensor of plasma membrane sphingolipid balance. Microbiol. Spectr. 2022;10 doi: 10.1128/spectrum.01961-22. PubMed DOI PMC

Balazova M., Vesela P., Babelova L., Durisova I., Kanovicova P., Zahumensky J., Malinsky J. Two different phospholipases C, Isc1 and Pgc1, cooperate to regulate mitochondrial function. Microbiol. Spectr. 2022;10 doi: 10.1128/spectrum.02489-22. PubMed DOI PMC

Vesela P., Zahumensky J., Malinsky J. Lsp1 partially substitutes for Pil1 function in eisosome assembly under stress conditions. J. Cell Sci. 2023;136 doi: 10.1242/jcs.260554. PubMed DOI

Stringer C., Wang T., Michaelos M., Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 2021;18:100–106. doi: 10.1038/s41592-020-01018-x. PubMed DOI

Page A.M., Davis K., Molineux C., Kolodner R.D., Johnson A.W. Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res. 1998;26 https://academic.oup.com/nar/article/26/16/3707/1020232 PubMed PMC

Langeberg C.J., Welch W.R.W., McGuire J.V., Ashby A., Jackson A.D., Chapman E.G. Biochemical characterization of yeast Xrn1. Biochemistry. 2020;59:1493–1507. doi: 10.1021/acs.biochem.9b01035. PubMed DOI PMC

Kurochkina N., Guha U. SH3 domains: modules of protein-protein interactions. Biophys Rev. 2013;5:29–39. doi: 10.1007/s12551-012-0081-z. PubMed DOI PMC

Tonikian R., Xin X., Toret C.P., Gfeller D., Landgraf C., Panni S., Paoluzi S., Castagnoli L., Currell B., Seshagiri S., Yu H., Winsor B., Vidal M., Gerstein M.B., Bader G.D., Volkmer R., Cesareni G., Drubin D.G., Kim P.M., Sidhu S.S., Boone C. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol. 2009;7 doi: 10.1371/journal.pbio.1000218. PubMed DOI PMC

Alfatah M., Cui L., Goh C.J.H., Cheng T.Y.N., Zhang Y., Naaz A., Wong J.H., Lewis J., Poh W.J., Arumugam P. Metabolism of glucose activates TORC1 through multiple mechanisms in Saccharomyces cerevisiae. Cell Rep. 2023;42 doi: 10.1016/j.celrep.2023.113205. PubMed DOI

Schmidt M.M. Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front. Neuroenergetics. 2009;1 doi: 10.3389/neuro.14.001.2009. PubMed DOI PMC

Galdieri L., Mehrotra S., Yu S., Vancura A. Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS. 2010;14:629–638. doi: 10.1089/omi.2010.0069. PubMed DOI PMC

Solinger J.A., Pascolini D., Heyer W.-D. Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol. Cell Biol. 1999;19:5930–5942. doi: 10.1128/MCB.19.9.5930. PubMed DOI PMC

Luchelli L., Thomas M.G., Boccaccio G.L. Synaptic control of mRNA translation by reversible assembly of XRN1 bodies. J. Cell Sci. 2015;128:1542–1554. doi: 10.1242/jcs.163295. PubMed DOI

Thomas M.G., Boccaccio G.L. Novel mRNA-silencing bodies at the synapse: a never-ending story, Commun. Integr. Biol. 2016;9:1–5. doi: 10.1080/19420889.2016.1139251. PubMed DOI PMC

Courtin B., Namane A., Gomard M., Meyer L., Jacquier A., Fromont-Racine M. Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MicroPubl Biol. 2023 doi: 10.17912/micropub.biology.000926. PubMed DOI PMC

Chang J.H., Xiang S., Xiang K., Manley J.L., Tong L. Structural and biochemical studies of the 5’→3’ exoribonuclease Xrn1. Nat. Struct. Mol. Biol. 2011;18:270–276. doi: 10.1038/nsmb.1984. PubMed DOI PMC

Jinek M., Coyle S.M., Doudna J.A. Coupled 5’ nucleotide recognition and processivity in xrn1-mediated mRNA decay. Mol Cell. 2011;41:600–608. doi: 10.1016/j.molcel.2011.02.004. PubMed DOI PMC

Krogan N.J., Cagney G., Yu H., Zhong G., Guo X., Ignatchenko A., Li J., Pu S., Datta N., Tikuisis A.P., Punna T., Peregrín-Alvarez J.M., Shales M., Zhang X., Davey M., Robinson M.D., Paccanaro A., Bray J.E., Sheung A., Beattie B., Richards D.P., Canadien V., Lalev A., Mena F., Wong P., Starostine A., Canete M.M., Vlasblom J., Wu S., Orsi C., Collins S.R., Chandran S., Haw R., Rilstone J.J., Gandi K., Thompson N.J., Musso G., St Onge P., Ghanny S., Lam M.H.Y., Butland G., Altaf-Ul A.M., Kanaya S., Shilatifard A., O'Shea E., Weissman J.S., Ingles C.J., Hughes T.R., Parkinson J., Gerstein M., Wodak S.J., Emili A., Greenblatt J.F. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440:637–643. doi: 10.1038/nature04670. PubMed DOI

Walther T.C., Aguilar P.S., Fröhlich F., Chu F., Moreira K., Burlingame A.L., Walter P. Pkh-kinases control eisosome assembly and organization. EMBO J. 2007;26:4946–4955. doi: 10.1038/sj.emboj.7601933. PubMed DOI PMC

Luo G., Gruhler A., Liu Y., Jensen O.N., Dickson R.C. The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover, J. Biol. Chem. 2008;283:10433–10444. doi: 10.1074/jbc.M709972200. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...