Conserved mechanism of Xrn1 regulation by glycolytic flux and protein aggregation
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39416838
PubMed Central
PMC11481674
DOI
10.1016/j.heliyon.2024.e38786
PII: S2405-8440(24)14817-7
Knihovny.cz E-zdroje
- Klíčová slova
- Eisosome, Exoribonuclease, Glycolysis, SH3-like domain, Xrn1, Yeast,
- Publikační typ
- časopisecké články MeSH
The regulation of gene expression in eukaryotes relies largely on the action of exoribonucleases, evolutionarily conserved enzymes that digest decapped messenger RNAs in the 5'-3' direction. The activity of Xrn1, the major yeast exoribonuclease, is regulated by targeted changes in its cellular localisation in direct response to the cell's metabolic state. When fermentable carbon sources are available, active Xrn1 is diffusely localised in the cytosol. Upon depletion of these sources, Xrn1 is sequestered at the plasma membrane-associated protein complex, the eisosome, and becomes inactive. Although this phenomenon has been described previously, the molecular mechanisms underlying these changes remain unknown. We report that the binding of Xrn1 to the plasma membrane is subject to glycolytic flux, rather than the availability of a fermentable carbon source, is independent of TORC1 activity and requires the core eisosomal proteins Pil1 and Lsp1. We identify the SH3-like domain of the Xrn1 protein as a putative interaction domain. In addition, we show that when expressed in Saccharomyces cerevisiae, the human orthologue of Xrn1 mirrors its yeast counterpart, i.e., it segregates to the eisosome under conditions of halted glycolysis. Our results not only advance our understanding of Xrn1 regulation but also indicate that this regulatory principle is conserved from yeast to humans.
Zobrazit více v PubMed
Garneau N.L., Wilusz J., Wilusz C.J. The highways and byways of mRNA decay, Nat. Rev. Mol. Cell Biol. 2007;8:113–126. doi: 10.1038/nrm2104. PubMed DOI
Pashler A.L., Towler B.P., Jones C.I., Newbury S.F. The roles of the exoribonucleases DIS3L2 and XRN1 in human disease, Biochem. Soc. Trans. 2016;44:1377–1384. doi: 10.1042/bst20160107. PubMed DOI
Braun K.A., Young E.T. Coupling mRNA synthesis and decay. Mol. Cell Biol. 2014;34:4078–4087. doi: 10.1128/MCB.00535-14. PubMed DOI PMC
Nagarajan V.K., Jones C.I., Newbury S.F., Green P.J. XRN 5’→3’ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta Gene Regul Mech. 2013;1829:590–603. doi: 10.1016/j.bbagrm.2013.03.005. PubMed DOI PMC
Araki Y., Takahashi S., Kobayashi T., Kajiho H., Hoshino S.I., Katada T. Ski7p G protein interacts with the exosome and the ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J. 2001;20:4684–4693. doi: 10.1093/emboj/20.17.4684. PubMed DOI PMC
Halbach F., Reichelt P., Rode M., Conti E. The yeast ski complex: crystal structure and RNA channeling to the exosome complex, Cell. 2013;154:814–826. doi: 10.1016/j.cell.2013.07.017. PubMed DOI
Chen C.Y.A., Bin Shyu A., Deadenylation, P-bodies Adv. Exp Med Biol. 2013;768:183–195. doi: 10.1007/978-1-4614-5107-5_11. PubMed DOI PMC
Łabno A., Tomecki R., Dziembowski A. Cytoplasmic RNA decay pathways - enzymes and mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:3125–3147. doi: 10.1016/j.bbamcr.2016.09.023. PubMed DOI
Johnson A.W., Kolodner R.D. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell Biol. 1995;15:2719–2727. doi: 10.1128/MCB.15.5.2719. PubMed DOI PMC
Anderson J.S.J., Parker R. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 1998;17:1497–1506. doi: 10.1093/emboj/17.5.1497. PubMed DOI PMC
Grousl T., Opekarová M., Stradalova V., Hasek J., Malinsky J. Evolutionarily conserved 5′-3′ exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast. PLoS One. 2015;10 doi: 10.1371/journal.pone.0122770. PubMed DOI PMC
Vaškovičová K., Awadová T., Veselá P., Balážová M., Opekarová M., Malinsky J. mRNA decay is regulated via sequestration of the conserved 5′-3′ exoribonuclease Xrn1 at eisosome in yeast. Eur. J. Cell Biol. 2017;96:591–599. doi: 10.1016/j.ejcb.2017.05.001. PubMed DOI
Sheth U., Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science. 1979;300(2003):805–808. doi: 10.1126/science.1082320. PubMed DOI PMC
Hsu C.L., Stevens A. Yeast cells lacking 5’-->3’ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5’ cap structure. Mol. Cell Biol. 1993;13:4826–4835. doi: 10.1128/MCB.13.8.4826. PubMed DOI PMC
Larimer F.W., Stevens A. Disruption of the gene XRN1, coding for a 5′→3′ exoribonuclease, restricts yeast cell growth. Gene. 1990;95:85–90. doi: 10.1016/0378-1119(90)90417-P. PubMed DOI
Stradalova V., Stahlschmidt W., Grossmann G., Blazikova M., Rachel R., Tanner W., Malinsky J. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J. Cell Sci. 2009;122:2887–2894. doi: 10.1242/jcs.051227. PubMed DOI
Lee J.H., Heuser J.E., Roth R., Goodenough U. Eisosome ultrastructure and evolution in fungi, microalgae, and lichens. Eukaryot. Cell. 2015;14:1017–1042. doi: 10.1128/EC.00106-15. PubMed DOI PMC
Foderaro J., Douglas L., Konopka J. MCC/Eisosomes Regulate Cell Wall Synthesis and Stress Responses in Fungi, Journal of Fungi 3. 2017;61 doi: 10.3390/jof3040061. PubMed DOI PMC
Lanze C.E., Gandra R.M., Foderaro J.E., Swenson K.A., Douglas L.M., Konopka J.B. Plasma membrane MCC/eisosome domains promote stress resistance in fungi. Microbiol. Mol. Biol. Rev. 2020 doi: 10.1128/MMBR.00063-19. PubMed DOI PMC
Riggi M., Kusmider B., Loewith R. The flipside of the TOR coin - TORC2 and plasma membrane homeostasis at a glance, J. Cell Sci. 2020;133 doi: 10.1242/jcs.242040. PubMed DOI
Zahumensky J., Malinsky J. Role of MCC/eisosome in fungal lipid homeostasis. Biomolecules. 2019;9 doi: 10.3390/biom9080305. PubMed DOI PMC
Olivera-Couto A., Grana M., Harispe L., Aguilar P.S. The eisosome core is composed of BAR domain proteins, Mol. Biol. Cell. 2011;22:2360–2372. doi: 10.1091/mbc.e10-12-1021. PubMed DOI PMC
Karotki L., Huiskonen J.T., Stefan C.J., Ziółkowska N.E., Roth R., Surma M.A., Krogan N.J., Emr S.D., Heuser J., Grünewald K., Walther T.C. Eisosome proteins assemble into a membrane scaffold. JCB (J. Cell Biol.) 2011;195:889–902. doi: 10.1083/jcb.201104040. PubMed DOI PMC
Kefauver J.M., Hakala M., Zou L., Alba J., Espadas J., Tettamanti G., Estrozi L.F., Vanni S., Roux A., Desfosses A., Loewith R. CryoEM architecture of a native stretch-sensitive membrane microdomain. BioRxiv Preprint. 2023 doi: 10.1101/2023.08.25.554800. DOI
Walther T.C., Brickner J.H., Aguilar P.S., Bernales S., Pantoja C., Walter P. Eisosomes mark static sites of endocytosis. Nature. 2006;439:998–1003. doi: 10.1038/nature04472. PubMed DOI
Malinsky J., Opekarová M. Int Rev Cell Mol Biol. Elsevier Inc.; 2016. New insight into the roles of membrane microdomains in physiological activities of fungal cells; pp. 119–180. PubMed DOI
Athanasopoulos A., André B., Sophianopoulou V., Gournas C. Fungal plasma membrane domains. FEMS Microbiol. Rev. 2019;43:642–673. doi: 10.1093/femsre/fuz022. PubMed DOI
Gietz R.D., Schiestl R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007;2:31–34. doi: 10.1038/nprot.2007.13. PubMed DOI
Sheff M.A., Thorn K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast. 2004;21:661–670. doi: 10.1002/yea.1130. PubMed DOI
Vaskovicova K., Stradalova V., Efenberk A., Opekarova M., Malinsky J. Assembly of fission yeast eisosomes in the plasma membrane of budding yeast: import of foreign membrane microdomains. Eur. J. Cell Biol. 2015;94:1–11. doi: 10.1016/j.ejcb.2014.10.003. PubMed DOI
Libalova H., Zavodna T., Margaryan H., Elzeinova F., Milcova A., Vrbova K., Barosova H., Cervena T., Topinka J., Rössner P. Differential DNA damage response and cell fate in human lung cells after exposure to genotoxic compounds. Toxicol. Vitro. 2024;94 doi: 10.1016/j.tiv.2023.105710. PubMed DOI
Zahumensky J., Malinsky J. Live cell fluorescence microscopy – from sample preparation to numbers and plots. BioRxiv Preprint. 2024:2024. doi: 10.1101/2024.03.28.587214. 03.28.587214. DOI
Zahumenský J., Mota Fernandes C., Veselá P., Del Poeta M., Konopka J.B., Malínský J. Microdomain protein Nce102 is a local sensor of plasma membrane sphingolipid balance. Microbiol. Spectr. 2022;10 doi: 10.1128/spectrum.01961-22. PubMed DOI PMC
Balazova M., Vesela P., Babelova L., Durisova I., Kanovicova P., Zahumensky J., Malinsky J. Two different phospholipases C, Isc1 and Pgc1, cooperate to regulate mitochondrial function. Microbiol. Spectr. 2022;10 doi: 10.1128/spectrum.02489-22. PubMed DOI PMC
Vesela P., Zahumensky J., Malinsky J. Lsp1 partially substitutes for Pil1 function in eisosome assembly under stress conditions. J. Cell Sci. 2023;136 doi: 10.1242/jcs.260554. PubMed DOI
Stringer C., Wang T., Michaelos M., Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 2021;18:100–106. doi: 10.1038/s41592-020-01018-x. PubMed DOI
Page A.M., Davis K., Molineux C., Kolodner R.D., Johnson A.W. Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res. 1998;26 https://academic.oup.com/nar/article/26/16/3707/1020232 PubMed PMC
Langeberg C.J., Welch W.R.W., McGuire J.V., Ashby A., Jackson A.D., Chapman E.G. Biochemical characterization of yeast Xrn1. Biochemistry. 2020;59:1493–1507. doi: 10.1021/acs.biochem.9b01035. PubMed DOI PMC
Kurochkina N., Guha U. SH3 domains: modules of protein-protein interactions. Biophys Rev. 2013;5:29–39. doi: 10.1007/s12551-012-0081-z. PubMed DOI PMC
Tonikian R., Xin X., Toret C.P., Gfeller D., Landgraf C., Panni S., Paoluzi S., Castagnoli L., Currell B., Seshagiri S., Yu H., Winsor B., Vidal M., Gerstein M.B., Bader G.D., Volkmer R., Cesareni G., Drubin D.G., Kim P.M., Sidhu S.S., Boone C. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol. 2009;7 doi: 10.1371/journal.pbio.1000218. PubMed DOI PMC
Alfatah M., Cui L., Goh C.J.H., Cheng T.Y.N., Zhang Y., Naaz A., Wong J.H., Lewis J., Poh W.J., Arumugam P. Metabolism of glucose activates TORC1 through multiple mechanisms in Saccharomyces cerevisiae. Cell Rep. 2023;42 doi: 10.1016/j.celrep.2023.113205. PubMed DOI
Schmidt M.M. Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front. Neuroenergetics. 2009;1 doi: 10.3389/neuro.14.001.2009. PubMed DOI PMC
Galdieri L., Mehrotra S., Yu S., Vancura A. Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS. 2010;14:629–638. doi: 10.1089/omi.2010.0069. PubMed DOI PMC
Solinger J.A., Pascolini D., Heyer W.-D. Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol. Cell Biol. 1999;19:5930–5942. doi: 10.1128/MCB.19.9.5930. PubMed DOI PMC
Luchelli L., Thomas M.G., Boccaccio G.L. Synaptic control of mRNA translation by reversible assembly of XRN1 bodies. J. Cell Sci. 2015;128:1542–1554. doi: 10.1242/jcs.163295. PubMed DOI
Thomas M.G., Boccaccio G.L. Novel mRNA-silencing bodies at the synapse: a never-ending story, Commun. Integr. Biol. 2016;9:1–5. doi: 10.1080/19420889.2016.1139251. PubMed DOI PMC
Courtin B., Namane A., Gomard M., Meyer L., Jacquier A., Fromont-Racine M. Xrn1 biochemically associates with eisosome proteins after the post diauxic shift in yeast. MicroPubl Biol. 2023 doi: 10.17912/micropub.biology.000926. PubMed DOI PMC
Chang J.H., Xiang S., Xiang K., Manley J.L., Tong L. Structural and biochemical studies of the 5’→3’ exoribonuclease Xrn1. Nat. Struct. Mol. Biol. 2011;18:270–276. doi: 10.1038/nsmb.1984. PubMed DOI PMC
Jinek M., Coyle S.M., Doudna J.A. Coupled 5’ nucleotide recognition and processivity in xrn1-mediated mRNA decay. Mol Cell. 2011;41:600–608. doi: 10.1016/j.molcel.2011.02.004. PubMed DOI PMC
Krogan N.J., Cagney G., Yu H., Zhong G., Guo X., Ignatchenko A., Li J., Pu S., Datta N., Tikuisis A.P., Punna T., Peregrín-Alvarez J.M., Shales M., Zhang X., Davey M., Robinson M.D., Paccanaro A., Bray J.E., Sheung A., Beattie B., Richards D.P., Canadien V., Lalev A., Mena F., Wong P., Starostine A., Canete M.M., Vlasblom J., Wu S., Orsi C., Collins S.R., Chandran S., Haw R., Rilstone J.J., Gandi K., Thompson N.J., Musso G., St Onge P., Ghanny S., Lam M.H.Y., Butland G., Altaf-Ul A.M., Kanaya S., Shilatifard A., O'Shea E., Weissman J.S., Ingles C.J., Hughes T.R., Parkinson J., Gerstein M., Wodak S.J., Emili A., Greenblatt J.F. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440:637–643. doi: 10.1038/nature04670. PubMed DOI
Walther T.C., Aguilar P.S., Fröhlich F., Chu F., Moreira K., Burlingame A.L., Walter P. Pkh-kinases control eisosome assembly and organization. EMBO J. 2007;26:4946–4955. doi: 10.1038/sj.emboj.7601933. PubMed DOI PMC
Luo G., Gruhler A., Liu Y., Jensen O.N., Dickson R.C. The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover, J. Biol. Chem. 2008;283:10433–10444. doi: 10.1074/jbc.M709972200. PubMed DOI PMC